A Ttività S Anitaria E Scientific a 2020

Total Page:16

File Type:pdf, Size:1020Kb

A Ttività S Anitaria E Scientific a 2020 ATTIVITÀ SANITARIA E SCIENTIFICA 2020 ATTIVITÀ SANITARIA E SCIENTIFICA 2020 INDICE PRESENTAZIONE 4 INTRODUZIONE 5 SPECIALE COVID-19 6 COVID-19. Risultati scientifici significativi nelle riviste a più elevato fattore di impatto 7 Prevenzione e controllo COVID-19 in Ospedale 10 1 ATTIVITÀ SANITARIA 18 Le attività assistenziali e gli indicatori di performance 19 Programma miglioramento continuo qualità dell’assistenza 40 2 ATTIVITÀ DEI DIPARTIMENTI 74 Dipartimento Anestesia, Rianimazione e Comparti Operatori 76 Dipartimento Chirurgie Specialistiche 78 Dipartimento Emergenza Accettazione e Pediatria Generale 83 Dipartimento Diagnostica per Immagini 87 INDICE Dipartimento Medicina Diagnostica e di Laboratorio 91 Dipartimento Cardiochirurgia, Cardiologia e Trapianto Cuore Polmone 95 Dipartimento Medico Chirurgico del Feto-Neonato-Lattante 99 Dipartimento Neuroriabilitazione Intensiva e Robotica 103 Dipartimento Neuroscienze 108 Dipartimento Terapia Cellulare, Terapie Geniche e Trapianto Emopoietico 113 Dipartimento Pediatrie Specialistiche e Trapianto Fegato Rene 117 Dipartimento Pediatrico Universitario Ospedaliero 120 3 ATTIVITÀ SCIENTIFICA 126 L'Attività scientifica e gli indicatori di performance 127 Produzione scientifica 128 Attività di ricerca 130 Finanziamenti per la ricerca 133 Collaborazioni scientifiche 136 Trasferimento Tecnologico 137 Biblioteca Medica 138 Formazione e Accreditamento ECM 140 4 RISULTATI SCIENTIFICI SIGNIFICATIVI NELLE RIVISTE A PIÙ ELEVATO FATTORE DI IMPATTO 142 5 DIREZIONE MEDICINA SPERIMENTALE E DI PRECISIONE 146 6 AREE DI RICERCA 150 Area di Ricerca Genetica e Malattie Rare 152 Area di Ricerca Malattie Multifattoriali e Malattie Complesse 157 Area di Ricerca Immunologia 163 Area di Ricerca Infettivologia e Sviluppo di Farmaci Pediatrici 168 Area di Ricerca Oncoematologia 173 Area di Ricerca Innovazioni Clinico Gestionali e Tecnologiche 177 7 PUBBLICAZIONI SCIENTIFICHE 182 PRESENTAZIONE Gestire un ospedale di alta complessità clinica, scientifica e amministrativa, come il Bambino Gesù, non è mai un compito facile, ma ci sono periodi più impegnativi di altri. Non c’è dubbio che il 2020, con l’emergenza Coronavirus, sia stato tra questi. L’Ospedale, come tutto il Paese, ha dovuto far fronte ad una situazione assolutamente inedita, con l’obiettivo di mettere in sicurezza pazienti, famiglie e personale, continuando ad assicurare la tempestività e la continuità delle cure ai nostri bambini e ragazzi. Sono particolarmente orgogliosa di quanto siamo riusciti a fare e intendo cogliere questa occasione per esprimere la mia profonda gratitudine a tutti i dipendenti e i collaboratori del Bambino Gesù: abbiamo sperimentato forse come non mai cosa significhi essere “servizio pubblico”, parte di un’unica grande comunità di cura. L’Ospedale ha saputo riorganizzarsi e reinventarsi, adeguando in fretta spazi e competenze per fronteggiare qualcosa di mai visto prima. Abbiamo lavorato a stretto contatto con le Istituzioni locali e nazionali, mettendo a disposizione la consulenza dei nostri specialisti negli organi di governo sanitario dell’emergenza, nei canali di informazione sanitaria per il grande pubblico, nei percorsi di accompagnamento per le famiglie e di formazione per i pediatri di libera scelta diffusi nel territorio. La crisi provocata dalla pandemia, con il lungo lockdown e i conseguenti impedimenti alla mobilità, ci hanno fatto sperimentare forme nuove di comunicazione sanitaria e distanza, favorendo di fatto il percorso di innovazione e digitalizzazione dell’Ospedale e la diffusione di esperienze di telemedicina. Il sito internet dell’Ospedale ha registrato quasi 10 milioni di contatti da tutta da Italia per 20 milioni di pagine visualizzate: un grande sforzo di informazione ed educazione sanitaria che ha contribuito a rassicurare le famiglie e a contrastare il fenomeno delle fake-news, ad esempio sul tema dei vaccini. Lo stesso impegno di formazione e comunicazione a distanza è stato profuso sul piano delle attività internazionali, con lo scopo di sopperire all’impossibilità di compiere missioni in presenza nei Paesi in cui normalmente operiamo. Il Bambino Gesù, per le famiglie e per i pazienti, non ha mai chiuso. E non ha mai smesso di fare ricerca e assistenza di alto livello, come dimostrano i numeri esposti in questo volume sui trapianti, sulle procedure interventistiche, sulle pubblicazioni scientifiche e i progetti di ricerca. Basti qui ricordare lo straordinario intervento chirurgico, in piena pandemia, che ha portato alla separazione delle due gemelline siamesi del Centrafrica unite per la testa (craniopago totale posteriore). Un’operazione che ha fatto il giro del mondo e che lo stesso Papa Francesco ha potuto apprezzare nelle parole di gratitudine della mamma delle bambine, nel giorno del loro Battesimo, eccezionalmente celebrato dal Santo Padre. Non smettiamo mai di migliorare e di dare il meglio di noi, di fronti alle difficoltà più grandi. Mariella Enoc Presidente Ospedale Pediatrico Bambino Gesù 4 ATTIVITÀ SANITARIA E SCIENTIFICA 2020 INTRODUZIONE Nel presentare lo scorso anno i risultati dell’attività assistenziale e scientifica dell’Ospedale Bambino Gesù avevamo definito il 2019 un “anno speciale”, per i risultati complessivamente raggiunti. Nell’introdurre la relazione sanitaria e scientifica del 2020 ci riappropriamo, ma questa volta con connotazioni in larga misura diverse, della definizione di “anno speciale”. Un anno che è stato drammaticamente segnato dalla pandemia, che ha condizionato la vita di tutti, richiedendo una riorganizzazione complessiva delle attività produttive, lavorative, assistenziali e della ricerca. Una calamità che purtroppo non si è ancora esaurita, nonostante le numerose risposte fornite dalla ricerca che ha messo in campo strumenti che ci autorizzano comunque a guardare al futuro con un cauto ottimismo. A questi sentimenti desideriamo associare una forte gratitudine nei confronti dei medici, degli infermieri, del personale delle professioni sanitarie, dei ricercatori, di tutto il personale dell’Ospedale, nonché della sua dirigenza, perché l’eccellenza dei risultati clinici e assistenziali raccontati in questo volume delineano uno straordinario impegno di sistema della comunità dell’OPBG nel conseguimento degli obiettivi della nostra missione. Nonostante le grandissime sfide presentate dalla pandemia, la preparazione all’emergenza e alle azioni di contrasto del rischio infettivo che sono state consolidate negli anni grazie al Programma di miglioramento continuo della qualità dell’assistenza, hanno consentito di garantire un’assistenza efficace e sicura sia ai neonati, bambini e ragazzi con infezione da SARS-CoV-2 che a tutti i pazienti con altre patologie. Con il riconoscimento dell’Ospedale come hub pediatrico regionale per il Covid-19, la risposta all’emergenza pandemica ha infatti comportato la sua riorganizzazione, con l’individuazione di aree Covid in cui sono stati accolti i pazienti in età pediatrica con infezione da SARS-CoV-2 e garantita la permanenza durante il ricovero dei genitori, fronteggiando situazioni in cui più componenti della famiglia avevano bisogno di cure ospedaliere. Allo stesso tempo, la riorganizzazione dell’Ospedale ha consentito l’accesso in sicurezza dei pazienti con altre patologie e la prosecuzione delle attività di alta complessità. Un dato esemplificativo è rappresentato dal numero di trapianti effettuati, che è continuato ad aumentare anche nel 2020 (+13,2% rispetto al 2019). Anche il peso medio dei ricoveri è aumentato (+6% rispetto al 2019), ad evidenza del fatto che l’Ospedale ha ridotto, come richiesto dall’evento pandemico, l’attività di bassa complessità riprogrammabile (riduzione del 6% delle prestazioni ambulatoriali, del 15% del numero di DH e del 21% dei casi di DS), ma continuato ad assicurare l’attività per l’alta complessità. L’attività di ricerca è stata gestita nel rispetto delle norme generali finalizzate alla prevenzione del contagio ed è stata condizionata dallo smart working, che ha significativamente ridotto i tempi di permanenza dei ricercatori nei laboratori. Nonostante questi limiti, i risultati sono stati fortemente positivi per tutti i più significativi parametri misurabili. In particolare, sono state prodotte 937 pubblicazioni, 86% delle quali eleggibili dal Ministero della Salute in base alla tipologia del riconoscimento istituzionale, per un valore complessivo di Impact Factor grezzo di 4.015 punti, corrispondente ad un incremento del 6,3% rispetto al 2019. Di particolare rilievo il numero complessivo dei progetti attivi, 719, prevalentemente nell’area clinica-traslazionale e nell’area biomedica, con oltre la metà degli studi, soprattutto di tipo interventistico, dedicati alle malattie e ai tumori rari. Tali attività sono state svolte in collaborazione con 2.282 Enti, 82% dei quali stranieri. I finanziamenti per la ricerca sono aumentati nell’ultimo anno del 15%, in particolare per il procacciamento attivo da parte dei ricercatori attraverso la partecipazione a bandi nazionali e internazionali. Il 2020 ha segnato anche la conclusione del settennato del Programma Quadro Horizon 2020 dell’Unione Europea, al quale l’OPBG ha partecipato con 28 progetti, classificandosi al quinto posto tra i partecipanti al settore “salute” e al secondo posto tra i 51 IRCCS. Da ultimo segnaliamo il deposito, nel 2020, di 5 nuove domande di brevetto, che hanno portato a 15 il portafoglio complessivo attuale delle famiglie brevettuali dell’OPBG. Rivolgiamo il nostro “grazie” a tutta la Comunità dell’Ospedale, la vera
Recommended publications
  • Myopia Genetics Report
    Special Issue IMI – Myopia Genetics Report Milly S. Tedja,1,2 Annechien E. G. Haarman,1,2 Magda A. Meester-Smoor,1,2 Jaakko Kaprio,3,4 David A. Mackey,5–7 Jeremy A. Guggenheim,8 Christopher J. Hammond,9 Virginie J. M. Verhoeven,1,2,10 and Caroline C. W. Klaver1,2,11; for the CREAM Consortium 1Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands 2Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands 3Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland 4Department of Public Health, University of Helsinki, Helsinki, Finland 5Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia 6Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia 7Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia 8School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom 9Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom 10Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands 11Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands Correspondence: Caroline C. W. The knowledge on the genetic background of refractive error and myopia has expanded Klaver, Erasmus Medical Center, dramatically in the past few years. This white paper aims to provide a concise summary of Room Na-2808, P.O. Box 2040, 3000 current genetic findings and defines the direction where development is needed. CA, Rotterdam, the Netherlands; [email protected]. We performed an extensive literature search and conducted informal discussions with key MST and AEGH contributed equally to stakeholders.
    [Show full text]
  • Insight Into the Molecular Genetics of Myopia
    Molecular Vision 2017; 23:1048-1080 <http://www.molvis.org/molvis/v23/1048> © 2017 Molecular Vision Received 8 May 2017 | Accepted 29 December 2017 | Published 31 December 2017 Insight into the molecular genetics of myopia Jiali Li, Qingjiong Zhang State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have impli- cated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. 1. Introduction: late-onset high myopia commonly seen in university students) Myopia is the most common cause of visual impairment or a Mendelian trait (such as most early-onset high myopia worldwide. Myopia is a condition in which parallel light that is not related to extensive near work) [1]. Efforts to passes through the eye and focuses in front of the retina.
    [Show full text]
  • The Genetic and Clinical Landscape of Nanophthalmos in an Australian
    medRxiv preprint doi: https://doi.org/10.1101/19013599; this version posted December 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . 1 The genetic and clinical landscape of nanophthalmos in an Australian cohort 2 3 Running title: Genetics of nanophthalmos in Australia 4 5 Owen M Siggs1, Mona S Awadalla1, Emmanuelle Souzeau1, Sandra E Staffieri2,3,4, Lisa S Kearns2, Kate 6 Laurie1, Abraham Kuot1, Ayub Qassim1, Thomas L Edwards2, Michael A Coote2, Erica Mancel5, Mark J 7 Walland6, Joanne Dondey7, Anna Galanopoulous8, Robert J Casson8, Richard A Mills1, Daniel G 8 MacArthur9,10, Jonathan B Ruddle2,3,4, Kathryn P Burdon1,11, Jamie E Craig1 9 10 1Department of Ophthalmology, Flinders University, Adelaide, Australia 11 2Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 12 3Department of Ophthalmology, University of Melbourne, Melbourne, Australia 13 4Department of Ophthalmology, Royal Children’s Hospital, Melbourne, Australia 14 5Centre Hospitalier Territorial de Nouvelle-Calédonie, Noumea, New Caledonia 15 6Glaucoma Investigation and Research Unit, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 16 7Royal Victorian Eye and Ear Hospital, Melbourne, Australia 17 8Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide, Australia 18 9Program in Medical and Population
    [Show full text]
  • Novel Mutations in ALDH1A3 Associated with Autosomal Recessive Anophthalmia/ Microphthalmia, and Review of the Literature Siying Lin1, Gaurav V
    Lin et al. BMC Medical Genetics (2018) 19:160 https://doi.org/10.1186/s12881-018-0678-6 RESEARCH ARTICLE Open Access Novel mutations in ALDH1A3 associated with autosomal recessive anophthalmia/ microphthalmia, and review of the literature Siying Lin1, Gaurav V. Harlalka1, Abdul Hameed2, Hadia Moattar Reham3, Muhammad Yasin3, Noor Muhammad3, Saadullah Khan3, Emma L. Baple1, Andrew H. Crosby1 and Shamim Saleha3* Abstract Background: Autosomal recessive anophthalmia and microphthalmia are rare developmental eye defects occurring during early fetal development. Syndromic and non-syndromic forms of anophthalmia and microphthalmia demonstrate extensive genetic and allelic heterogeneity. To date, disease mutations have been identified in 29 causative genes associated with anophthalmia and microphthalmia, with autosomal dominant, autosomal recessive and X-linked inheritance patterns described. Biallelic ALDH1A3 gene variants are the leading genetic causes of autosomal recessive anophthalmia and microphthalmia in countries with frequent parental consanguinity. Methods: This study describes genetic investigations in two consanguineous Pakistani families with a total of seven affected individuals with bilateral non-syndromic clinical anophthalmia. Results: Using whole exome and Sanger sequencing, we identified two novel homozygous ALDH1A3 sequence variants as likely responsible for the condition in each family; missense mutation [NM_000693.3:c.1240G > C, p. Gly414Arg; Chr15:101447332G > C (GRCh37)] in exon 11 (family 1), and, a frameshift mutation [NM_000693.3:c. 172dup, p.Glu58Glyfs*5; Chr15:101425544dup (GRCh37)] in exon 2 predicted to result in protein truncation (family 2). Conclusions: This study expands the molecular spectrum of pathogenic ALDH1A3 variants associated with anophthalmia and microphthalmia, and provides further insight of the key role of the ALDH1A3 in human eye development.
    [Show full text]
  • Identification of ADAMTS19 As a Novel Retinal Factor Involved in Ocular Growth
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.03.132852; this version posted June 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 TITLE 2 Identification of ADAMTS19 as a novel retinal factor involved in ocular growth 3 regulation 4 5 AUTHORS 6 Swanand Koli1*, Cassandre Labelle-Dumais1*, Yin Zhao1, Seyyedhassan 7 Paylakhi1, and K Saidas Nair1,2#. 8 9 AFFILIATIONS 10 1Department of Ophthalmology, University of California, San Francisco, USA. 11 2Department of Anatomy, University of California, San Francisco, USA. 12 * Joint first authors 13 14 # Correspondence: 15 K Saidas Nair, Ph.D., Department of Ophthalmology, University of California, San 16 Francisco, 10 Koret Way (K107), San Francisco, CA, USA. 17 E-mail: [email protected], Phone: 415-476-0461 18 19 20 21 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.03.132852; this version posted June 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 ABSTRACT 26 Refractive errors are the most common ocular disorders and are a leading cause of 27 visual impairment worldwide. Although ocular axial length is well established to be a 28 major determinant of refractive errors, the molecular and cellular processes regulating 29 ocular axial growth are poorly understood. Mutations in genes encoding the PRSS56 30 and MFRP are a major cause of nanophthalmos. Accordingly, mouse models with 31 mutations in the genes encoding the retinal factor PRSS56 or MFRP, a gene 32 predominantly localized in the retinal pigment epithelial (RPE) exhibit ocular axial length 33 reduction and extreme hyperopia.
    [Show full text]
  • Genome-Wide Analysis Points to Roles for Extracellular Matrix Remodeling, the Visual Cycle, and Neuronal Development in Myopia
    Genome-Wide Analysis Points to Roles for Extracellular Matrix Remodeling, the Visual Cycle, and Neuronal Development in Myopia Amy K. Kiefer, Joyce Y. Tung, Chuong B. Do, David A. Hinds, Joanna L. Mountain, Uta Francke, Nicholas Eriksson* 23andMe, Mountain View, California, United States of America Abstract Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide association study (45,771 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset and identified 22 significant associations (pv5:10{8), two of which are replications of earlier associations with refractive error. Ten of the 20 novel associations identified replicate in a separate cohort of 8,323 participants who reported if they had developed myopia before age 10. These 22 associations in total explain 2.9% of the variance in myopia age of onset and point toward a number of different mechanisms behind the development of myopia. One association is in the gene PRSS56, which has previously been linked to abnormally small eyes; one is in a gene that forms part of the extracellular matrix (LAMA2); two are in or near genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are near genes known to be involved in the growth and guidance of retinal ganglion cells (ZIC2, SFRP1); and five are in or near genes involved in neuronal signaling or development. These novel findings point toward multiple genetic factors involved in the development of myopia and suggest that complex interactions between extracellular matrix remodeling, neuronal development, and visual signals from the retina may underlie the development of myopia in humans.
    [Show full text]
  • Scientific Tracks & Abstracts Day 1
    conferenceseries.com JOINT EVENT 4th International Conference & Expo on Euro Optometry and Vision Science & 29th International Congress on VisionScience and Eye August 22-23, 2019 Vienna, Austria Scientific Tracks & Abstracts Day 1 Euro Optometry 2019 & Visionscience 2019 Page 21 Day-1 Sessions An Ayurvedic Guide to better Vision & Eye Health | Cornea | Ocular Diseases | Clinical Optometry Eye care and Prevention | Retina Chair: David Berkow, Ulster University, Isreal Session Introduction Title: An Appraisal of Methods to Protect and Preserve Eye Health in Āyurveda Aravind Kumar, Sreedhareeyam Ayurvedic Research and Development Institute, India Title: Astigmatism is associated with allergic conjunctivitis in children who attend an urban school exposed to air pollution Yangho Kim, University of Ulsan College of Medicine, South Korea Title: The importance of routine eye examination in asymptomatic patients in tertiary eye care centres in Northern India Milan Rai, Dr Om Parkash Eye Institute, India Title: Tears and fears-influence of contact lens wear on the tear film David Berkow, Ulster University, Isreal Title: Effects of ocular hypotensives on ocular surface and cornea Manik Gupta, Rotary Narayana Eye Hospital, India Title: Comparison of the corneal densitometry using Pentacam in individuals with healthy, subclinical and early keratoconus eyes Mohammad Sadegh Mirdehghan, Ahvaz Jundishapur University of Medical Science , Iran Title: Nanophthalmic eyes and its associated complications with refractive error correction using rgp contact
    [Show full text]
  • Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss
    cells Review Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss 1, 1, 1 1,2,3 1 Gayle B. Collin y, Navdeep Gogna y, Bo Chang , Nattaya Damkham , Jai Pinkney , Lillian F. Hyde 1, Lisa Stone 1 , Jürgen K. Naggert 1 , Patsy M. Nishina 1,* and Mark P. Krebs 1,* 1 The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; [email protected] (G.B.C.); [email protected] (N.G.); [email protected] (B.C.); [email protected] (N.D.); [email protected] (J.P.); [email protected] (L.F.H.); [email protected] (L.S.); [email protected] (J.K.N.) 2 Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand 3 Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand * Correspondence: [email protected] (P.M.N.); [email protected] (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.) These authors contributed equally to this work. y Received: 29 February 2020; Accepted: 7 April 2020; Published: 10 April 2020 Abstract: Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated.
    [Show full text]
  • Dual Functions for Insulinoma-Associated 1 in Retinal Development
    University of Kentucky UKnowledge Theses and Dissertations--Biology Biology 2015 DUAL FUNCTIONS FOR INSULINOMA-ASSOCIATED 1 IN RETINAL DEVELOPMENT Marie A. Forbes-Osborne University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Forbes-Osborne, Marie A., "DUAL FUNCTIONS FOR INSULINOMA-ASSOCIATED 1 IN RETINAL DEVELOPMENT" (2015). Theses and Dissertations--Biology. 31. https://uknowledge.uky.edu/biology_etds/31 This Doctoral Dissertation is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • HB-EGF Regulates Prss56 Expression During Mouse Decidualization Via EGFR/ERK/EGR2 Signaling Pathway
    234 3 J LIU and others Prss56 involvement in 234:3 247–254 Research mouse decidualization HB-EGF regulates Prss56 expression during mouse decidualization via EGFR/ERK/EGR2 signaling pathway Jie Liu1,2, Fei Gao2, Yue-Fang Liu1, Hai-Ting Dou1, Jia-Qi Yan1, Zong-Min Fan1 and Correspondence Zeng-Ming Yang1 should be addressed 1College of Veterinary Medicine, South China Agricultural University, Guangzhou, China to Z-M Yang 2Department of Biology, Shantou University, Shantou, China Email [email protected] Abstract Embryo implantation and decidualization are key steps for successful reproduction. Key Words Although numerous factors have been identified to be involved in embryo implantation f Prss56 and decidualization, the mechanisms underlying these processes are still unclear. Based f decidualization on our preliminary data, Prss56, a trypsin-like serine protease, is strongly expressed at f uterus implantation site in mouse uterus. However, the expression, regulation and function f endometrium of Prss56 during early pregnancy are still unknown. In mouse uterus, Prss56 is strongly Endocrinology expressed in the subluminal stromal cells at implantation site on day 5 of pregnancy of compared to inter-implantation site. Under delayed implantation, Prss56 expression is undetected. After delayed implantation is activated by estrogen, Prss56 is obviously induced at implantation site. Under artificial decidualization, Prss56 signal is seen at the Journal primary decidual zone at the initial stage of artificial decidualization. When stromal cells are induced for in vitro decidualization, Prss56 expression is significantly elevated.Dtprp expression under in vitro decidualization is suppressed by Prss56 siRNA. In cultured stromal cells, HB-EGF markedly stimulates Prss56 expression through EGFR/ERK pathway.
    [Show full text]
  • The Molecular Basis of Human Anophthalmia and Microphthalmia
    Journal of Developmental Biology Review The Molecular Basis of Human Anophthalmia and Microphthalmia Philippa Harding 1 and Mariya Moosajee 1,2,3,* 1 UCL Institute of Ophthalmology, London, EC1V 9EL, UK 2 Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK 3 Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK * Correspondence: [email protected]; Tel.: +44-207-608-6971 Received: 19 June 2019; Accepted: 8 August 2019; Published: 14 August 2019 Abstract: Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies. Keywords: anophthalmia; microphthalmia; coloboma; eye; genetics; development; induced pluripotent stem cells; SOX2; OTX2; genes 1. Introduction The development of the human eye is a tightly controlled morphogenetic process which requires precise spatial and temporal gene regulation [1–5].
    [Show full text]
  • Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel PRSS56 Variant
    Hindawi Journal of Ophthalmology Volume 2020, Article ID 6807809, 9 pages https://doi.org/10.1155/2020/6807809 Research Article Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel PRSS56 Variant Lubica Dudakova,1 Pavlina Skalicka,1,2 Olga Ulmanova´ ,3 Martin Hlozanek ,4,5 Viktor Stranecky,1 Frantisek Malinka ,1,6 Andrea L. Vincent,7 and Petra Liskova 1,2 1Research Unit for Rare Diseases, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08 Prague, Czech Republic 2Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic 3Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 30, 120 00 Prague, Czech Republic 4Department of Ophthalmology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic 5Ophthalmology Department, /ird Faculty of Medicine, Charles University and Teaching Hospital Kralovske Vinohrady, Srobarova 1150/50, 100 34 Prague, Czech Republic 6Department of Computer Science, Czech Technical University in Prague, Karlovo Namesti 13, 121 35 Prague, Czech Republic 7Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Correspondence should be addressed to Petra Liskova; [email protected] Received 23 October 2019; Revised 29 January 2020; Accepted 14 February 2020; Published 29 April 2020 Academic Editor: Bao Jian Fan Copyright © 2020 Lubica Dudakova et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]