Characterizing Cellular and Molecular Variabilities of Peripheral Immune

Total Page:16

File Type:pdf, Size:1020Kb

Characterizing Cellular and Molecular Variabilities of Peripheral Immune medRxiv preprint doi: https://doi.org/10.1101/2021.05.06.21256781; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Characterizing cellular and molecular variabilities of peripheral immune cells in healthy 2 inactivated SARS-CoV-2 vaccine recipients by single-cell RNA sequencing 3 4 Renyang Tong1#, Jianmei Zhong1#, Ronghong Li1, Yifan Chen1, Liuhua Hu1, Zheng Li1, 5 Jianfeng Shi1, Guanqiao Lin1, Yuyan Lyu1, Li Hu1, Xiao Guo1, Qi Liu1, Tian Shuang1, Chenjie 6 Zhang1, Ancai Yuan1, Minchao Zhang2, Wei Lin1*, Jun Pu1* 7 8 1 State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, School of 9 Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 10 China. 11 2 Colortech (Suzhou) Biotechnology, Suzhou, China. 12 13 * To whom correspondence should be addressed: 14 Jun Pu, MD, Ph.D.; State Key Laboratory for Oncogenes and Related Genes, Division of 15 Cardiology, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong 16 University, Shanghai, China. E-mail: [email protected]. 17 Wei Lin, Ph.D.; State Key Laboratory for Oncogenes and Related Genes, Division of 18 Cardiology, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong 19 University, Shanghai, China. E-mail: [email protected]. 20 21 #These authors contributed equally to this work 22 23 24 25 26 27 28 29 30 31 32 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 33 medRxiv preprint doi: https://doi.org/10.1101/2021.05.06.21256781; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Abstract 2 We systematically investigated the transcriptomes of the peripheral immune cells from 6 3 inactivated vaccine, BBIBP-CorV recipients at 4 pivotal time points using single-cell RNA-seq 4 technique. First, the significant variation of the canonical immune-responsive signals of both 5 humoral and cellular immunity, as well as other possible symptom-driver signals were 6 evaluated in the specific cell types. Second, we described and compared the common and 7 distinct variation trends across COVID-19 vaccination, disease progression, and flu vaccination 8 to achieve in-depth understandings of the manifestation of immune response in peripheral blood 9 under different stimuli. Third, the expanded T cell and B cell clones were correlated to the 10 specific phenotypes which allowed us to characterize the antigen-specific ones much easier in 11 the future. At last, other than the coagulopathy, the immunogenicity of megakaryocytes in 12 vaccination were highlighted in this study. In brief, our study provided a rich data resource and 13 the related methodology to explore the details of the classical immunity scenarios. 14 15 Keywords: COVID-19; Inactivated SARS-CoV-2 Vaccines; Peripheral Immune Cells; Single 16 Cell Sequencing 17 medRxiv preprint doi: https://doi.org/10.1101/2021.05.06.21256781; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 2 Introduction 3 As of May 2021, World Health Organization (WHO) has reported 148 million Coronavirus 4 disease 2019 (COVID-19) infections and 3.1 million deaths worldwide 5 (https://covid19.who.int/). Promotion and popularization of vaccine is vital to disease control, 6 with its safety and efficacy of the top priority. There are multiple SARS-CoV-2 vaccines 7 available and several vaccines under development, including the inactivated, genetically 8 engineered subunit, adenovirus and nucleic acid vaccine types. So far, a number of institutions 9 of different countries and regions have reported the results of safety and immunogenicity of 10 SARS-CoV-2 vaccine on phase III clinical trials or phase III interim analysis, such as, vaccines 11 BNT162b21 and mRNA-12732, adenovirus vaccines AZD12223, Ad5-nCoV4 and 12 inactivated vaccines BBIBP-CorV5 and CoronaVac6, 7, and protein subunit vaccine NVX-23738. 13 For example, Ugur Sahin et al.9 demonstrated that RNA vaccine (BNT162b2) not only elicited 14 adaptive humoral, but also stimulated the cellular immune response even at the low-dose 15 vaccine. The new vaccine types such as adenovirus-vectored vaccines and RNA vaccines have 16 emerged and fast developed with good efficacy in recent years, though severalserious adverse 17 events have been reported10, 11 12, 13. Their efficacy and long-term safety were yet to be reviewed 18 by a follow-up study. With the support of long clinical practice, traditional inactivated vaccines 19 play an irreplaceable role in the prevention and control of infectious disease. As a pattern of 20 inactivated SARS-CoV-2 vaccines, BBIBP-CorV, was manufactured by Sinopharm China 21 National Biotec Group (CNBG) and contained a SARS-CoV-2 strain inactivated inside Vero 22 Cells14, which was confirmed for its safety, tolerability, and immunogenicity in clinical trials of 23 healthy people in China5 and UAE, Bahrain, Egypt and Jordan (https://cdn.who.int/) . 24 Single-cell RNA-seq (scRNA-seq) technique has demonstrated its power in the research 25 of cell biology by deconvoluting the transcriptional signals in the multi-cellular samples of 26 heterogenous cellular compositions15,16. Other than characterizing the cell types in a 27 heterogeneous tissue, it enables us to detect the variabilities within a cell lineage. The recent 28 pandemic of COVID-19 has prompted the demand of single-cell studies in order to uncover the 29 characteristics immune responses of different immune cell types during the symptom 30 development of COVID-1917, 18, 19, 20. These published scRNA-seq datasets provide abundant 31 and detailed reference information of this disease, though, no results have been reported for any 32 COVID-19 vaccines yet. Moreover, a comprehensive comparison of the human immune 33 responsive signals across the transcriptome at single-cell resolution over the time becomes 34 practical and necessary. With no doubt, such detailed comparison facilitates the in-depth medRxiv preprint doi: https://doi.org/10.1101/2021.05.06.21256781; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 understanding of the pathogenesis, symptom development and immunization of COVID-19 2 which guides us to the better vaccination strategy. Therefore, we aimed to look through a 'sight 3 glass' of the human immunity system, a.k.a., peripheral blood mononuclear cells (PBMCs) to 4 monitor the manifestation of vaccine response of the canonical immune cells. In the meantime, 5 we could take the advantage of the recent published scRNA-seq datasets of COVID-19 patient 6 samples21 and Flu vaccination samples22 to achieve such a goal. Besides, the roles of 7 megakaryocytes/platelets in COVID-19 recently have attracted some attentions due to recent 8 reports of blood-clot side effect by AZD122212, 23. Megakaryocytes were also found to 9 contribute to the complication of COVID-19 patients and be correlated to the organ failure and 10 mortality24, 25, 26. We were therefore also interested in looking into the signals related to immune- 11 responsive and coagulopathy in this non-canonical immune cell type using the scRNA-seq 12 dataset. 13 In this study, we extensively investigated the PBMC samples of BBIBP-CorV vaccine 14 recipients. Our scRNA-seq data delineated a high-resolution transcriptomic landscape of 15 peripheral immune cells during the vaccination of a classical vaccine type. Meanwhile, we 16 integrated the PBMC scRNA-seq datasets of COVID-19 patients and flu vaccination in order 17 to identify the common and distinct variation trends among our data set and the two other data 18 sets. All these efforts could provide a rich data resource and demonstrate a methodology to 19 explore the human immunity in disease development and vaccination at great details. Moreover, 20 this work could facilitate the in-depth understandings of the manifestation of immune response 21 in peripheral blood under different stimuli and provide many clues to design the new assay for 22 the assessment of the immune protection and adverse effects after the vaccination or infection 23 recovery. 24 25 Results 26 Overview of immune responses and peripheral immune cells variations by scRNA-seq 27 To assess the immune cells content and the phenotypic alterations following the vaccination 28 with inactivated SARS-CoV-2 vaccine (BBIBP-CorV), six healthy young adults with 4 males 29 and 2 females from Pu Dong Cohort, China, were enrolled in this 2019-nCoV vaccine 30 observational study [NCT04871932] according to inclusion and exclusion criteria (Fig.1A). All 31 six volunteers received 2 doses of inactivated SARS-CoV-2 vaccine (BBIBP-CorV). Blood 32 samples were collected at 4 time points including the day before vaccination (BV), 7 days after 33 first dose (1V7), 7 days after second dose (2V7) and 14 days after second dose (2V14) (Fig. 34 1A). Then, serum and PBMCs were separated from all time points of samples within 2-hour of medRxiv preprint doi: https://doi.org/10.1101/2021.05.06.21256781; this version posted May 10, 2021.
Recommended publications
  • The Effectiveness of Non-Pharmaceutical Interventions In
    medRxiv preprint doi: https://doi.org/10.1101/2020.04.06.20054197; this version posted April 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . The effectiveness of non-pharmaceutical interventions in containing epidemics: a rapid review of the literature and quantitative assessment CHEATLEY Jane1, VUIK Sabine1, DEVAUX Marion1, SCARPETTA Stefano1, PEARSON Mark1, COLOMBO Francesca1, CECCHINI Michele1 1. Directorate for Employment, Labour and Social Affairs, Organization for Economic Co-operation and Development, Paris, France Corresponding author: CECCHINI Michele: [email protected] Abstract The number of confirmed COVID-19 cases has rapidly increased since discovery of the disease in December 2019. In the absence of medical countermeasures to stop the spread of the disease (i.e. vaccines), countries have responded by implementing a suite of non-pharmaceutical interventions (NPIs) to contain and mitigate COVID-19. Individual NPIs range in intensity (e.g. from lockdown to public health campaigns on personal hygiene), as does their impact on reducing disease transmission. This study uses a rapid review approach and investigates evidence from previous epidemic outbreaks to provide a quantitative assessment of the effectiveness of key NPIs used by countries to combat the COVID-19 pandemic. Results from the study are designed to help countries enhance their policy response as well as inform transition strategies by identifying which policies should be relaxed and which should not. Introduction In December 2019, Wuhan, located in the Hubei province of China, experienced an outbreak of pneumonia from a novel virus – severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Chen et al., 2020[1]).
    [Show full text]
  • Main Outcomes of Discussion of WHO Consultation on Nucleic Acid
    MAIN OUTCOMES OF DISCUSSION FROM WHO CONSULTATION ON NUCLEIC ACID VACCINES I. Knezevic, R. Sheets 21-23 Feb, 2018 Geneva, Switzerland CONTEXT OF DISCUSSION • WHO Consultation held to determine whether the existing DNA guidelines were due for revision or if they remained relevant with today’s status of nucleic acid vaccine development and maturity towards licensure (marketing authorization) • Presentation will cover alignment to existing guidelines • Current status of development of DNA and RNA vaccines, both prophylactic & therapeutic • Main outcomes of discussion • Next steps already underway & planned STATUS OF DEVELOPMENT OF NUCLEIC ACID VACCINES • First likely candidate to licensure could be a therapeutic DNA vaccine against Human Papilloma Viruses • Anticipated to be submitted for licensure in 3-5 years • Other DNA vaccines are likely to follow shortly thereafter, e.g., Zika prophylaxis • RNA vaccines – less clinical experience, but therapeutic RNAs anticipated in 2021/22 timeframe to be submitted for licensure • For priority pathogens in context of public health emergencies, several candidates under development (e.g., MERS-CoV, Marburg, Ebola) MAIN OUTCOMES - GENERAL • Regulators expressed need for updated DNA guideline for prophylaxis and therapy • Less need at present for RNA vaccines in guideline but need some basic PTC • Flexibility needed now until more experience gained for RNA vaccines that will come in next few years • Revisit need for a more specific guideline at appropriate time for RNA vaccines • Institutional Biosafety Committees are regulated by national jurisdictions & vary considerably • How can WHO assist to streamline or converge these review processes? Particularly, during Public Health Emergency – can anything be done beforehand? MAIN OUTCOMES - DEFINITIONS • Clear Definitions are needed • Proposed definition of DNA vaccine: • A DNA plasmid(s) into which the desired immunogen(s) is (are) encoded and prepared as purified plasmid preparations to be administered in vivo.
    [Show full text]
  • Review of COVID-19 Vaccine Subtypes, Efficacy and Geographical Distributions Andre Ian Francis ‍ ‍ ,1 Saudah Ghany,1 Tia Gilkes,1 Srikanth Umakanthan2
    Review Postgrad Med J: first published as 10.1136/postgradmedj-2021-140654 on 6 August 2021. Downloaded from Review of COVID-19 vaccine subtypes, efficacy and geographical distributions Andre Ian Francis ,1 Saudah Ghany,1 Tia Gilkes,1 Srikanth Umakanthan2 1Department of Clinical Medical ABSTRACT 2021, the Ad26.COV2.S, developed by Janssen Sciences, The Faculty of Medical As of 1 May 2021, there have been 152 661 445 (Johnson & Johnson) and Moderna on 30 April.4 Sciences, The University of the COVAX, coordinated by WHO, Gavi: The West Indies, St. Augustine, Covid-19 cases with 3 202 256 deaths globally. Trinidad and Tobago This pandemic led to the race to discover a vaccine Vaccine Alliance, the Coalition for Epidemic 2Pathology unit, Department to achieve herd immunity and curtail the damaging Preparedness Innovations (CEPI), acts as a of Paraclinical Sciences, The effects of Covid-19. This study aims to discuss the most programme that supports the development of University Of The West Indies, St. COVID-19 vaccine candidates and negotiates their Augustine, Trinidad and Tobago recent WHO-approved Covid-19 vaccine subtypes, their status and geographical scheduled updates as of 4 pricing to ensure low- and- middle- income countries have a fair shot at receiving vaccines.5 Correspondence to May 2021. The keywords “Covid-19, Vaccines, Pfizer, Mr. Andre Ian Francis, The BNT162b2, AstraZeneca, AZD1222, Moderna, mRNA- This article aims at discussing the most recent University of the West Indies, St. 1273, Janssen, Ad26.COV2.S” were typed into PubMed. WHO- approved COVID-19 vaccine subtypes, their Augustine, Trinidad and Tobago; Thirty Two relevant PubMed articles were included in status and geographical scheduled updates as of 4 andre.
    [Show full text]
  • V.5 3/18/2021 1 COVID-19 Vaccine FAQ Sheet
    COVID-19 Vaccine FAQ Sheet (updated 3/18/2021) The AST has received queries from transplant professionals and the community regarding the COVID-19 vaccine. The following FAQ was developed to relay information on the current state of knowledge. This document is subject to change and will be updated frequently as new information or data becomes available. What kinds of vaccines are available or under development to prevent COVID-19? There are currently several vaccine candidates in use or under development. In the United States, the Government is supporting six separate vaccine candidates. Several other vaccines are also undergoing development outside of the United States government sponsorship and further information can be found here: NYTimes Coronavirus Vaccine Tracker: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine- tracker.html Washington Post Vaccine Tracker: https://www.washingtonpost.com/graphics/2020/health/covid-vaccine-update- coronavirus/ v.5 3/18/2021 1 The types of vaccines are as follows (March 1, 2021) 1: Table 1: Vaccines Under Development or Available Through EUA Vaccine Type Compound Name [Sponsor] Clinical Notes Trial Phase mRNA mRNA-1273 [Moderna] Phase 3 Emergency use in U.S., E.U., other countries Approved in Canada BNT162b2 (Comirnaty) [Pfizer] Phase 2/3 Emergency use in U.S., E.U., other countries Also approved in Canada and other countries Replication- AZD1222 (Covishield) Phase 2/3 Emergency use defective [AstraZeneca] in U.K., India, adenoviral other countries vector (not U.S.) JNJ-78326735/Ad26.COV2.S
    [Show full text]
  • COVID-19 Vaccination Programme: Information for Healthcare Practitioners
    COVID-19 vaccination programme Information for healthcare practitioners Republished 6 August 2021 Version 3.10 1 COVID-19 vaccination programme: Information for healthcare practitioners Document information This document was originally published provisionally, ahead of authorisation of any COVID-19 vaccine in the UK, to provide information to those involved in the COVID-19 national vaccination programme before it began in December 2020. Following authorisation for temporary supply by the UK Department of Health and Social Care and the Medicines and Healthcare products Regulatory Agency being given to the COVID-19 Vaccine Pfizer BioNTech on 2 December 2020, the COVID-19 Vaccine AstraZeneca on 30 December 2020 and the COVID-19 Vaccine Moderna on 8 January 2021, this document has been updated to provide specific information about the storage and preparation of these vaccines. Information about any other COVID-19 vaccines which are given regulatory approval will be added when this occurs. The information in this document was correct at time of publication. As COVID-19 is an evolving disease, much is still being learned about both the disease and the vaccines which have been developed to prevent it. For this reason, some information may change. Updates will be made to this document as new information becomes available. Please use the online version to ensure you are accessing the latest version. 2 COVID-19 vaccination programme: Information for healthcare practitioners Document revision information Version Details Date number 1.0 Document created 27 November 2020 2.0 Vaccine specific information about the COVID-19 mRNA 4 Vaccine BNT162b2 (Pfizer BioNTech) added December 2020 2.1 1.
    [Show full text]
  • An Update on Self-Amplifying Mrna Vaccine Development
    Review An Update on Self-Amplifying mRNA Vaccine Development Anna K. Blakney 1,* , Shell Ip 2 and Andrew J. Geall 2 1 Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 2 Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; [email protected] (S.I.); [email protected] (A.J.G.) * Correspondence: [email protected] Abstract: This review will explore the four major pillars required for design and development of an saRNA vaccine: Antigen design, vector design, non-viral delivery systems, and manufacturing (both saRNA and lipid nanoparticles (LNP)). We report on the major innovations, preclinical and clinical data reported in the last five years and will discuss future prospects. Keywords: RNA; self-amplifying RNA; replicon; vaccine; drug delivery 1. Introduction: The Four Pillars of saRNA Vaccines In December 2019, the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus emerged, causing a respiratory illness, coronavirus disease 2019 (COVID-19), in Hubei province, China [1,2]. The virus has spread globally, with the World Health Organization (WHO) declaring it a Public Health Emergency of International concern on 30 January 2020 and a pandemic officially on 7 March 2020 [3]. There is a strong consensus globally that a COVID-19 vaccine is likely the most effective approach to sustainably controlling the COVID-19 pandemic [4]. There has been an unprecedented research effort and global Citation: Blakney, A.K.; Ip, S.; Geall, coordination which has resulted in the rapid development of vaccine candidates and A.J. An Update on Self-Amplifying initiation of human clinical trials.
    [Show full text]
  • 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.14.21257248; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant-Produced Virus-Like Particle 2 Vaccine for Covid-19 in Healthy Adults Aged 18-64 and Older Adults Aged 65 and Older 3 Authors: Philipe Gobeil1, Stéphane Pillet1, Annie Séguin1, Iohann Boulay1, Asif Mahmood1, 4 Donald C Vinh 2, Nathalie Charland1, Philippe Boutet3, François Roman3, Robbert Van Der 5 Most4, Maria de los Angeles Ceregido Perez3, Brian J Ward1,2†, Nathalie Landry1† 6 Affiliations: 1 Medicago Inc., 1020 route de l’Église office 600, Québec, QC, Canada, G1V 7 3V9; 2 Research Institute of the McGill University Health Centre, 1001 Decarie St, Montreal, 8 QC H4A 3J1; 3 GlaxoSmithKline Biologicals SA (Vaccines), Avenue Fleming 20, 1300 Wavre, 9 Belgium; 4 GlaxoSmithKline Biologicals SA (Vaccines), rue de l’Institut 89, 1330 Rixensart, 10 Belgium; † These individuals are equally credited as senior authors. 11 * Corresponding author: Nathalie Landry, 1020 Route de l’Église, Bureau 600, Québec, Qc, 12 Canada, G1V 3V9; Tel. 418 658 9393; Fax. 418 658 6699; [email protected] 13 Abstract 14 The rapid spread of SARS-CoV-2 globally continues to impact humanity on a global scale with 15 rising morbidity and mortality. Despite the development of multiple effective vaccines, new 16 vaccines continue to be required to supply ongoing demand.
    [Show full text]
  • Non-Pharmaceutical Interventions and Mortality in U.S. Cities During the Great Influenza Pandemic, 1918-1919*
    Non-Pharmaceutical Interventions and Mortality in U.S. Cities during the Great Influenza Pandemic, 1918-1919* Robert J. Barro Harvard University August 2020 Abstract A key issue for the ongoing COVID-19 pandemic is whether non-pharmaceutical public-health interventions (NPIs) retard death rates. Good information about these effects comes from flu- related excess deaths in large U.S. cities during the second wave of the Great Influenza Pandemic, September 1918-February 1919. NPIs, as measured by an extension of Markel, et al. (2007), are in three categories: school closings, prohibitions on public gatherings, and quarantine/isolation. Although an increase in NPIs flattened the curve in the sense of reducing the ratio of peak to average death rates, the estimated effect on overall deaths is small and statistically insignificant. One possibility is that the NPIs were not more successful in curtailing overall mortality because the average duration of each type of NPI was only around one month. Another possibility is that NPIs mainly delay deaths rather than eliminating them. *I have benefited from comments by Martin Cetron, Sergio Correia, Ed Glaeser, Claudia Goldin, Chris Meissner, and Jim Stock, and from research assistance by Emily Malpass. 1 The mortality experienced during the Great Influenza Pandemic of 1918-1920 likely provides the best historical information on the plausible upper found for outcomes under the ongoing coronavirus (COVID-19) pandemic. Barro, Ursúa, and Weng (2020) compiled and discussed the cross-country data on flu-related deaths during the Great Influenza Pandemic. Based on information for 48 countries, that study found that the Pandemic killed around 40 million people, 2.1 percent of the world’s population.
    [Show full text]
  • Revision Rápida
    REVISION RÁPIDA EVALUACIÓN DE LAS CARACTERÍSTICAS DE ALMACENAMIENTO, TRANSPORTE Y DISTRIBUCIÓN DE LAS VACUNAS COVID-19 EN ESTUDIO, Y LAS CARACTERÍSTICAS CLÍNICAS DE LA POBLACIÓN CANDIDATA A VACUNACIÓN Noviembre de 2020 El Instituto de Evaluación Tecnológica en Salud – IETS, es una corporación sin ánimo de lucro, de participación mixta y de carácter privado, con patrimonio propio, creado según lo estipulado en la Ley 1438 de 2011. Su misión es contribuir al desarrollo de mejores políticas públicas y prácticas asistenciales en salud, mediante la producción de información basada en evidencia, a través de la evaluación de tecnologías en salud y guías de práctica clínica, con rigor técnico, independencia y participación. Sus miembros son el Ministerio de Salud y Protección Social – MinSalud, el Departamento Administrativo de Ciencia, Tecnología e Innovación – Colciencias, el Instituto Nacional de Vigilancia de Medicamentos y Alimentos – INVIMA, el Instituto Nacional de Salud – INS, la Asociación Colombiana de Facultades de Medicina – ASCOFAME y la Asociación Colombiana de Sociedades Científicas – ACSC. Autores Lucas López Quiceno. Médico y cirujano, Especialista en Epidemiología, Magister en Epidemiología, Magíster en economía de la salud (c). Instituto de Evaluación Tecnológica en Salud - IETS. Jhyld Carolaind Camacho Barbosa, Nutricionista y Dietista, Magister en Epidemiología. Instituto de Evaluación Tecnológica en Salud - IETS. Kelly Estrada-Orozco. Médica, Magister en Epidemiología Clínica, Magister en Neurociencia. Doctorado en Salud Pública (actual). Doctorado en Epidemiología Clínica (actual). Instituto de Evaluación Tecnológica en Salud - IETS. Revisores Cortes-Muñoz, Ani Julieth. Bacterióloga y laboratorista clínica. MSc. Epidemiología. Instituto de Evaluación Tecnológica en salud - IETS. Ospina-Lizarazo, Nathalie. Nutricionista Dietista. MSc. Epidemiología Clínica. Instituto de Evaluación Tecnológica en salud - IETS.
    [Show full text]
  • Covid-19 Messenger Rna Vaccine
    COVID-19 MESSENGER RNA VACCINE A Piece of the Coronavirus The SARS-CoV-2 virus is studded with proteins that it uses to enter human cells. These so-called spike proteins make a tempting target for potential vaccines and treatments. Image of Coronavirus and spike proteins. Spike CORONAVIRUS protein Spikes gene Like the Pfizer vaccine, Moderna’s vaccine is based on the virus’s genetic instructions for building the spike protein. mRNA Inside an Oily Shell The vaccine uses messenger RNA, genetic material that our cells read to make proteins. The molecule — called mRNA for short — is fragile and would be chopped to pieces by our natural enzymes if it were injected directly into the body. To protect their vaccine, Pfizer and BioNTech wrap mRNA in oily bubbles made of lipid nanoparticles. Lipid nanoparticles surrounding mRNA Entering a Cell After injection, the vaccine particles bump into cells and fuse to them, releasing mRNA. The cell’s molecules read its sequence and build spike proteins. The mRNA from the vaccine is eventually destroyed by the cell, leaving no permanent trace. Vaccine Particle Translating mRNA fuses into Spike Spike Protien, which beaks it into Protein fragmentsmRNA and then destroyed by the Translatingcell nucleus. mRNA Spike Three spike Proteins Combine Cell Nucleus Spike Proteins and Fragments Protruding Displaying Protein Fragments Spikes Some of the spike proteins form spikes that migrate to the surface of the cell and stick out their tips. The vaccinated cells also break up some of the proteins into fragments, which they present on their surface. These protruding spikes and spike protein fragments can then be recognized by the immune system.
    [Show full text]
  • Candidate SARS-Cov-2 Vaccines in Advanced Clinical Trials: Key Aspects Compiled by John D
    Candidate SARS-CoV-2 Vaccines in Advanced Clinical Trials: Key Aspects Compiled by John D. Grabenstein, RPh, PhD All dates are estimates. All Days are based on first vaccination at Day 0. Vaccine Sponsor Univ. of Oxford ModernaTX USA BioNTech with Pfizer Johnson & Johnson Novavax Sanofi Pasteur with CureVac with Bayer CanSino Biologics with Sinopharm (China National Sinovac Biotech Co. [with Major Partners] (Jenner Institute) (Janssen Vaccines & GlaxoSmithKline Academy of Military Biotec Group) (Beijing IBP, with AstraZeneca Prevention) Medical Sciences Wuhan IBP) Headquarters Oxford, England; Cambridge, Cambridge, Massachusetts Mainz, Germany; New York, New Brunswick, New Jersey Gaithersburg, Maryland Lyon, France; Tübingen, Germany Tianjin, China; Beijing, China; Beijing, China England, Gothenburg, New York (Leiden, Netherlands) Brentford, England Beijing, China Wuhan, China Sweden Product Designator ChAdOx1 or AZD1222 mRNA-1273 BNT162b2, tozinameran, Ad26.COV2.S, JNJ-78436735 NVX-CoV2373 TBA CVnCoV Ad5-nCoV, Convidecia BBIBP-CorV CoronaVac Comirnaty Vaccine Type Adenovirus 63 vector mRNA mRNA Adenovirus 26 vector Subunit (spike) protein Subunit (spike) protein mRNA Adenovirus 5 vector Inactivated whole virus Inactivated whole virus Product Features Chimpanzee adenovirus type Within lipid nanoparticle Within lipid nanoparticle Human adenovirus type 26 Adjuvanted with Matrix-M Adjuvanted with AS03 or Adjuvanted with AS03 Human adenovirus type 5 Adjuvanted with aluminum Adjuvanted with aluminum 63 vector dispersion dispersion vector AF03
    [Show full text]
  • National Deployment & Vaccination Plan
    NATIONAL DEPLOYMENT & VACCINATION EPI PLAN (NDVP)FOR COVID-19 VACCINES 24th June 2021 (2021) Expanded Program on Immunization | Ministry of National Health Services Regulations & Coordination Islamabad 1 Table of Contents Introduction Country Profile Planning and Coordination Regulatory Preparedness Identification of Target Population Costing and Funding Vaccine Delivery Strategy Supply Chain Management Microplanning Human Resource Management and Training Recording and Reporting Healthcare Waste Management RCCE, Vaccine Acceptance and Uptake Monitoring Surveillance and AEFI Evaluation 2 List of Acronyms Acronym Full name ADB Asian Development Bank AEFI Adverse Event Following Immunization AJK Azad Jammu and Kashmir BAL Balochistan BHU Basic Health Unit CBV Community Based Volunteer CDA Capital Development Authority CEPI Coalition for Epidemic Preparedness Innovations CHWs Community Health Workers CMW Community Midwife COVID Coronavirus Disease CSOs Civil Society Organizations CVC COVID-19 Vaccination Counter CVT COVID-19 Vaccination Team CVIC COVID-19 Vaccine Introduction Costing Tool DHO District Health Officer DHQ District Headquarter DQA Data Quality Assessment DRAP Drug Regulatory Authority of Pakistan EMRO Eastern Mediterranean Regional Office EOC Emergency Operation Center EPI Expanded Program on Immunization FATA Federally Administered Tribal Areas FIC Fully Immunized Child GAVI The Vaccine Alliance GACVS Global Advisory Committee on Vaccine Safety GB Gilgit-Baltistan GF Gates Foundation HCP Health Care Provider ICC Inter-Agency
    [Show full text]