Hiding in the Lianas of the Tree of Life Molecular Phylogenetics And

Total Page:16

File Type:pdf, Size:1020Kb

Hiding in the Lianas of the Tree of Life Molecular Phylogenetics And Molecular Phylogenetics and Evolution 134 (2019) 61–65 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Short Communication Hiding in the lianas of the tree of life: Molecular phylogenetics and species T delimitation reveal considerable cryptic diversity of New World Vine Snakes ⁎ Robert C. Jadina, , Christopher Blairb,c, Michael J. Jowersd, Anthony Carmonaa, John C. Murphye,1 a Department of Biology, Northeastern Illinois University, 5500 North St., Louis Avenue, Chicago, IL 60625-4699, USA b Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 1120, USA c Biology PhD Program, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA d CIBIO/InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), Universidade do Porto, Campus Agrario De Vairão, 4485-661 Vairão, Portugal e Science and Education, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA ARTICLE INFO ABSTRACT Keywords: The Brown Vine Snake, Oxybelis aeneus, is considered a single species despite the fact its distribution covers an Bayesian estimated 10% of the Earth’s land surface, inhabiting a variety of ecosystems throughout North, Central, and Biodiversity South America and is distributed across numerous biogeographic barriers. Here we assemble a multilocus mo- Oxybelis lecular dataset (i.e. cyt b, ND4, cmos, PRLR) derived from Middle American populations to examine for the first RASP time the evolutionary history of Oxybelis and test for evidence of cryptic lineages using Bayesian and maximum Reptilia likelihood criteria. Our divergence time estimates suggest that Oxybelis diverged from its sister genus, Leptophis, Serpentes approximately 20.5 million years ago (Ma) during the lower-Miocene. Additionally, our phylogenetic and species delimitation results suggest O. aeneus is likely a complex of species showing relatively deep species-level di- vergences initiated during the Pliocene. Finally, ancestral area reconstructions suggest a Central American origin and subsequent expansion into North and South America. 1. Introduction deciduous forests, and tropical rainforest (Keiser, 1982; Van Devender et al., 1994). Due to the extensive distribution and morphological New World vine snakes of the genus Oxybelis are long, slender variation in O. aeneus, various populations were described as distinct snakes that possess a dramatically elongated head and are specialized numerous times (e.g. Dryophis vittatus Girard, 1854; O. microphthalmus for arboreality (Fig. 1). These species are diurnal with excellent vision Barbour and Amaral, 1926; O. potosiensis Taylor, 1941). However, in for hunting small lizards. Currently there are four species of Oxybelis, all spite of the many geographic barriers (e.g. Isthmus of Tehuantepec, with populations in Central America (Kӧhler, 2008; Uetz et al., 2018). Isthmus of Panama, Mexican Volcanic Belt, Andes Mountains and the Oxybelis wilsoni Villa and McCranie, 1995 is known only from Isla de Amazon River) occurring across its range and morphological diversity, Roatán, Honduras while O. brevirostris (Cope, 1861) and O. fulgidus the Brown Vine Snake is currently considered a single, extremely (Daudin, 1803) occur in Central and South America. However, the variable species (Keiser, 1974, 1982). Brown Vine Snake, O. aeneus (Wagler, 1824) has a distribution far ex- Although Oxybelis aeneus and O. fulgidus have recently been in- ceeding its congeners extending from southern Arizona southward cluded in broad molecular phylogenetic analyses to assess evolutionary through Central America and into South America to southeastern Brazil. histories among snake genera, the current phylogenetic position of This distribution covers more than 58° of latitude, a distance of more Oxybelis within the Colubrinae is unresolved (e.g. Pyron et al., 2013; than 9000 km on a north-south axis, and approximately 15 million Figueroa et al., 2016) and relationships within the genus have not been square kilometers (∼10% of the Earth’s land surface), making it one of investigated. In this study, we implement multiple phylogenetic ana- the most widespread snake species on the planet (Keiser, 1982). Oxy- lyses using mitochondrial (mtDNA) and nuclear (nDNA) DNA datasets belis aeneus has an elevational range extending from sea level to at least to assess the evolutionary history and timing of diversification of the 2500 m and populations inhabit semi-desert, tropical savanna, seasonal genus Oxybelis. More specifically, we conduct the first phylogeographic ⁎ Corresponding author at: Department of Biology, University of Wisconsin Eau Claire, Eau Claire, WI 54702, USA. E-mail address: [email protected] (R.C. Jadin). 1 Present address: 2564 E. Murdoch Ct., Green Valley, AZ 85614, USA. https://doi.org/10.1016/j.ympev.2019.01.022 Received 8 October 2018; Received in revised form 6 December 2018; Accepted 25 January 2019 Available online 01 February 2019 1055-7903/ © 2019 Elsevier Inc. All rights reserved. R.C. Jadin, et al. Molecular Phylogenetics and Evolution 134 (2019) 61–65 Chironius carinatus Area B O. fulgidus 1 100 D O. wilsoni 1 A Lineage 1 1 C 100 Lineage 2 O. aeneus 0.97 E 93 Lineage 3 0.54 67 F 3.0 Lineage 4 Oligocene Miocene Plio. Pleis. 3 5 3 0 2 5 2 0 1 5 1 0 5 0 Ma Fig. 1. Phylogenetic relationships and divergence times within Oxybelis based on coalescent-based species tree analysis in StarBEAST2 (cyt b, PRLR, cmos; total of 2112 bp). ‘Species' were defined based on posterior probability support obtained from multiple BPP runs. Values above branch indicate posterior probability values for relationships, whereas values below nodes represent bootstrap support values from SVDquartets. Plio. = Pliocene; Pleis. = Pleistocene. Locality map representing populations of Oxybelis sampled (Table 1). Colored areas represent geographic regions used for DEC ancestral area reconstruction: (A) Sierra Madre Occidental Pine- oak forest, Sierra Madre del Sur Pine Forest, and Sinaloan Dry Forest (O. aeneus Lineage 1, sea green); (B) Central American Moist Forest (O. fulgidus, green); (C) Central American Montane Forest (O. aeneus Lineage 2, gold); (D) Isla de Roatán, Honduras (O. wilsoni, aqua star); (E) Isthmian-Pacific Moist Forest (O. aeneus Lineage 3, sepia); and (F) Trinidad and Tobago Moist Forest (O. aeneus Lineage 4, olive). Insert is an in-life photograph of O. aeneus from Tobago (J.C. Murphy). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) assessment of the Brown Vine Snake, O. aeneus, throughout much of its deposited in GenBank (MK497173-MK497235) and combined with northern range and assess if biogeographic barriers found to affect several other Oxybelis sequences, along with different colubrid se- other Middle American taxa influence Oxybelis. Finally, we estimate quences previously published on GenBank (Supplemental Appendix). ancestral areas to investigate the historical biogeography of Oxybelis. PRLR sequences were generated in this study to assess intrageneric relationships within Oxybelis and were unavailable on GenBank for 2. Materials and methods other taxa. Therefore this gene was not used for the analysis to de- termine the phylogenetic position of Oxybelis within the Colubridae. 2.1. Molecular data Likewise, ND4 sequences were generated in only a few Oxybelis speci- mens to evaluate the phylogenetic status of Oxybelis among numerous Full details for all methods and analyses are provided in the sup- genera, for which ND4 sequences are prevalent, but was not sequenced plementary materials. Genomic DNA was extracted from tissues of in enough Oxybelis specimens to determine relationships within Oxy- Oxybelis aeneus and O. fulgidus (Table 1) using a Qiagen DNeasy ex- belis and therefore ND4 was excluded from those analyses. We selected traction kit and protocol. Two mitochondrial [Cytochrome b (cyt b) and ingroup taxa based on recent studies that found Oxybelis in a clade of NADH dehydrogenase subunit 4 (ND4)] and two nuclear [oocyte ma- New World colubrids (Pyron et al., 2013; Jadin et al., 2014; Figueroa turation factor mos (cmos) and prolactin receptor (PRLR)] gene frag- et al., 2016). ments were independently amplified using GoTaq Green master mixby Promega, (Madison, WI, USA) with the primer pairs: L14910 + H16064 2.2. Phylogenetic analyses (cyt b), ND4 + LEU (ND4), S77 + S78 (cmos), and PRLR_f1 + PRLR_r3 (PRLR). Annealing temperatures were 48, 46, 55, and 50 °C, respec- To determine the phylogenetic placement of Oxybelis within colu- tively. Sequencing was performed in both forward and reverse direc- brids, we conducted three independent analyses using both maximum tions using the PCR primers on a Beckman Coulter automated capillary likelihood (ML) and Bayesian (BI) criteria. Both unpartitioned and sequencer, and sequence chromatographs were edited using Geneious partitioned (by locus) ML analyses of the concatenated cyt b, ND4, and R6 6.1.6. Gaps in alignments were treated as missing data and no in- cmos data (2319 bp) were performed in RAxML v.8.2.11 (Stamatakis, ternal stop codons were found. Novel sequences from this study were 2014) under a GTR+GAMMA model of nucleotide substitution (-f a 62 R.C. Jadin, et al. Molecular Phylogenetics and Evolution 134 (2019) 61–65 Table 1 Genbank numbers for DNA sequences analyzed in this study. Abbreviations of institutions and individuals
Recommended publications
  • Uromacer Catesbyi (Schlegel) 1. Uromacer Catesbyi Catesbyi Schlegel 2. Uromacer Catesbyi Cereolineatus Schwartz 3. Uromacer Cate
    T 356.1 REPTILIA: SQUAMATA: SERPENTES: COLUBRIDAE UROMACER CATESBYI Catalogue of American Amphibians and Reptiles. [but see Schwartz,' 1970]); ontogenetic color change (Henderson and Binder, 1980); head and body proportions (Henderson and SCHWARTZ,ALBERTANDROBERTW. HENDERSON.1984. Uroma• Binder, 1980; Henderson et a\., 1981; Henderson, 1982b); behav• cer catesbyi. ior and ecology (Werner, 1909; Mertens, 1939; Curtiss, 1947; Uromacer catesbyi (Schlegel) Horn, 1969; Schwartz, 1970, 1979, 1980; Henderson and Binder, 1980; Henderson et a\., 1981, 1982; Henderson, 1982a, 1982b; Dendrophis catesbyi Schlegel, 1837:226. Type-locality, "lie de Henderson and Horn, 1983). St.- Domingue." Syntypes, Mus. Nat. Hist. Nat., Paris, 8670• 71 (sexes unknown) taken by Alexandre Ricord (date of col• • ETYMOLOGY.The species is named for Mark Catesby, noted lection unknown) (not examined by authors). North American naturalist. The subspecies names are all derived Uromacer catesbyi: Dumeril, Bibron, and Dumeril, 1854:72l. from Latin, as follow: cereolineatus, "waxen" and "thread," in allusion to the white longitudinal lateral line; hariolatus meaning • CONTENT.Eight subspecies are recognized, catesbyi, cereo• "predicted" in allusion to the fact that the north island (sensu lineatus,frondicolor, hariolatus, inchausteguii, insulaevaccarum, Williams, 1961) population was expected to be distinct; inchaus• pampineus, and scandax. teguii in honor of Sixto J. Inchaustegui, of the Museo Nacional de • DEFINITION.An elongate Uromacer, but head less elongate Historia Natural de Santo Domingo, Republica Dominicana; insu• than in congeners, and the head scales accordingly not highly mod• laevaccarum, a literal translation of lIe-a-Vache (island of cows), ified. Ventrals are 157-177 in males, and 155-179 in females; pampineus, "pertaining to vine tendrils or leaves;" and scandax, subcaudals are 172-208 in males, and 159-201 in females.
    [Show full text]
  • Auto Guia Version Ingles
    Parque Natural Metropolitano Tel: (507) 232-5516/5552 Fax: (507) 232-5615 www.parquemetropolitano.org Ave. Juan Pablo II final P.O. Box 0843-03129 Balboa, Ancón, Panamá República de Panamá 2 Taylor, L. 2006. Raintree Nutrition, Tropical Plant Database. http://www.rain- Welcome to the Metropolitan Natural Park, the lungs of Panama tree.com/plist.htm. Date accessed; February 2007 City! The park was established in 1985 and contains 232 hectares. It is one of the few protected areas located within the city border. Thomson, L., & Evans, B. 2006. Terminalia catappa (tropical almond), Species Profiles for Pacific Island Agroforestry. Permanent Agriculture Resources You are about to enter an ecosystem that is nearly extinct in Latin (PAR), Elevitch, C.R. (ed.). http://www.traditionaltreeorg . Date accessed March America: the Pacific dry forests. Whether your goals for this walk 2007-04-23 are a simple walk to keep you in shape or a careful look at the forest and its inhabitants, this guide will give you information about Young, A., Myers, P., Byrne, A. 1999, 2001, 2004. Bradypus variegatus, what can be commonly seen. We want to draw your attention Megalonychidae, Atta sexdens, Animal Diversity Web. http://animaldiversity.ummz.umich.edu/site/accounts/information/Bradypus_var toward little things that may at first glance seem hidden away. Our iegatus.html. Date accessed March 2007 hope is that it will raise your curiosity and that you’ll want to learn more about the mysteries that lie within the tropical forest. ACKNOWLEDGEMENTS The contents of this book include tree identifications, introductions Text and design: Elisabeth Naud and Rudi Markgraf, McGill University, to basic ecological concepts and special facts about animals you Montreal, Canada.
    [Show full text]
  • Volume 4 Issue 1B
    Captive & Field Herpetology Volume 4 Issue 1 2020 Volume 4 Issue 1 2020 ISSN - 2515-5725 Published by Captive & Field Herpetology Captive & Field Herpetology Volume 4 Issue1 2020 The Captive and Field Herpetological journal is an open access peer-reviewed online journal which aims to better understand herpetology by publishing observational notes both in and ex-situ. Natural history notes, breeding observations, husbandry notes and literature reviews are all examples of the articles featured within C&F Herpetological journals. Each issue will feature literature or book reviews in an effort to resurface past literature and ignite new research ideas. For upcoming issues we are particularly interested in [but also accept other] articles demonstrating: • Conflict and interactions between herpetofauna and humans, specifically venomous snakes • Herpetofauna behaviour in human-disturbed habitats • Unusual behaviour of captive animals • Predator - prey interactions • Species range expansions • Species documented in new locations • Field reports • Literature reviews of books and scientific literature For submission guidelines visit: www.captiveandfieldherpetology.com Or contact us via: [email protected] Front cover image: Timon lepidus, Portugal 2019, John Benjamin Owens Captive & Field Herpetology Volume 4 Issue1 2020 Editorial Team Editor John Benjamin Owens Bangor University [email protected] [email protected] Reviewers Dr James Hicks Berkshire College of Agriculture [email protected] JP Dunbar
    [Show full text]
  • Download Download
    Phyllomedusa 20(1):89–92, 2021 © 2021 Universidade de São Paulo - ESALQ ISSN 1519-1397 (print) / ISSN 2316-9079 (online) doi: http://dx.doi.org/10.11606/issn.2316-9079.v20i1p89-92 Short CommuniCation Dietary records for Oxybelis rutherfordi (Serpentes: Colubridae) from Trinidad and Tobago Renoir J. Auguste,1 Jason-Marc Mohamed,2 Marie-Elise Maingot,1 and Kyle Edghill3 1 Department of Life Sciences, The University of the West Indies. St. Augustine, Trinidad and Tobago. E-mail: renguste@ gmail.com. 2 Palmiste, Trinidad, Trinidad and Tobago. 3 D’Abadie, Trinidad, Trinidad and Tobago. Keywords: diet, island ecology, lizards, predator-prey relationship, Rutherford’s vine snake. Palavras-chave: dieta, ecologia de ilhas, relação predador-presa, serpente-arborícola-de-rutherford. SnaKes feed on a variety of prey (Greene islands of Trinidad and Tobago (Jadin et al. 1983). The diet of the Brown Vine SnaKe, 2020). Jadin et al. (2019) recognized that O. Oxybelis aeneus (Wagler, 1824), is well Known; rutherfordi is distinct from O. aeneus and lizards are the most common prey. This species described the species (Jadinet al. 2020). Because has no apparent taxonomic proclivity in its previous natural history information for O. dietary choices, which suggests that their rutherfordi was combined with O. aeneus selection of lizards is random (Mesquita et al. (Murphy et al. 2018), it is appropriate to provide 2012, Sousa et al. 2020). However, reports on new information for O. rutherfordi. the diet of Rutherford’s Vine Snake, Oxybelis Three separate predation events by O. rutherfordi Jadin, Blair, OrlofsKe, Jowers, rutherfordi were observed in January and Rivas, Vitt, Ray, Smith, and Murphy, 2020, are February 2021 involving three lizard species on limited (Murphy et al.
    [Show full text]
  • Predation Attempt by Oxybelis Aeneus(Wagler)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Firenze University Press: E-Journals Acta Herpetologica 5(1): 19-22, 2010 Predation attempt by Oxybelis aeneus (Wagler) (Mexican Vine- snake) on Basiliscus plumifrons (Cope) Paul B.C. Grant1, Todd R. Lewis 2 1 4901 Cherry Tree Bend, Victoria B. C., V8Y 1SI, Canada. 2 Westfield, 4 Worgret Road, Wareham, Dorset, BH20 4PJ, UK. Corresponding author. E-mail: ecolewis@ gmail.com Submitted on: 2009, 31st August; revised on: 2010, 3rd March; accepted on: on2010, 13th March. Oxybelis aeneus is a broadly distributed vine snake of the New World (Keiser, 1982; Savage, 2002). Its enormous range stretches from Arizona and southern Texas, through Mexico, Honduras, Belize, Guatemala, Nicaragua, Costa Rica, Panama, and into South America where it is found in Colombia, Ecuador, north-western Peru on the Pacific ver- sant, and as far south as Brazil and Bolivia on the Atlantic versant (Keiser, 1974, 1982; Dixon and Soini, 1986; Keiser, 1991; Pérez-Santos and Moreno, 1991; Lehr et al., 2002; Savage, 2002; Hernandez, 2004; Uetz, 2006; Cisneros-Heredia and Touzet, 2007; AGFD, 2008). It is also found on Trinidad and Tobago and other islands such as offshore atolls around Belize (Campbell, 1998; Platt et al., 2002). O. aeneus is easily recognised from other Oxybelis sp. vine snakes by its light-grey dorsum and black mouth lining. It is a common colubrid snake within its range, inhabit- ing open areas, grassland with scrub, forest edges, clearings within forest, abandoned pas- tures, riparian premontane wet forest, premontane rain forest, in addition to lowland wet and dry forest (Franzen, 1996; Savage, 2002).
    [Show full text]
  • Eagle-Eye Tours Guyana Tour Species List January 17-29, 2019
    Guyana Tour Species List Tour Leader: Paul Prior Eagle-Eye Tours January 17-29, 2019 BIRD SPECIES Seen/ Common Name Scientific Name Heard TINAMOUS 1 Great Tinamou Tinamus major H 2 Cinereous Tinamou Crypturellus cinereus H 3 Little Tinamou Crypturellus soui H 4 Undulated Tinamou Crypturellus undulatus H 5 Red-legged Tinamou Crypturellus erythropus H 6 Variegated Tinamou Crypturellus variegatus H DUCKS, GEESE, AND WATERFOWL 7 White-faced Whistling-Duck Dendrocygna viduata S 8 Muscovy Duck Cairina moschata S 9 Masked Duck Nomonyx dominicus S GUANS, CHACHALACAS, AND CURASSOWS 10 Variable Chachalaca Ortalis motmot S 11 Marail Guan Penelope marail S 12 Spix's Guan Penelope jacquacu S 13 Black Curassow Crax alector S NEW WORLD QUAIL 14 Crested Bobwhite Colinus cristatus S FLAMINGOS 15 American Flamingo Phoenicopterus ruber S GREBES 16 Least Grebe Tachybaptus dominicus S 17 Pied-billed Grebe Podilymbus podiceps S STORKS 18 Maguari Stork Ciconia maguari S 19 Jabiru Jabiru mycteria S 20 Wood Stork Mycteria americana S FRIGATEBIRDS 21 Magnificent Frigatebird Fregata magnificens S CORMORANTS AND SHAGS 22 Neotropic Cormorant Phalacrocorax brasilianus S ANHINGAS 23 Anhinga Anhinga anhinga S PELICANS 24 Brown Pelican Pelecanus occidentalis S HERONS, EGRETS, AND BITTERNS Page1 of 15 Guyana Tour Species List Tour Leader: Paul Prior Eagle-Eye Tours January 17-29, 2019 BIRD SPECIES Seen/ Common Name Scientific Name Heard 25 Pinnated bittern Botaurus pinnatus S 26 Cocoi Heron Ardea cocoi S 27 Great Egret Ardea alba S 28 Snowy Egret Egretta thula S 29 Little
    [Show full text]
  • THE ORIGIN and EVOLUTION of SNAKE EYES Dissertation
    CONQUERING THE COLD SHUDDER: THE ORIGIN AND EVOLUTION OF SNAKE EYES Dissertation Presented in Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher L. Caprette, B.S., M.S. **** The Ohio State University 2005 Dissertation Committee: Thomas E. Hetherington, Advisor Approved by Jerry F. Downhower David L. Stetson Advisor The graduate program in Evolution, John W. Wenzel Ecology, and Organismal Biology ABSTRACT I investigated the ecological origin and diversity of snakes by examining one complex structure, the eye. First, using light and transmission electron microscopy, I contrasted the anatomy of the eyes of diurnal northern pine snakes and nocturnal brown treesnakes. While brown treesnakes have eyes of similar size for their snout-vent length as northern pine snakes, their lenses are an average of 27% larger (Mann-Whitney U test, p = 0.042). Based upon the differences in the size and position of the lens relative to the retina in these two species, I estimate that the image projected will be smaller and brighter for brown treesnakes. Northern pine snakes have a simplex, all-cone retina, in keeping with a primarily diurnal animal, while brown treesnake retinas have mostly rods with a few, scattered cones. I found microdroplets in the cone ellipsoids of northern pine snakes. In pine snakes, these droplets act as light guides. I also found microdroplets in brown treesnake rods, although these were less densely distributed and their function is unknown. Based upon the density of photoreceptors and neural layers in their retinas, and the predicted image size, brown treesnakes probably have the same visual acuity under nocturnal conditions that northern pine snakes experience under diurnal conditions.
    [Show full text]
  • A New Vine Snake (Reptilia, Colubridae, Oxybelis) from Peru and Redescription of O
    City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2021 A new vine snake (Reptilia, Colubridae, Oxybelis) from Peru and redescription of O. acuminatus Robert C. Jadin University of Wisconsin - Eau Claire Michael J. Jowers Universidade do Porto Sarah A. Orlofske University of Wisconsin - Eau Claire William E. Duellman University of Kansas Christopher Blair CUNY New York City College of Technology See next page for additional authors How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/685 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Authors Robert C. Jadin, Michael J. Jowers, Sarah A. Orlofske, William E. Duellman, Christopher Blair, and John C. Murphy This article is available at CUNY Academic Works: https://academicworks.cuny.edu/ny_pubs/685 Evolutionary Systematics. 5 2021, 1–12 | DOI 10.3897/evolsyst.5.60626 A new vine snake (Reptilia, Colubridae, Oxybelis) from Peru and redescription of O. acuminatus Robert C. Jadin1, Michael J. Jowers2, Sarah A. Orlofske1, William E. Duellman3, Christopher Blair4,5, John C. Murphy6,7 1 Department of Biology and Museum of Natural History, University of Wisconsin Stevens Point, Stevens Point, WI 54481, USA 2 CIBIO/InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), Universidade do Porto, Campus Agrario De Vairão, 4485- 661, Vairão, Portugal 3 Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045-7593, USA 4 Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 112015, USA 5 Biology PhD Program, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA 6 Science and Education, Field Museum of Natural History, 1400 S.
    [Show full text]
  • (Leptophis Ahaetulla Marginatus): Characterization of Its Venom and Venom-Delivery System
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the author's institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's Personal Copy Toxicon 148 (2018) 202e212 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Assessment of the potential toxicological hazard of the Green Parrot Snake (Leptophis ahaetulla marginatus): Characterization of its venom and venom-delivery system Matías N. Sanchez a, b, Gladys P. Teibler c, Carlos A. Lopez b, Stephen P. Mackessy d, * María E. Peichoto a, b, a Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Ministerio de Ciencia Tecnología e Innovacion Productiva, Argentina b Instituto Nacional de Medicina Tropical (INMeT), Ministerio de Salud de la Nacion, Neuquen y Jujuy s/n, 3370, Puerto Iguazú, Argentina c Facultad de Ciencias Veterinarias (FCV),
    [Show full text]
  • Emergency Plan
    Environmental Impact Assessment Project Number: 43253-026 November 2019 India: Karnataka Integrated and Sustainable Water Resources Management Investment Program – Project 2 Vijayanagara Channels Annexure 5–9 Prepared by Project Management Unit, Karnataka Integrated and Sustainable Water Resources Management Investment Program Karnataka Neeravari Nigam Ltd. for the Asian Development Bank. This is an updated version of the draft originally posted in June 2019 available on https://www.adb.org/projects/documents/ind-43253-026-eia-0 This environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section on ADB’s website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Annexure 5 Implementation Plan PROGRAMME CHART FOR CANAL LINING, STRUCTURES & BUILDING WORKS Name Of the project:Modernization of Vijaya Nagara channel and distributaries Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 S. No Name of the Channel 121212121212121212121212121212121212121212121212121 2 PACKAGE
    [Show full text]
  • A Monographic Study of the Neotropical Vine Snake, Oxybelis Aeneus (Wagler)
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 A Monographic Study of the Neotropical Vine Snake, Oxybelis Aeneus (Wagler). Edmund Davis Keiser Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Keiser, Edmund Davis Jr, "A Monographic Study of the Neotropical Vine Snake, Oxybelis Aeneus (Wagler)." (1967). LSU Historical Dissertations and Theses. 1342. https://digitalcommons.lsu.edu/gradschool_disstheses/1342 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67-17,325 KEISER, Jr., Edmund Davis, 1934- A MONOGRAPHIC STUDY OF THE NEOTROPICAL VINE SNAKE, Oxybelis aeneus (Wagler). Louisiana State University and Agricultural and Mechanical CoUege, Ph.D,, 1967 Zoology University Microfilms, Inc., Ann Arbor, Michigan A MONOGRAPHIC STUDY OF THE NEOTROPICAL VINE SNAKE, Oxybelis aeneus (Wagler) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Zoology by Edmund Davis Keiser, Jr. M.S., Southern Illinois University, 1961 August, 1967 ACKNOWLEDGMENTS I am indebted to the following persons for the loan of specimens, for advice or information, or for other assistance during this investigation: Dr. S. C. Anderson, Dr. J. Anthony, Dr.
    [Show full text]
  • Predation of a Utila Spiny-Tailed Iguana, Ctenosaura Bakeri (Iguanidae), by a Central American Boa, Boa Imperator (Boidae), on Utila, Isla De La Bahia, Honduras
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342339312 Predation of a Utila Spiny-tailed Iguana, Ctenosaura bakeri (Iguanidae), by a Central American Boa, Boa imperator (Boidae), on Utila, Isla de la Bahia, Honduras Article · August 2020 CITATIONS READS 0 34 3 authors: Daisy Maryon Tom Brown University of South Wales Kanahau Utila Research & Conservation Facility 15 PUBLICATIONS 8 CITATIONS 58 PUBLICATIONS 33 CITATIONS SEE PROFILE SEE PROFILE David C. Lee University of South Wales 17 PUBLICATIONS 211 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Ecological studies on the Critically Endangered Utila Spiny-tailed Iguana in Honduras View project Herpetofauna of Cusuco National Park, Honduras View project All content following this page was uploaded by Tom Brown on 02 August 2020. The user has requested enhancement of the downloaded file. WWW.IRCF.ORG TABLE OF CONTENTS IRCF REPTILES &IRCF AMPHIBIANS REPTILES • VOL &15, AMPHIBIANS NO 4 • DEC 2008 • 189 27(2):265–266 • AUG 2020 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES Predation. Chasing Bullsnakes (Pituophis of catenifer a sayi ) inUtila Wisconsin: Spiny-tailed Iguana, On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 Ctenosaura. The Shared History of Treeboas bakeri (Corallus grenadensis ) (Iguanidae),and Humans on Grenada: by a Central A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 AmericanRESEARCH ARTICLES Boa, Boa imperator (Boidae), . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 .
    [Show full text]