Inland Fisheries Resource Enhancement and Conservation in Asia Xi RAP PUBLICATION 2010/22

Total Page:16

File Type:pdf, Size:1020Kb

Inland Fisheries Resource Enhancement and Conservation in Asia Xi RAP PUBLICATION 2010/22 RAP PUBLICATION 2010/22 Inland fisheries resource enhancement and conservation in Asia xi RAP PUBLICATION 2010/22 INLAND FISHERIES RESOURCE ENHANCEMENT AND CONSERVATION IN ASIA Edited by Miao Weimin Sena De Silva Brian Davy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REGIONAL OFFICE FOR ASIA AND THE PACIFIC Bangkok, 2010 i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5-106751-2 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic Publishing Policy and Support Branch Communication Division FAO Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to: [email protected] © FAO 2010 For copies please write to: Aquaculture Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion, 39 Phra Athit Road Bangkok 10200 THAILAND Tel: (+66) 2 697 4119 Fax: (+66) 2 697 4445 E-mail: [email protected] For bibliographic purposes, please reference this publication as: Miao W., Silva S.D., Davy B. (eds.) (2010) Inland Fisheries Enhancement and Conservation in Asia. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. RAP Publication 2010/22, 189 pp. ii FOREWORD Inland capture fisheries provide an important source of food and livelihoods for many people in rural areas. In 2008, inland capture fisheries provided 10.2 million tonnes of fish worldwide (FAO, 2010), which was largely used for direct human consumption. Asia has overwhelmingly contributed to the world’s inland capture fisheries production with a reported total production of 6.8 million tonnes in 2008 (FAO, 2010). The actual contribution of inland capture fisheries, however, is far higher than what is reflected in the above official data. Because of the difficulties involved in collecting data from large numbers of small-scale, scattered and often unregistered fishers, official figures for fish catches tend to be vastly underestimated. Inland fisheries resources provide not only the material basis for maintaining capture fisheries production, but also serve as a reservoir of aquatic biodiversity. However, over the past few decades inland fisheries resources have come under increasing pressure from overfishing, use of destructive fishing gear/methodologies, water engineering projects, pollution and environment changes and have shown a clear declining trend. This has been well demonstrated by the disappearance of some traditionally important fish species and a general reduction in the catch of high valued species. Fisheries resource enhancement and conservation measures have long been adopted in many Asian countries for sustaining capture fish production, conserving aquatic biodiversity, rescuing endangered species, improving environmental conditions and upgrading recreational fisheries by offsetting the adverse impacts of human activities on inland fisheries resources. The contribution of inland fisheries resource enhancement and conservation to sustained inland capture fisheries and conservation of aquatic biodiversity as well as to nutritional security and improved rural livelihoods has been commonly recognized. On the other hand, external interventions to the aquatic ecosystem from fisheries resource enhancement and conservation activities may have had adverse impacts on the ecosystem and wild fish community, especially when such activities are carried out without a strong scientific basis or adequate evaluation and monitoring mechanisms. There is a general lack of comprehensive understanding as to the effectiveness and impacts of current enhancement and conservation activities in the region. This publication is the product of a regional review study on inland fisheries resource enhancement and conservation conducted during 2009-2010. It includes ten country review papers and one regional synthesis report generated from a regional expert workshop. The publication provides the most up-to-date, comprehensive information on inland fisheries resources enhancement and conservation in the region, covering practices, methodologies, operational modalities, impacts, constraints and recommendations for the way forward. The synthesis report provides a regional perspective on inland fisheries resources enhancement and conservation practices in Asia, with special focus on identifying common issues and problems, and recommends actions on improved practices for maximizing benefits to the region. This publication can serve as an important reference for people working in inland fisheries resources management. More importantly, it provides a starting point for anticipated thrusts in promoting better practices of inland fisheries resource enhancement and conservation. Hiroyuki Konuma Assistant Director-General and Regional Representative for Asia and the Pacific iii PREPARATION OF THE DOCUMENT This regional review study is an effort to promote improved inland fisheries management under the Code of Conduct for Responsible Fisheries. It covers ten Asian countries with significant inland capture fisheries, namely Bangladesh, China, India, Indonesia, the Republic of Korea, Myanmar, Nepal, Sri Lanka, Thailand and Viet Nam. The review study was conducted in collaboration with the Network of Aquaculture Centre in Asia-Pacific (NACA). Experts from the ten participating countries prepared a comprehensive review paper for each country during November 2009 to February 2010 following the guidelines jointly developed by the FAO Regional Office for Asia and the Pacific and NACA. A regional expert workshop on inland fisheries resource enhancement and conservation in Asia was subsequently convened by the FAO Regional Office for Asia and the Pacific and NACA from 8 to 11 February 2010 in Pattaya, Thailand. The FAO Regional Office for Asia and the Pacific, NACA, the International Institute for Sustainable Development (IISD) as well as the ten experts from the ten countries who participated in the review study attended. The workshop participants shared experiences and lessons on inland fisheries enhancement and conservation practices across the region, discussed the impacts of inland fisheries resource enhancement and conservation practices, identified the constraints and related problems from a regional perspective and recommended regional collaborative activities to promote improved practices of inland fisheries resource enhancement and conservation. A regional synthesis report was produced as the major output of the workshop. All the country review papers were presented, commented on and reviewed by a panel of experts during the workshop. The authors revised their manuscripts following the suggestions made by the review panel. The regional synthesis report was drafted by Sena De Silva (Director General, Network of Aquaculture Centers in Asia-Pacific, Bangkok, Thailand) based on the workshop discussions and further reviewed. The revised country papers were then reviewed and technically edited by an editorial team, which consisted of Miao Weimin (Aquaculture Officer, FAO Regional Officer for Asia and the Pacific, Bangkok, Thailand), Sena De Silva and Brian Davy (Senior Fellow, International Institute for Sustainable Development, Ottawa, Canada) before the authors finalized their manuscripts. The manuscripts were then reedited by the FAO Regional Office staff for final printing after receiving the final confirmed version from the authors. ACKNOWLEDGEMENTS The completion of the publication was attributable to the joint efforts of all the country review authors and editorial team. Much gratitude is due to the country review authors who made their best efforts in preparing the country papers and showed enormous patience with the many revisions requested of them. Simon Funge-Smith, Senior Fisheries Officer, FAO Regional Office for Asia and the Pacific is gratefully acknowledged for his technical advice and contribution to the expert workshop. Special thanks are due to Pornsuda David for her assistance in the final language editing and in facilitating publication of the document. Finally, Jiansan Jia, Chief of the FAO Aquaculture Management Service is gratefully acknowledged for his technical support. iv TABLE OF CONTENTS Page FOREWORD................................................................................................................................................................................... iii INLAND FISHERIES RESOURCE ENHANCEMENT AND CONSERVATION IN BANGLADESH ................... 1 1. INTRODUCTION ................................................................................................................................................................
Recommended publications
  • Dynamic Genetic Diversity and Population Structure of Coreius Guichenoti
    ZooKeys 1055: 135–148 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1055.70117 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Dynamic genetic diversity and population structure of Coreius guichenoti Dongqi Liu1*, Feng Lan2*, Sicai Xie1, Yi Diao1, Yi Zheng1, Junhui Gong1 1 Sichuan Province Key Laboratory of Characteristic Biological Resources of Dry and Hot River Valley, Pan- zhihua University, Panzhihua, 617000, China 2 Upper Changjiang River Burean of Hydrological and Water Resources Survey, Chongqing, 400000, China Corresponding author: Feng Lan ([email protected]) Academic editor: M.E. Bichuette | Received 14 June 2021 | Accepted 27 July 2021 | Published 11 August 2021 http://zoobank.org/ADECA19A-B689-47AE-971B-42913F28F5CE Citation: Liu D, Lan F, Xie S, Diao Y, Zheng Y, Gong J (2021) Dynamic genetic diversity and population structure of Coreius guichenoti. ZooKeys 1055: 135–148. https://doi.org/10.3897/zookeys.1055.70117 Abstract To investigate the genetic effects on the population of Coreius guichenoti of dam constructions in the upper reaches of the Yangtze River, we analyzed the genetic diversity and population structure of 12 popula- tions collected in 2009 and 2019 using mitochondrial DNA (mtDNA) control regions. There was no significant difference in genetic diversity between 2009 and 2019P ( > 0.05), but the population structure tended to become stronger. Genetic differentiation (FST) among five populations (LX, BB, YB, SF and JA) collected in 2009 was not significant P( > 0.05). However, some populations collected in 2019 were significantly differentiated (P < 0.05), indicating that the population structure has undergone change.
    [Show full text]
  • Modern Pollen Influx Data from Lake Baiyangdian, China
    Quaternary Science Reviews 37 (2012) 81e91 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China Qinghai Xu a,b,*, Fang Tian a, M. Jane Bunting c, Yuecong Li a, Wei Ding a, Xianyong Cao a, Zhiguo He a a College of Resources and Environment Science, and Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, East Road of Southern 2nd Ring, Shijiazhuang 050024, China b National Key Laboratory of Western China’s Environmental System, Ministry of Education, Lanzhou University, Southern Tianshui Road, Lanzhou 730000, China c Department of Geography, University of Hull, Cottingham Road, Hull HU6 7RX, UK article info abstract Article history: Comparing pollen influx recorded in traps above the surface and below the surface of Lake Baiyangdian Received 30 April 2011 in northern China shows that the average pollen influx in the traps above the surface is much lower, at À À À À Received in revised form 1210 grains cm 2 a 1 (varying from 550 to 2770 grains cm 2 a 1), than in the traps below the surface 15 January 2012 À À À À which average 8990 grains cm 2 a 1 (ranging from 430 to 22310 grains cm 2 a 1). This suggests that Accepted 19 January 2012 about 12% of the total pollen influx is transported by air, and 88% via inflowing water. If hydrophyte Available online 17 February 2012 pollen types are not included, the mean pollen influx in the traps above the surface decreases to À À À À À À 470 grains cm 2 a 1 (varying from 170 to 910 grains cm 2 a 1) and to 5470 grains cm 2 a 1 in the traps Keywords: À2 À1 Pollen assemblages below the surface (ranging from 270 to 12820 grains cm a ), suggesting that the contribution of Pollen influx waterborne pollen to the non-hydrophyte pollen assemblages in Lake Baiyangdian is about 92%.
    [Show full text]
  • Freshwater Fish Survey of Homadola-Nakiyadeniya Estates, Sri Lanka
    FRESHWATER FISH SURVEY OF HOMADOLA-NAKIYADENIYA ESTATES, SRI LANKA. Prepared by Hiranya Sudasinghe BSc. (Hons) Zoology, M.Phil. reading (University of Peradeniya) INTRODUCTION The diversity of freshwater fishes in Sri Lanka is remarkably high, with a total of 93 indigenous fishes being recorded from inland waters, out of which 53 are considered to be endemic (MOE, 2012; Batuwita et al., 2013). Out of these, 21 are listed as Critically Endangered, 19 as Endangered and five as Vulnerable in the National Red List (MOE, 2012). In addition, several new species of freshwater fishes have been discovered in the recent past which have not yet been evaluated for Red Listing (Batuwita et al., 2017; Sudasinghe 2017; Sudasinghe & Meegaskumbura, 2016; Sudasinghe et al., 2016). Out of the 22 families that represent the Sri Lankan freshwater ichthyofauna, the family Cyprinidae dominates, representing about 50% of the species, followed by the families Gobiidae, Channidae and Bagridae, which represent seven, five and four species, respectively. The remainder of the other families are each represented in Sri Lanka by three species or less. Four major ichthyological zones, viz. Southwestern zone, Mahaweli zone, Dry zone and the Transition zone were identified by Senanayake and Moyle (1982) based on the distribution and the endemism of the fish. The Southwestern zone shows the greatest diversity, followed by the Mahaweli zone, with the least diversity observed in the Dry zone. About 60% of the freshwater fishes occur both in the dry and the wet zones of the island while the rest are more or less restricted to the wet zone. Of the endemic fishes, more than 60% are restricted to the wet zone of the island while about 30% occur in both the dry and the wet zones.
    [Show full text]
  • Snakeheadsnepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN a Biologicalmyanmar Synopsis Vietnam
    Mongolia North Korea Afghan- China South Japan istan Korea Iran SnakeheadsNepal Pakistan − (Pisces,India Channidae) PACIFIC OCEAN A BiologicalMyanmar Synopsis Vietnam and Risk Assessment Philippines Thailand Malaysia INDIAN OCEAN Indonesia Indonesia U.S. Department of the Interior U.S. Geological Survey Circular 1251 SNAKEHEADS (Pisces, Channidae)— A Biological Synopsis and Risk Assessment By Walter R. Courtenay, Jr., and James D. Williams U.S. Geological Survey Circular 1251 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Copyrighted material reprinted with permission. 2004 For additional information write to: Walter R. Courtenay, Jr. Florida Integrated Science Center U.S. Geological Survey 7920 N.W. 71st Street Gainesville, Florida 32653 For additional copies please contact: U.S. Geological Survey Branch of Information Services Box 25286 Denver, Colorado 80225-0286 Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov Library of Congress Cataloging-in-Publication Data Walter R. Courtenay, Jr., and James D. Williams Snakeheads (Pisces, Channidae)—A Biological Synopsis and Risk Assessment / by Walter R. Courtenay, Jr., and James D. Williams p. cm. — (U.S. Geological Survey circular ; 1251) Includes bibliographical references. ISBN.0-607-93720 (alk. paper) 1. Snakeheads — Pisces, Channidae— Invasive Species 2. Biological Synopsis and Risk Assessment. Title. II. Series. QL653.N8D64 2004 597.8’09768’89—dc22 CONTENTS Abstract . 1 Introduction . 2 Literature Review and Background Information . 4 Taxonomy and Synonymy .
    [Show full text]
  • Tion of Wildlife and Plants
    SUBCHAPTER B—TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTA- TION OF WILDLIFE AND PLANTS PART 10—GENERAL PROVISIONS § 10.2 Scope of regulations. The various parts of this subchapter Subpart A—Introduction B are interrelated, and particular note Sec. should be taken that the parts must be 10.1 Purpose of regulations. construed with reference to each other. 10.2 Scope of regulations. 10.3 Other applicable laws. § 10.3 Other applicable laws. 10.4 When regulations apply. No statute or regulation of any State Subpart B—Definitions shall be construed to relieve a person from the restrictions, conditions, and 10.11 Scope of definitions. 10.12 Definitions. requirements contained in this sub- 10.13 List of Migratory Birds. chapter B. In addition, nothing in this subchapter B, nor any permit issued Subpart C—Addresses under this subchapter B, shall be con- 10.21 Director. strued to relieve a person from any 10.22 Law enforcement offices. other requirements imposed by a stat- ute or regulation of any State or of the AUTHORITY: 18 U.S.C. 42; 16 U.S.C. 703–712; 16 U.S.C. 668a–d; 19 U.S.C. 1202, 16 U.S.C. 1531– United States, including any applicable 1543; 16 U.S.C. 1361–1384, 1401–1407; 16 U.S.C. health, quarantine, agricultural, or 742a–742j-l; 16 U.S.C. 3371–3378. customs laws or regulations, or other SOURCE: 38 FR 22015, Aug. 15, 1973, unless Service enforced statutes or regula- otherwise noted. tions. Subpart A—Introduction § 10.4 When regulations apply.
    [Show full text]
  • Linnaeus at Home
    NATURE-BASED ACTIVITIES FOR PARENTS LINNAEUS 1 AT HOME A GuiDE TO EXPLORING NATURE WITH CHILDREN Acknowledgements Written by Joe Burton Inspired by Carl Linnaeus With thanks to editors and reviewers: LINNAEUS Lyn Baber, Melissa Balzano, Jane Banham, Sarah Black, Isabelle Charmantier, Mark Chase, Maarten Christenhusz, Alex Davey, Gareth Dauley, AT HOME Zia Forrai, Jon Hale, Simon Hiscock, Alice ter Meulen, Lynn Parker, Elizabeth Rollinson, James Rosindell, Daryl Stenvoll-Wells, Ross Ziegelmeier Share your explorations @LinneanLearning #LinnaeusAtHome Facing page: Carl Linnaeus paper doll, illustrated in 1953. © Linnean Society of London 2019 All rights reserved. No part of this publication may be reproduced, stored in a retrival system or trasmitted in any form or by any means without the prior consent of the copyright owner. www.linnean.org/learning “If you do not know Introduction the names of things, the knowledge of them is Who was Carl Linnaeus? Contents Pitfall traps 5 lost too” Carl Linnaeus was one of the most influential scientists in the world, - Carl Linnaeus A bust of ‘The Young Linnaeus’ by but you might not know a lot about him. Thanks to Linnaeus, we Bug hunting 9 Anthony Smith (2007). have a naming system for all species so that we can understand how different species are related and can start to learn about the origins Plant hunting 13 of life on Earth. Pond dipping 17 As a young man, Linnaeus would study the animals, plants, Bird feeders 21 minerals and habitats around him. By watching the natural world, he began to understand that all living things are adapted to their Squirrel feeders 25 environments and that they can be grouped together by their characteristics (like animals with backbones, or plants that produce Friendly spaces 29 spores).
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version
    Designation date: 23/06/99 Ramsar Site no. 999 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. Dr. Srey Sunleang, DD MM YY Director, Department of Wetlands and Coastal Zones, Ministry of Environment, #48 Preah Sihanouk Blvd., Tonle Bassac, Designation date Site Reference Number Chamkar Morn, Phnom Penh, Cambodia Tel: (855) 77-333-456 Fax: (855)-23-721-073 E-mail: [email protected] 2.
    [Show full text]
  • Potential Effects of Dam Cascade on Fish
    Rev Fish Biol Fisheries DOI 10.1007/s11160-015-9395-9 ORIGINAL RESEARCH Potential effects of dam cascade on fish: lessons from the Yangtze River Fei Cheng . Wei Li . Leandro Castello . Brian R. Murphy . Songguang Xie Received: 23 October 2014 / Accepted: 13 July 2015 Ó Springer International Publishing Switzerland 2015 Abstract Construction of hydroelectric dams affect Corieus guichenoti will have a high risk of extinction river ecosystems, fish diversity, and fisheries yields. due to the combined effects of impoundment and However, there are no studies assessing the combined blocking. Modification of the flow regime will effects on fish caused by several adjacent dams and adversely affect the recruitment of 26 species that their reservoirs, as in a ‘dam cascade’. This study produce drifting eggs. The start of annual spawning for predicts the potential effects that a cascade of ten dams 13 fishes will be postponed by more than 1 month, and currently under construction in the upper Yangtze fish spawning and growth opportunities will be River in China will have on local fishes, and uses such reduced due to low water temperatures associated predictions to assess the effectiveness of possible fish with hypolimnetic discharges. Combined dam effects conservation measures. We found that the dam will further reduce the likelihood of successful cascade will have serious combined effects on fishes recruitment of some endangered species, such as mainly due to impoundment, habitat fragmentation Acipenser dabryanus and Psephurus gladius. Three and blocking, flow regime modification, and hypolim- countermeasures hold promise to mitigate the near- netic discharges. The impoundments will cause loss of term effects of the dam cascade, including preserva- critical habitats for 46 endemic species.
    [Show full text]
  • Proceedings of a Workshop on the Development of a Genetic Improvement Program for African Catfish Clarias Gariepinus
    Proceedings of a Workshop on the Development of a Genetic Improvement Program for African Catfish African catfish (Clarias gariepinus) production has gained considerable importance in a number of African countries. The species has several desirable attributes that make it attractive for aquaculture development. It is easy to reproduce, it does not require specialized feed, it tolerates high stocking densities, it accepts artificial feed, it tolerates poor water quality, and very importantly, it is highly sought after in local markets and economically viable in pond production systems. The species is endemic to Africa. In 2007 the WorldFish Center organized a workshop in Accra, Ghana, hosted by the Water Research Institute, to review the status of the catfish industry in Africa and develop recommendations on how best to approach the issue of genetic improvement programs. The results of the workshop are presented in this volume. PROCEEDINGS | 1889 Clarias gariepinus Proceedings of a Workshop on the Development of a Genetic Improvement Program ISBN 978-983-2346-68-5 for African CatfishClarias 2008 The WorldFish Center gariepinus For further information on publications please contact: Business Development and Communications Division The WorldFish Center Edited by R.W. Ponzoni and N.H. Nguyen PO Box 500 GPO, 10670 Penang, Malaysia Tel : (+60-4) 626 1606 Fax : (+60-4) 626 5530 Email : [email protected] This publication is also available from: www.worldfishcenter.org Printed on 100% recycled paper Printed on 100% recycled Reducing poverty and hunger by improving fisheries and aquaculture www.worldfishcenter.org Proceedings of a Workshop on the Development of a Genetic Improvement Program for African Catfi sh Clarias gariepinus Accra, Ghana, 5-9 November 2007 Edited by Raul W.
    [Show full text]
  • Acknowledgements
    Acknowledgements First of all, I sincerely thank all the people I met in Lisbon that helped me to finish this Master thesis. Foremost I am deeply grateful to my supervisor --- Prof. Ana Estela Barbosa from LNEC, for her life caring, and academic guidance for me. This paper will be completed under her guidance that helped me in all the time of research and writing of the paper, also. Her profound knowledge, rigorous attitude, high sense of responsibility and patience benefited me a lot in my life. Second of all, I'd like to thank my Chinese promoter professor Xu Wenbin, for his encouragement and concern with me. Without his consent, I could not have this opportunity to study abroad. My sincere thanks also goes to Prof. João Alfredo Santos for his giving me some Portuguese skill, and teacher Miss Susana for her settling me down and providing me a beautiful campus to live and study, and giving me a lot of supports such as helping me to successfully complete my visa prolonging. Many thanks go to my new friends in Lisbon, for patiently answering all of my questions and helping me to solve different kinds of difficulties in the study and life. The list is not ranked and they include: Angola Angolano, Garson Wong, Kai Lee, David Rajnoch, Catarina Paulo, Gonçalo Oliveira, Ondra Dohnálek, Lu Ye, Le Bo, Valentino Ho, Chancy Chen, André Maia, Takuma Sato, Eric Won, Paulo Henrique Zanin, João Pestana and so on. This thesis is dedicated to my parents who have given me the opportunity of studying abroad and support throughout my life.
    [Show full text]
  • Copyrighted Material
    INDEX Aodayixike Qingzhensi Baisha, 683–684 Abacus Museum (Linhai), (Ordaisnki Mosque; Baishui Tai (White Water 507 Kashgar), 334 Terraces), 692–693 Abakh Hoja Mosque (Xiang- Aolinpike Gongyuan (Olym- Baita (Chowan), 775 fei Mu; Kashgar), 333 pic Park; Beijing), 133–134 Bai Ta (White Dagoba) Abercrombie & Kent, 70 Apricot Altar (Xing Tan; Beijing, 134 Academic Travel Abroad, 67 Qufu), 380 Yangzhou, 414 Access America, 51 Aqua Spirit (Hong Kong), 601 Baiyang Gou (White Poplar Accommodations, 75–77 Arch Angel Antiques (Hong Gully), 325 best, 10–11 Kong), 596 Baiyun Guan (White Cloud Acrobatics Architecture, 27–29 Temple; Beijing), 132 Beijing, 144–145 Area and country codes, 806 Bama, 10, 632–638 Guilin, 622 The arts, 25–27 Bama Chang Shou Bo Wu Shanghai, 478 ATMs (automated teller Guan (Longevity Museum), Adventure and Wellness machines), 60, 74 634 Trips, 68 Bamboo Museum and Adventure Center, 70 Gardens (Anji), 491 AIDS, 63 ack Lakes, The (Shicha Hai; Bamboo Temple (Qiongzhu Air pollution, 31 B Beijing), 91 Si; Kunming), 658 Air travel, 51–54 accommodations, 106–108 Bangchui Dao (Dalian), 190 Aitiga’er Qingzhen Si (Idkah bars, 147 Banpo Bowuguan (Banpo Mosque; Kashgar), 333 restaurants, 117–120 Neolithic Village; Xi’an), Ali (Shiquan He), 331 walking tour, 137–140 279 Alien Travel Permit (ATP), 780 Ba Da Guan (Eight Passes; Baoding Shan (Dazu), 727, Altitude sickness, 63, 761 Qingdao), 389 728 Amchog (A’muquhu), 297 Bagua Ting (Pavilion of the Baofeng Hu (Baofeng Lake), American Express, emergency Eight Trigrams; Chengdu), 754 check
    [Show full text]
  • 07 Abstracts Volume
    AAbstractsbstracts VVolumeolume Growth, Conservation and Responsibility Promoting Good Governance and Corporate Stewardship through Impact Assessment 27th Annual Conference International Association for Impact Assessment 3-9 June 2007 COEX Convention Center Seoul, Korea - IAIA07 Abstracts Volume - Notes This document contains the abstracts for papers and posters presented at IAIA07, “Growth, Conservation and Responsibility: Promoting Good Governance and Corporate Stewardship through Impact Assessment,” the 27th annual conference of the International Association for Impact Assessment. Abstracts and updates received by IAIA online per submission and updating guidelines and with the presenting author registered in full on or before 15 March 2007 are included. Abstracts, as available, are arranged in alphabetical order by the presenting (first) author. Abstracts have been formatted for style consistency and minimally edited; otherwise, text and contact information are generally reproduced as submitted by the author(s). Full proceedings are published on CD-ROM following the conference. Authors Bruch, Carl........................................................ 44 A Bultink, Benno............................. 91, 92, 101, 102 Bunteongjit, Kannikar........................................ 55 Abate, Asferachew............................................11 Burdge, Rabel................................................... 20 Abordi, Marco....................................................17 Burke, Marshall..............................................
    [Show full text]