S41467-021-24919-7.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

S41467-021-24919-7.Pdf ARTICLE https://doi.org/10.1038/s41467-021-24919-7 OPEN An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer Rajdeep Das 1,2, Martin Sjöström 1,2, Raunak Shrestha1,2, Christopher Yogodzinski2,3, Emily A. Egusa1,2, Lisa N. Chesner1,2, William S. Chen1,2, Jonathan Chou 2,4, Donna K. Dang1,2, Jason T. Swinderman2,3, Alex Ge2,3, Junjie T. Hua1,2, Shaheen Kabir2,3, David A. Quigley2,3,5, Eric J. Small 2,4, Alan Ashworth2,4, ✉ ✉ Felix Y. Feng 1,2,3,4,7,8 & Luke A. Gilbert 2,3,6,7,8 1234567890():,; Genomic sequencing of thousands of tumors has revealed many genes associated with specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have mapped genes required for cancer cell proliferation or survival in hundreds of cell lines. Despite this, for specific disease subtypes, such as metastatic prostate cancer, there are likely a number of undiscovered tumor specific driver genes that may represent potential drug targets. To identify such genetic dependencies, we performed genome-scale CRISPRi screens in metastatic prostate cancer models. We then created a pipeline in which we integrated pan- cancer functional genomics data with our metastatic prostate cancer functional and clinical genomics data to identify genes that can drive aggressive prostate cancer phenotypes. Our integrative analysis of these data reveals known prostate cancer specific driver genes, such as AR and HOXB13, as well as a number of top hits that are poorly characterized. In this study we highlight the strength of an integrated clinical and functional genomics pipeline and focus on two top hit genes, KIF4A and WDR62. We demonstrate that both KIF4A and WDR62 drive aggressive prostate cancer phenotypes in vitro and in vivo in multiple models, irrespective of AR-status, and are also associated with poor patient outcome. 1 Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA. 2 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA. 3 Department of Urology, University of California, San Francisco, San Francisco, CA, USA. 4 Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA. 5 Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. 6 Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA. 7These authors contributed equally: Felix Y. Feng, Luke A. Gilbert 8These authors jointly ✉ supervised this work: Felix Y. Feng, Luke A. Gilbert email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:4601 | https://doi.org/10.1038/s41467-021-24919-7 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24919-7 rostate cancer is a common cancer and the second leading The LNCaP and C42B CRISPRi screens had many shared and cause of cancer-related deaths among men in the United selective genetic dependencies (Supplementary Fig. 2C). We were P 1 States . Androgens are a key driver of prostate cancer cell primarily interested in androgen-sensitive mCRPC and so proliferation, and androgen deprivation therapy (ADT) is the prioritized the LNCaPi screen data. Analysis of our LNCaPi mainstay of treatment for men with metastatic prostate cancer2,3. screen data revealed 1472 genes that are required for cell pro- While ADT is initially effective, metastatic prostate cancer liferation or survival (Fig. 1C and Supplementary Data 2). Given patients on ADT will ultimately develop resistance and inevitably that the vast majority of these genes were expected to be generally progress to lethal metastatic castration-resistant prostate cancer required for cell proliferation, rather than being specifically (mCRPC)4. There is a critical unmet need to identify new essential in prostate cancer, we next developed a bioinformatic molecular therapeutic targets for patients with mCRPC. We strategy to identify prostate cancer-specific driver genes. sought to address this issue using both functional genomics and In order to identify driver genes that are specific to aggressive clinical genomics strategies to identify driver genes that are prostate cancer, we applied a clinical genomics filter designed to associated with disease progression. prioritize CRISPRi hits with evidence of genomic amplification Advances in DNA sequencing have enabled comprehensive and/or increased gene expression. This analysis strategy revealed genomic analysis of metastatic tumors and have identified the Androgen Receptor (AR) as the top prostate cancer-specific adaptive changes in the underlying molecular signaling pathways gene hit, but the next four top-ranked hits were genes not associated with mCRPC5–7. Similarly, the advent of loss-of- previously associated with prostate cancer: KIF4A, MRPL13, function CRISPR functional genomics platforms has system- NDUFB11, and TSR2 (top 5) (Fig. 1D and Supplementary atically revealed which genes are required for cancer cell pro- Data 3). Examination of pan-cancer functional genomics data13,14 liferation and survival8,9. Although both of these approaches have for essentiality phenotypes for the top 5 hits revealed that AR is generated substantial amounts of data, it remains unclear how selectively essential for prostate cancer models as expected best to utilize these strategies to identify driver genes that are (Supplementary Fig. 3A). In contrast, top hits such as TSR2 are specific to the context of a particular disease, such as mCRPC. In essential for the proliferation or survival of nearly all cell types principle, the combination of clinical and functional genomics and thus are almost certainly not prostate cancer-specific driver data enables one to distinguish universally essential genes from genes (Supplementary Fig. 3B). Other top hits such as KIF4A, genes that drive specific cancers that are associated with poor MRPL13, and NDUFB11 are essential for a number of cell types prognosis. We therefore hypothesized that an integrated but not for others (Supplementary Fig. 3C–E). These results approach could nominate innovative therapeutic targets for demonstrated that solely using clinical data to filter loss-of- patients with aggressive prostate cancer. function CRISPR functional genomics data can identify known We first performed genome-scale CRISPR-interference driver genes but also generates a significant rate of false-positive (CRISPRi) screens in metastatic prostate cancer models to iden- hits as exemplified by TSR2 in this analysis. tify genes required for cellular proliferation or survival. We then Given these results, we next tested whether a combined clinical created an analytic pipeline that integrated mCRPC functional and functional genomics filtering strategy would more robustly and clinical genomics data with pan-cancer CRISPR functional reveal prostate cancer-specific driver genes in our LNCaPi screen genomics data, and in doing so identified a number of previously data. We first filtered our list of 1472 LNCaP essential genes undescribed prostate cancer-specific driver genes. We demon- against a CRISPR pan-cancer functional genomics datasets strated that two of these genes, KIF4A (Kinesin Family Member (pooled in vitro CRISPR knockout library essentiality screens 4A) and WDR62 (WD Repeat Domain 62), promote aggressive (PICKLES) and DepMap datasets)13,15. We then filtered the prostate cancer phenotypes in vitro and in vivo. These experi- remaining hits against two published non-prostate cancer ments, combined with clinical data on these genes, serve to CRISPRi screens16 to remove CRISPR DepMap false negatives nominate KIF4A and WDR62 as prostate cancer-specific in the prostate cancer CRISPRi screen data. Lastly, we prioritized driver genes. genes associated with increased expression in metastatic prostate cancer samples (Fig. 1D and Supplementary Data 4). This integrative functional genomics and clinical genomics filtering Results strategy revealed known prostate cancer-specific driver genes, AR Genome-scale CRISPRi screens identify prostate cancer- and HOXB13, as the top two hits5,7,17,18. Additional top hits, such specific driver genes. We performed genome-scale screens as WDR62, are uncharacterized in prostate cancer (Fig. 1D). using our previously described CRISPRi functional genomics These results demonstrate that an integrated functional genomics platform10,11 in two mCRPC cell lines, LNCaP and C42B, to and clinical genomics filtering strategy can identify known driver identify genes that are required for prostate cancer cell pro- genes and also reveal uncharacterized genes that may drive liferation or survival (Fig. 1A). To begin, we generated multiple metastatic prostate cancer progression. malignant and immortalized benign prostate CRISPRi cell-line To validate our screen results, we demonstrated that eight top models that stably express dCas9-BFP-KRAB fusion proteins hits from this screen are required for prostate cancer cell (Supplementary Fig. 1). LNCaP and C42B cell lines are excellent proliferation or survival, suggesting our screen results and preclinical in vitro models to study mCRPC12. These cell models subsequent analysis nominate reproducible hit genes with a low represent androgen-sensitive (LNCaP) and androgen-insensitive false-positive rate (Fig. 1E). In order to demonstrate that the hits aggressive (C42B) mCRPC. Genome-scale pooled
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification and Characterization of Genes Essential for Human Brain Development
    Identification and Characterization of Genes Essential for Human Brain Development The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ganesh, Vijay S. 2012. Identification and Characterization of Genes Essential for Human Brain Development. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9773743 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Copyright © 2012 by Vijay S. Ganesh All rights reserved. Dissertation Advisor: Dr. Christopher A. Walsh Author: Vijay S. Ganesh Identification and Characterization of Genes Essential for Human Brain Development Abstract The human brain is a network of ninety billion neurons that allows for many of the behavioral adaptations considered unique to our species. One-fifth of these neurons are layered in an epithelial sheet known as the cerebral cortex, which is exquisitely folded into convolutions called gyri. Defects in neuronal number clinically present with microcephaly (Greek for “small head”), and in inherited cases these defects can be linked to mutations that identify genes essential for neural progenitor proliferation. Most microcephaly genes are characterized to play a role in the centrosome, however rarer presentations of microcephaly have identified different mechanisms. Charged multivesicular body protein/Chromatin modifying protein 1A (CHMP1A) is a member of the ESCRT-III endosomal sorting complex, but is also suggested to localize to the nuclear matrix and regulate chromatin.
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Ncomms4885.Pdf
    ARTICLE Received 4 Feb 2014 | Accepted 14 Apr 2014 | Published 30 May 2014 DOI: 10.1038/ncomms4885 Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size Jian-Fu Chen1,2, Ying Zhang1, Jonathan Wilde1, Kirk C. Hansen3, Fan Lai4 & Lee Niswander1 Human genetic studies have established a link between a class of centrosome proteins and microcephaly. Current studies of microcephaly focus on defective centrosome/spindle orientation. Mutations in WDR62 are associated with microcephaly and other cortical abnormalities in humans. Here we create a mouse model of Wdr62 deficiency and find that the mice exhibit reduced brain size due to decreased neural progenitor cells (NPCs). Wdr62 depleted cells show spindle instability, spindle assembly checkpoint (SAC) activation, mitotic arrest and cell death. Mechanistically, Wdr62 associates and genetically interacts with Aurora A to regulate spindle formation, mitotic progression and brain size. Our results suggest that Wdr62 interacts with Aurora A to control mitotic progression, and loss of these interactions leads to mitotic delay and cell death of NPCs, which could be a potential cause of human microcephaly. 1 Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045, USA. 2 Department of Genetics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, USA. 3 Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA. 4 The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA. Correspondence and requests for materials should be addressed to J-F.C. (email: [email protected]) or to L.N.
    [Show full text]
  • (JNK)-Binding Protein WDR62 Is Recruited to Stress Granules And
    Molecular Biology of the Cell Vol. 21, 117–130, January 1, 2010 A Novel c-Jun N-terminal Kinase (JNK)-binding Protein WDR62 Is Recruited to Stress Granules and Mediates a Nonclassical JNK Activation Tanya Wasserman,*† Ksenya Katsenelson,*† Sharon Daniliuc,*† Tal Hasin,* Mordechay Choder,‡ and Ami Aronheim* Departments of *Molecular Genetics and ‡Microbiology, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel Submitted June 22, 2009; Revised October 27, 2009; Accepted October 29, 2009 Monitoring Editor: Jonathan Chernoff The c-Jun N-terminal kinase (JNK) is part of a mitogen-activated protein kinase (MAPK) signaling cascade. Scaffold proteins simultaneously associate with various components of the MAPK signaling pathway and play a role in signal transmission and regulation. Here we describe the identification of a novel scaffold JNK-binding protein, WDR62, with no sequence homology to any of the known scaffold proteins. WDR62 is a ubiquitously expressed heat-sensitive 175-kDa protein that specifically associates with JNK but not with ERK and p38. Association between WDR62 and JNKs occurs in the absence and after either transient or persistent stimuli. WDR62 potentiates JNK kinase activity; however it inhibits AP-1 transcription through recruitment of JNK to a nonnuclear compartment. HEK-293T cells transfected with WDR62 display cytoplasmic granular localization. Overexpression of stress granule (SG) resident proteins results in the recruit- ment of endogenous WDR62 and activated JNK to SG. In addition, cell treatment with arsenite results in recruitment of WDR62 to SG and activated JNK to processing bodies (PB). JNK inhibition results in reduced number and size of SG and reduced size of PB.
    [Show full text]
  • Cenpj Regulates Cilia Disassembly and Neurogenesis in the Developing Mouse Cortex
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Development/Plasticity/Repair Cenpj regulates cilia disassembly and neurogenesis in the developing mouse cortex Wenyu Ding1,2, Qian Wu1,2, Le Sun1,2, Na Clara Pan1,2 and Xiaoqun Wang1,2,2 1State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Beijing Institute for Brain Disorders, Beijing 100069, China https://doi.org/10.1523/JNEUROSCI.1849-18.2018 Received: 20 July 2018 Revised: 19 December 2018 Accepted: 24 December 2018 Published: 9 January 2019 Author contributions: W.D., Q.W., and X.W. designed research; W.D., Q.W., L.S., N.C.P., and X.W. performed research; W.D., Q.W., L.S., N.C.P., and X.W. analyzed data; W.D., Q.W., L.S., N.C.P., and X.W. edited the paper; W.D., Q.W., and X.W. wrote the paper; Q.W. and X.W. wrote the first draft of the paper; X.W. contributed unpublished reagents/analytic tools. Conflict of Interest: The authors declare no competing financial interests. We gratefully acknowledge Dr. Bradley Yoder (University of Alabama at Birmingham) kindly shared and transferred the mouse strain to us. We thank Dr. Tian Xue (University of Science and Technology of China) for sharing ARPE19 cell line with us.
    [Show full text]
  • A Novel Single Base Pair Duplication in WDR62 Causes Primary Microcephaly Verena Rupp1, Sobiah Rauf2, Ishrat Naveed2, Windpassinger Christian1 and Asif Mir2*
    Rupp et al. BMC Medical Genetics 2014, 15:107 http://www.biomedcentral.com/1471-2350/15/107 CASE REPORT Open Access A novel single base pair duplication in WDR62 causes primary microcephaly Verena Rupp1, Sobiah Rauf2, Ishrat Naveed2, Windpassinger Christian1 and Asif Mir2* Abstract Background: Primary microcephaly is a disorder of the brain resulting in a reduced head circumference that can come along with intellectual disability but with hardly any other neurological abnormalities. Case presentation: In this study we report on three Pakistani males from a consanguineous family with 2, 4 and 25 years, diagnosed with autosomal recessive primary microcephaly. By genotyping, Sanger sequencing and using bioinformatical approaches the disease causing mutation was identified and evaluated. Conclusion: By using a 250K SNP array, we were able to detect an 11Mb large autozygous region in the MCPH2 locus on chromosome 19q13.12. Sequencing of the associated gene, WDR62, revealed the frameshift causing single base pair duplication, c.2527dupG. This mutation is predicted to affect the structural features of WDR62 which in turn changes the conformation and function of the protein. Aspartic acid (D) at position 843 was found to be conserved among various ortholog species. The present findings will be helpful in genetic diagnosis of patients and future studies of WDR62. Keywords: Autosomal recessive primary microcephaly (MCPH), MCPH2 locus, WDR62, Mutation Background Although sloping foreheads and reduced intelligence are Autosomal recessive primary microcephaly (MCPH) is a very common, they are not listed as a basic criteria for the rare malformation of the head resulting in a circumfer- diagnosis of microcephaly [19,22].
    [Show full text]
  • Modifier Genes in Microcephaly: a Report on WDR62, CEP63, RAD50
    G C A T T A C G G C A T genes Article Modifier Genes in Microcephaly: A Report on WDR62, CEP63, RAD50 and PCNT Variants Exacerbating Disease Caused by Biallelic Mutations of ASPM and CENPJ Ehtisham Ul Haq Makhdoom 1,2,3,†, Syeda Seema Waseem 1,4,†, Maria Iqbal 1,2,4, Uzma Abdullah 5 , Ghulam Hussain 3, Maria Asif 1,4, Birgit Budde 1 , Wolfgang Höhne 1, Sigrid Tinschert 6, Saadia Maryam Saadi 2 , Hammad Yousaf 2, Zafar Ali 7, Ambrin Fatima 8, Emrah Kaygusuz 9 , Ayaz Khan 2 , Muhammad Jameel 2, Sheraz Khan 2 , Muhammad Tariq 2 , Iram Anjum 10 , Janine Altmüller 1, Holger Thiele 1, Stefan Höning 4, Shahid Mahmood Baig 2,8,11, Peter Nürnberg 1,12 and Muhammad Sajid Hussain 1,4,12,* 1 Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; [email protected] (E.U.H.M.); [email protected] (S.S.W.); [email protected] (M.I.); [email protected] (M.A.); [email protected] (B.B.); [email protected] (W.H.); [email protected] (J.A.); [email protected] (H.T.); [email protected] (P.N.) 2 Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad 38000, Pakistan; [email protected] (S.M.S.); [email protected] (H.Y.); [email protected] (A.K.); [email protected] (M.J.); [email protected] (S.K.); [email protected] (M.T.); [email protected] (S.M.B.) 3 Citation: Makhdoom, E.U.H.; Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Waseem, S.S.; Iqbal, M.; Abdullah, U.; Government College University, Faisalabad 38000, Pakistan; [email protected] 4 Hussain, G.; Asif, M.; Budde, B.; Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; [email protected] Höhne, W.; Tinschert, S.; Saadi, 5 University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, S.M.; et al.
    [Show full text]
  • UC San Francisco Previously Published Works
    UCSF UC San Francisco Previously Published Works Title Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Permalink https://escholarship.org/uc/item/8tg8p58p Journal Nature, 467(7312) ISSN 0028-0836 Authors Bilgüvar, Kaya Oztürk, Ali Kemal Louvi, Angeliki et al. Publication Date 2010-09-01 DOI 10.1038/nature09327 Peer reviewed eScholarship.org Powered by the California Digital Library University of California HHS Public Access Author manuscript Author Manuscript Author ManuscriptNature. Author ManuscriptAuthor manuscript; Author Manuscript available in PMC 2011 July 04. Published in final edited form as: Nature. 2010 September 9; 467(7312): 207–210. doi:10.1038/nature09327. Whole exome sequencing identifies recessive WDR62 mutations in severe brain malformations Kaya Bilgüvar1,2,3,#, Ali Kemal Öztürk1,2,3,#, Angeliki Louvi1,2, Kenneth Y Kwan2,4, Murim Choi3, Burak Tatli5, Dilek Yalnizoğlu6, Beyhan Tüysüz7, Ahmet Okay Çağlayan8, Sarenur Gökben9, Hande Kaymakçalan10, Tanyeri Barak1,2,3, Mehmet Bakircioğlu1,2,3, Katsuhito Yasuno1,2,3, Winson Ho1,2,3, Stephan Sanders3,11,12, Ying Zhu2,4, Sanem Yilmaz9, Alp Dinçer13, Michele H Johnson1,14,15, Richard A Bronen1,14, Naci Koçer16, Hüseyin Per17, Shrikant Mane18, Mehmet Necmettin Pamir19, Cengiz Yalçinkaya20, Sefer Kumandaş17, Meral Topçu6, Meral Özmen5, Nenad Šestan2,4, Richard P Lifton3,21,*, Matthew W State3,11,12,*, and Murat Günel1,2,3,* 1Department of Neurosurgery, Program on Neurogenetics, Yale University School of Medicine, New Haven CT, 06510, USA
    [Show full text]
  • Opposing Roles for JNK and Aurora a in Regulating the Association Of
    ß 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 527–540 doi:10.1242/jcs.157537 RESEARCH ARTICLE Opposing roles for JNK and Aurora A in regulating the association of WDR62 with spindle microtubules Nicholas R. Lim1,2,*, Yvonne Y. C. Yeap1,2,*, Teresa T. Zhao1,2, Yan Y. Yip1,2, Shu C. Wong1,2, Dan Xu3, Ching-Seng Ang2, Nicholas A. Williamson2, Zhiheng Xu3, Marie A. Bogoyevitch1,2 and Dominic C. H. Ng1,2,` ABSTRACT commonly mutated MCPH-associated genes encode spindle pole proteins such as ASPM (abnormal spindle-like microcephaly WD40-repeat protein 62 (WDR62) is a spindle pole protein required associated; also known as MCPH5) and WDR62 (WD40- for normal cell division and neuroprogenitor differentiation during repeat protein 62; also known as MCPH2) (Bond et al., 2002; brain development. Microcephaly-associated mutations in WDR62 Wollnik, 2010). Although non-mitotic functions of spindle pole lead to mitotic mislocalization, highlighting a crucial requirement for proteins might contribute to MCPH disease progression, these precise WDR62 spatiotemporal distribution, although the regulatory observations suggest that mitotic spindle architecture and/or mechanisms are unknown. Here, we demonstrate that the WD40- regulation are crucial factors in neural stem cell survival and/or repeat region of WDR62 is required for microtubule association, fate decisions. whereas the disordered C-terminal region regulates cell-cycle- WDR62 is the second most commonly mutated MCPH- dependent compartmentalization. In agreement with a functional associated gene, with .30 nonsense, missense and truncating requirement for the WDR62–JNK1 complex during neurogenesis, frame-shift mutations identified (Nicholas et al., 2010).
    [Show full text]
  • Whole-Exome Sequencing Identifies Recessive WDR62 Mutations in Severe Brain Malformations
    Vol 467 | 9 September 2010 | doi:10.1038/nature09327 LETTERS Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations Kaya Bilgu¨var1,2,3*, Ali Kemal O¨ ztu¨rk1,2,3*, Angeliki Louvi1,2,3, Kenneth Y. Kwan2,4, Murim Choi3, Burak Tatlı5, Dilek Yalnızog˘lu6, Beyhan Tu¨ysu¨z7, Ahmet Okay C¸ag˘layan8, Sarenur Go¨kben9, Hande Kaymakc¸alan10, Tanyeri Barak1,2,3, Mehmet Bakırcıog˘lu1,2,3, Katsuhito Yasuno1,2,3, Winson Ho1,2,3, Stephan Sanders3,11,12, Ying Zhu2,4, Sanem Yılmaz9, Alp Dinc¸er13, Michele H. Johnson1,14,15, Richard A. Bronen1,14, Naci Koc¸er16, Hu¨seyin Per17, Shrikant Mane3,18, Mehmet Necmettin Pamir19, Cengiz Yalc¸ınkaya20, Sefer Kumandas¸17, Meral Topc¸u6, Meral O¨ zmen5, Nenad Sˇestan2,4, Richard P. Lifton3,21, Matthew W. State3,11,12 & Murat Gu¨nel1,2,3 The development of the human cerebral cortex is an orchestrated proliferation, migration or organization. Application of traditional process involving the generation of neural progenitors in the mapping approaches has proved to be particularly challenging for gene periventricular germinal zones, cell proliferation characterized discovery in these syndromes, where kindreds with a single affected by symmetric and asymmetric mitoses, followed by migration of member are most common, linkage studies support high locus hetero- post-mitotic neurons to their final destinations in six highly geneity and recent genetic findings have fundamentally challenged ordered, functionally specialized layers1,2. An understanding of previous diagnostic nosology3,7,8. Based on the expectation that whole- the molecular mechanisms guiding these intricate processes is in exome sequencing using next generation platforms9–11 can markedly its infancy, substantially driven by the discovery of rare mutations improve gene discovery efforts in these situations, we applied this that cause malformations of cortical development3–6.
    [Show full text]
  • Title: Primary Autosomal Recessive Microcephalies and Seckel
    Title: Primary Autosomal Recessive Microcephalies and Seckel Syndrome Spectrum Disorders GeneReview Table 6 Authors: Verloes A, Drunat S, Gressens P, Passemard S Updated: October 2013 Note: The following information is provided by the authors listed above and has not been reviewed by GeneReviews staff. Table 6. Published Pathogenic WDR62 Allelic Variants (Based on NM_001083961.1 and NP_001077430.1 Reference Sequences) DNA Nucleotide Change Protein Amino Acid Change c.193G>A [Nicholas et al 2010, Yu et al 2010] p.Val65Met c.332G>C [Sajid Hussain et al 2013] p.Arg111Thr c.363delT [Yu et al 2010] p.Asp112MetfsTer5 c.535_536insA [Bhat et al 2011] p.Met179fsTer21 c.671G>C [Bilguvar et al 2010] p.Trp224Ser c.900C>A [Bhat et al 2011] p.Cys300Ter c.1043+1G>A [Yu et al 2010] p.Ser348ArgfsTer63 c.1194G>A [Sajid Hussain et al 2013] p.Trp398Ter c.1198G >A [Bacino et al 2012] p.Gln400Lys c.1313G>A [Nicholas et al 2010, Kousar et al 2011, p.Arg438His Sajid Hussain et al 2013] c.1408C>T [Bilguvar et al 2010] p.Gln470Ter c.1143delA [Memon et al 2013] p.His381ProfsTer48 c.1531G>A [Nicholas et al 2010, Kousar et al 2011] p.Asp511Asn c.1576G>T [Bilguvar et al 2010] p.Glu526Ter c.1576G>A [Bilguvar et al 2010] p.Glu526Lys c.1942 C>T [Kousar et al 2011] p.Gln648Ter c.2083delA [Murdock et al 2011] p.Ser696AlafsTer4 c.2867 + 4_c2867 + 7delGGTG [Yu et al 2010] p.Ser956CysfsTer38 c.3232G>A [Nicholas et al 2010] p.Ala1078Thr c.3361delG [Sajid Hussain et al 2013] p.Ala1121GlnfsTer6 DNA Nucleotide Change Protein Amino Acid Change c.3503G>A [Sajid Hussain et al 2013] p.Trp1168 c.3839_3855delGCCAAGAGCCTGCCCTG YU p.Gly1280AfsTer21 [Bilguvar et al 2010] c.3936dupC/c.3936_3937insC [Yu et al 2010, p.Val1314ArgfsTer18/p.Val1313GlyfsTer17 Kousar et al 2011] c.4205delTGCC [Bilguvar et al 2010, Nicholas et al p.Val1402GlyfsTer12 2010] c.4241dupT [Bilguvar et al 2010] p.Leu1414LeufsTer41 See Quick Reference for an explanation of nomenclature.
    [Show full text]