Next-Generation Sequencing to Diagnose a Diverse Range of Genetic Developmental Eye Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Next-Generation Sequencing to Diagnose a Diverse Range of Genetic Developmental Eye Disorders Accepted Manuscript The Oculome panel test: next-generation sequencing to diagnose a diverse range of genetic developmental eye disorders Aara Patel, Jane D. Hayward, Vijay Tailor, Rodney Nyanhete, Helena Ahlfors, Camila Gabriel, Tommaso B. Jannini, Yassir Abbou-Rayyah, Robert Henderson, Ken K. Nischal, Lily Islam, Maria Bitner-Glindzicz, Jane Hurst, Leonardo E. Valdivia, Mario Zanolli, Mariya Moosajee, John Brookes, Maria Papadopoulos, Peng T. Khaw, Thomas Cullup, Lucy Jenkins, Annegret Dahlmann-Noor, Jane C. Sowden PII: S0161-6420(18)31858-X DOI: https://doi.org/10.1016/j.ophtha.2018.12.050 Reference: OPHTHA 10632 To appear in: Ophthalmology Received Date: 3 August 2018 Revised Date: 18 December 2018 Accepted Date: 21 December 2018 Please cite this article as: Patel A, Hayward JD, Tailor V, Nyanhete R, Ahlfors H, Gabriel C, Jannini TB, Abbou-Rayyah Y, Henderson R, Nischal KK, Islam L, Bitner-Glindzicz M, Hurst J, Valdivia LE, Zanolli M, Moosajee M, Brookes J, Papadopoulos M, Khaw PT, Cullup T, Jenkins L, Dahlmann-Noor A, Sowden JC, The Oculome panel test: next-generation sequencing to diagnose a diverse range of genetic developmental eye disorders, Ophthalmology (2019), doi: https://doi.org/10.1016/j.ophtha.2018.12.050. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Title 2 The Oculome panel test: next-generation sequencing to diagnose a diverse range of 3 genetic developmental eye disorders 4 Running Title 5 Genetic testing of developmental eye disorders 6 Authors 7 Aara Patel 1 , Jane D Hayward 1 , Vijay Tailor 2, Rodney Nyanhete 3, Helena Ahlfors 3, 8 Camila Gabriel 1, Tommaso B Jannini 1, Yassir Abbou-Rayyah 4, Robert Henderson 4, 9 Ken K. Nischal 4,5 , Lily Islam 1,6, Maria Bitner-Glindzicz 1, Jane Hurst 1, Leonardo E. 10 Valdivia 7, Mario Zanolli 8, Mariya Moosajee 2, 4 , John Brookes 4, 9, Maria 11 Papadopoulos 9, Peng T Khaw 2,9, Thomas Cullup 3, Lucy Jenkins 1, 3, Annegret 12 Dahlmann-Noor 2, Jane C Sowden 1* 13 1. UCL Great Ormond Street Institute of Child Health, and NIHR Biomedical 14 Research Centre at Great Ormond Street Hospital for Children NHS Foundation 15 Trust and University College London, London,MANUSCRIPT UK 16 2. NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation 17 Trust, and UCL Institute of Ophthalmology London, UK 18 3. North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital 19 for Children NHS Trust, London, UK 20 4. Department of Ophthalmology, Great Ormond Street Hospital for Children NHS 21 Trust, London, UK 22 5. UPMC Eye Center, Children's Hospital of Pittsburgh of UPMC, University of 23 Pittsburgh SchoolACCEPTED of Medicine, Pittsburgh, PA, USA. 24 6. Birmingham Women’s Hospital, Birmingham, UK 25 7. Centre for Integrative Biology, Facultad de Ciencias, Universidad Mayor, 26 Santiago, Chile 27 8. Facultad de Medicina Clínica Alemana de Santiago – Universidad del Desarrollo, 28 Santiago, Chile 1 ACCEPTED MANUSCRIPT 1 9. Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK 2 3 These authors contributed equally to this work 4 5 *Correspondence : Professor Jane C. Sowden, PhD: [email protected], Birth 6 Defects Research Centre, Stem Cells and Regenerative Medicine Section, UCL 7 Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 8 1EH UK, Tel: +44 (0) 20 7905 2121, Fax: +44 (0) 20 7831 4366 9 10 Conflict of Interest : None 11 12 13 Key words: microphthalmia, coloboma, anterior segment dysgenesis, congenital 14 glaucoma, congenital cataracts, retinal dystrophiesMANUSCRIPT, genetics, developmental, 15 childhood, paediatric ophthalmology 16 ACCEPTED 2 ACCEPTED MANUSCRIPT 1 Abstract (346 words) 2 Purpose : To develop a comprehensive next-generation sequencing panel assay 3 which screens genes known to cause developmental eye disorders and inherited eye 4 disease (Oculome test) and to evaluate its diagnostic yield in a paediatric cohort with 5 malformations of the globe, anterior segment anomalies and/or childhood glaucoma. 6 Design : Evaluation of diagnostic test. 7 Participants : 277 children age 0-16 years diagnosed with nonsyndromic or 8 syndromic developmental eye defects without a genetic diagnosis. 9 Methods : We developed a new Oculome panel using a custom-designed Agilent 10 SureSelect QXT target capture method to capture and perform parallel high through 11 put sequencing analysis of 429 genes associated with eye disorders. We confirmed 12 suspected pathogenic variants by bidirectional Sanger sequencing. 13 Main outcome measures : We collated clinical details and the oculome molecular 14 genetic results. 15 Results : The Oculome design covers 429 known eye disease genes; these are 16 subdivided into 5 overlapping virtual sub-panels for anterior segment developmental 17 anomalies and glaucoma (ASDA; 59 genes), microphthalmia-anophthalmia- 18 coloboma (MAC; 86 genes), congenital cataractsMANUSCRIPT and lens-associated conditions 19 (CAT; 70 genes), retinal dystrophies (RET; 235 genes), and albinism (15 genes), 20 and as well as additional genes implicated in optic atrophy and complex strabismus 21 (10 genes). Panel development and testing included analysing n = 277 clinical 22 samples and 3 positive control samples using Illumina sequencing platforms; >30 X 23 read-depth was achieved for 99.5% of the targeted 1.77 Mb region. Bioinformatics 24 analysis performed using a pipeline based on Freebayes and ExomeDepth to 25 identify coding sequence and copy number variants respectively, resulted in a 26 definitive diagnosis in 68 / 277 cases with variability in diagnostic yield between 27 phenotypic sub-groups; MAC: 8.2% (8 of 98 cases solved), ASDA: 24.8% (28 of 113 28 cases solved),ACCEPTED other / syndromic 37.5% (3 of 8 cases solved); RET: 42.8% (21 of 49 29 cases solved); CAT: 88.9% (8 of 9 cases solved). Conclusion : The Oculome test 30 diagnoses a comprehensive range of genetic conditions affecting the development of 31 the eye, potentially replacing protracted and costly multidisciplinary assessments 32 and allowing for faster targeted management. The Oculome enabled the molecular 3 ACCEPTED MANUSCRIPT 1 diagnosis of a significant number of cases in our sample cohort of varied ocular birth 2 defects. 3 4 Introduction 5 An estimated 1.4 million children are blind. 1 The incidence of childhood blindness 6 ranges from 0.3-0.4 per 1000 in developed countries to 1.2 per 1000 in 7 undeveloped countries. 2 In all countries, childhood blindness occurs as a result of 8 congenital and developmental abnormalities. In the UK developmental eye 9 defects resulting in severe visual impairment or blindness affect 4 in 10,000 10 children each year. Microphthalmia, anophthalmia and coloboma (MAC) affect an 11 estimated 1.19 per 10,000 children by the age of 16 years, 3 congenital glaucoma 12 affects 1 in 20,000 children 4; approximately 3 in 10,000 children under 15 years 13 old are affected by congenital cataracts 5; retinal dystrophies affect 2.2 in 10,000 14 children by the age of 16, with retinitis pigmentosa being the most common retinal 15 dystrophy 6, 7 ; albinism has a global prevalence of 1 in 20,000. 8 Although these 16 developmental disorders are individually rare, they collectively account for a 17 significant proportion of global blindness. TheMANUSCRIPT proportion due to genetic causes is 18 unresolved. 19 20 Molecular diagnoses are largely unavailable for children with developmental eye 21 disorders due to the genetic heterogeneity of these conditions, the limited availability 22 of multi-gene panel tests and the low level of diagnosis achieved by sequential 23 screening of individual candidate genes. Next generation sequencing (NGS) is a 24 more cost-effective method to provide a genetic diagnosis in a wide range of 25 congenital and developmental conditions. 9-13 Whilst genetic panel tests are available 26 for some eye conditions, notably retinal dystrophies and congenital cataract, 13-16 27 comprehensiveACCEPTED panel assays are not available for a wide range of conditions 28 affecting the development of the anterior segment and whole globe, such as 29 congenital or juvenile glaucoma, anterior segment dysgenesis, MAC, optic atrophy 30 and nystagmus. A molecular diagnosis of the genetic changes underlying MAC and 31 anterior segment developmental anomalies (ASDA) is particularly challenging, as 32 these conditions have highly heterogeneous presentations and diverse genetic 4 ACCEPTED MANUSCRIPT 1 causes. Many developmental eye disorders form part of a syndrome involving 2 additional metabolic, developmental, physical or sensory abnormalities. These can 3 be difficult to define and may be missed if children are examined solely by an 4 ophthalmologist. Panels that allow for simultaneous testing of a large number of 5 genes are particularly attractive for phenotypically diverse and sometimes 6 overlapping conditions. 7 We aimed to develop a single comprehensive test, which would provide a molecular 8 diagnosis of a wide range of conditions of developmental eye defects. We grouped 9 genes into virtual subpanels to evaluate a narrower gene range where necessary.
Recommended publications
  • Myopia Genetics Report
    Special Issue IMI – Myopia Genetics Report Milly S. Tedja,1,2 Annechien E. G. Haarman,1,2 Magda A. Meester-Smoor,1,2 Jaakko Kaprio,3,4 David A. Mackey,5–7 Jeremy A. Guggenheim,8 Christopher J. Hammond,9 Virginie J. M. Verhoeven,1,2,10 and Caroline C. W. Klaver1,2,11; for the CREAM Consortium 1Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands 2Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands 3Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland 4Department of Public Health, University of Helsinki, Helsinki, Finland 5Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia 6Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia 7Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia 8School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom 9Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom 10Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands 11Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands Correspondence: Caroline C. W. The knowledge on the genetic background of refractive error and myopia has expanded Klaver, Erasmus Medical Center, dramatically in the past few years. This white paper aims to provide a concise summary of Room Na-2808, P.O. Box 2040, 3000 current genetic findings and defines the direction where development is needed. CA, Rotterdam, the Netherlands; [email protected]. We performed an extensive literature search and conducted informal discussions with key MST and AEGH contributed equally to stakeholders.
    [Show full text]
  • Insight Into the Molecular Genetics of Myopia
    Molecular Vision 2017; 23:1048-1080 <http://www.molvis.org/molvis/v23/1048> © 2017 Molecular Vision Received 8 May 2017 | Accepted 29 December 2017 | Published 31 December 2017 Insight into the molecular genetics of myopia Jiali Li, Qingjiong Zhang State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have impli- cated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. 1. Introduction: late-onset high myopia commonly seen in university students) Myopia is the most common cause of visual impairment or a Mendelian trait (such as most early-onset high myopia worldwide. Myopia is a condition in which parallel light that is not related to extensive near work) [1]. Efforts to passes through the eye and focuses in front of the retina.
    [Show full text]
  • The Genetic and Clinical Landscape of Nanophthalmos in an Australian
    medRxiv preprint doi: https://doi.org/10.1101/19013599; this version posted December 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . 1 The genetic and clinical landscape of nanophthalmos in an Australian cohort 2 3 Running title: Genetics of nanophthalmos in Australia 4 5 Owen M Siggs1, Mona S Awadalla1, Emmanuelle Souzeau1, Sandra E Staffieri2,3,4, Lisa S Kearns2, Kate 6 Laurie1, Abraham Kuot1, Ayub Qassim1, Thomas L Edwards2, Michael A Coote2, Erica Mancel5, Mark J 7 Walland6, Joanne Dondey7, Anna Galanopoulous8, Robert J Casson8, Richard A Mills1, Daniel G 8 MacArthur9,10, Jonathan B Ruddle2,3,4, Kathryn P Burdon1,11, Jamie E Craig1 9 10 1Department of Ophthalmology, Flinders University, Adelaide, Australia 11 2Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 12 3Department of Ophthalmology, University of Melbourne, Melbourne, Australia 13 4Department of Ophthalmology, Royal Children’s Hospital, Melbourne, Australia 14 5Centre Hospitalier Territorial de Nouvelle-Calédonie, Noumea, New Caledonia 15 6Glaucoma Investigation and Research Unit, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 16 7Royal Victorian Eye and Ear Hospital, Melbourne, Australia 17 8Discipline of Ophthalmology & Visual Sciences, University of Adelaide, Adelaide, Australia 18 9Program in Medical and Population
    [Show full text]
  • A Ttività S Anitaria E Scientific a 2020
    ATTIVITÀ SANITARIA E SCIENTIFICA 2020 ATTIVITÀ SANITARIA E SCIENTIFICA 2020 INDICE PRESENTAZIONE 4 INTRODUZIONE 5 SPECIALE COVID-19 6 COVID-19. Risultati scientifici significativi nelle riviste a più elevato fattore di impatto 7 Prevenzione e controllo COVID-19 in Ospedale 10 1 ATTIVITÀ SANITARIA 18 Le attività assistenziali e gli indicatori di performance 19 Programma miglioramento continuo qualità dell’assistenza 40 2 ATTIVITÀ DEI DIPARTIMENTI 74 Dipartimento Anestesia, Rianimazione e Comparti Operatori 76 Dipartimento Chirurgie Specialistiche 78 Dipartimento Emergenza Accettazione e Pediatria Generale 83 Dipartimento Diagnostica per Immagini 87 INDICE Dipartimento Medicina Diagnostica e di Laboratorio 91 Dipartimento Cardiochirurgia, Cardiologia e Trapianto Cuore Polmone 95 Dipartimento Medico Chirurgico del Feto-Neonato-Lattante 99 Dipartimento Neuroriabilitazione Intensiva e Robotica 103 Dipartimento Neuroscienze 108 Dipartimento Terapia Cellulare, Terapie Geniche e Trapianto Emopoietico 113 Dipartimento Pediatrie Specialistiche e Trapianto Fegato Rene 117 Dipartimento Pediatrico Universitario Ospedaliero 120 3 ATTIVITÀ SCIENTIFICA 126 L'Attività scientifica e gli indicatori di performance 127 Produzione scientifica 128 Attività di ricerca 130 Finanziamenti per la ricerca 133 Collaborazioni scientifiche 136 Trasferimento Tecnologico 137 Biblioteca Medica 138 Formazione e Accreditamento ECM 140 4 RISULTATI SCIENTIFICI SIGNIFICATIVI NELLE RIVISTE A PIÙ ELEVATO FATTORE DI IMPATTO 142 5 DIREZIONE MEDICINA SPERIMENTALE E DI PRECISIONE
    [Show full text]
  • Novel Mutations in ALDH1A3 Associated with Autosomal Recessive Anophthalmia/ Microphthalmia, and Review of the Literature Siying Lin1, Gaurav V
    Lin et al. BMC Medical Genetics (2018) 19:160 https://doi.org/10.1186/s12881-018-0678-6 RESEARCH ARTICLE Open Access Novel mutations in ALDH1A3 associated with autosomal recessive anophthalmia/ microphthalmia, and review of the literature Siying Lin1, Gaurav V. Harlalka1, Abdul Hameed2, Hadia Moattar Reham3, Muhammad Yasin3, Noor Muhammad3, Saadullah Khan3, Emma L. Baple1, Andrew H. Crosby1 and Shamim Saleha3* Abstract Background: Autosomal recessive anophthalmia and microphthalmia are rare developmental eye defects occurring during early fetal development. Syndromic and non-syndromic forms of anophthalmia and microphthalmia demonstrate extensive genetic and allelic heterogeneity. To date, disease mutations have been identified in 29 causative genes associated with anophthalmia and microphthalmia, with autosomal dominant, autosomal recessive and X-linked inheritance patterns described. Biallelic ALDH1A3 gene variants are the leading genetic causes of autosomal recessive anophthalmia and microphthalmia in countries with frequent parental consanguinity. Methods: This study describes genetic investigations in two consanguineous Pakistani families with a total of seven affected individuals with bilateral non-syndromic clinical anophthalmia. Results: Using whole exome and Sanger sequencing, we identified two novel homozygous ALDH1A3 sequence variants as likely responsible for the condition in each family; missense mutation [NM_000693.3:c.1240G > C, p. Gly414Arg; Chr15:101447332G > C (GRCh37)] in exon 11 (family 1), and, a frameshift mutation [NM_000693.3:c. 172dup, p.Glu58Glyfs*5; Chr15:101425544dup (GRCh37)] in exon 2 predicted to result in protein truncation (family 2). Conclusions: This study expands the molecular spectrum of pathogenic ALDH1A3 variants associated with anophthalmia and microphthalmia, and provides further insight of the key role of the ALDH1A3 in human eye development.
    [Show full text]
  • Identification of ADAMTS19 As a Novel Retinal Factor Involved in Ocular Growth
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.03.132852; this version posted June 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 TITLE 2 Identification of ADAMTS19 as a novel retinal factor involved in ocular growth 3 regulation 4 5 AUTHORS 6 Swanand Koli1*, Cassandre Labelle-Dumais1*, Yin Zhao1, Seyyedhassan 7 Paylakhi1, and K Saidas Nair1,2#. 8 9 AFFILIATIONS 10 1Department of Ophthalmology, University of California, San Francisco, USA. 11 2Department of Anatomy, University of California, San Francisco, USA. 12 * Joint first authors 13 14 # Correspondence: 15 K Saidas Nair, Ph.D., Department of Ophthalmology, University of California, San 16 Francisco, 10 Koret Way (K107), San Francisco, CA, USA. 17 E-mail: [email protected], Phone: 415-476-0461 18 19 20 21 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.03.132852; this version posted June 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 ABSTRACT 26 Refractive errors are the most common ocular disorders and are a leading cause of 27 visual impairment worldwide. Although ocular axial length is well established to be a 28 major determinant of refractive errors, the molecular and cellular processes regulating 29 ocular axial growth are poorly understood. Mutations in genes encoding the PRSS56 30 and MFRP are a major cause of nanophthalmos. Accordingly, mouse models with 31 mutations in the genes encoding the retinal factor PRSS56 or MFRP, a gene 32 predominantly localized in the retinal pigment epithelial (RPE) exhibit ocular axial length 33 reduction and extreme hyperopia.
    [Show full text]
  • Genome-Wide Analysis Points to Roles for Extracellular Matrix Remodeling, the Visual Cycle, and Neuronal Development in Myopia
    Genome-Wide Analysis Points to Roles for Extracellular Matrix Remodeling, the Visual Cycle, and Neuronal Development in Myopia Amy K. Kiefer, Joyce Y. Tung, Chuong B. Do, David A. Hinds, Joanna L. Mountain, Uta Francke, Nicholas Eriksson* 23andMe, Mountain View, California, United States of America Abstract Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide association study (45,771 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset and identified 22 significant associations (pv5:10{8), two of which are replications of earlier associations with refractive error. Ten of the 20 novel associations identified replicate in a separate cohort of 8,323 participants who reported if they had developed myopia before age 10. These 22 associations in total explain 2.9% of the variance in myopia age of onset and point toward a number of different mechanisms behind the development of myopia. One association is in the gene PRSS56, which has previously been linked to abnormally small eyes; one is in a gene that forms part of the extracellular matrix (LAMA2); two are in or near genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are near genes known to be involved in the growth and guidance of retinal ganglion cells (ZIC2, SFRP1); and five are in or near genes involved in neuronal signaling or development. These novel findings point toward multiple genetic factors involved in the development of myopia and suggest that complex interactions between extracellular matrix remodeling, neuronal development, and visual signals from the retina may underlie the development of myopia in humans.
    [Show full text]
  • Scientific Tracks & Abstracts Day 1
    conferenceseries.com JOINT EVENT 4th International Conference & Expo on Euro Optometry and Vision Science & 29th International Congress on VisionScience and Eye August 22-23, 2019 Vienna, Austria Scientific Tracks & Abstracts Day 1 Euro Optometry 2019 & Visionscience 2019 Page 21 Day-1 Sessions An Ayurvedic Guide to better Vision & Eye Health | Cornea | Ocular Diseases | Clinical Optometry Eye care and Prevention | Retina Chair: David Berkow, Ulster University, Isreal Session Introduction Title: An Appraisal of Methods to Protect and Preserve Eye Health in Āyurveda Aravind Kumar, Sreedhareeyam Ayurvedic Research and Development Institute, India Title: Astigmatism is associated with allergic conjunctivitis in children who attend an urban school exposed to air pollution Yangho Kim, University of Ulsan College of Medicine, South Korea Title: The importance of routine eye examination in asymptomatic patients in tertiary eye care centres in Northern India Milan Rai, Dr Om Parkash Eye Institute, India Title: Tears and fears-influence of contact lens wear on the tear film David Berkow, Ulster University, Isreal Title: Effects of ocular hypotensives on ocular surface and cornea Manik Gupta, Rotary Narayana Eye Hospital, India Title: Comparison of the corneal densitometry using Pentacam in individuals with healthy, subclinical and early keratoconus eyes Mohammad Sadegh Mirdehghan, Ahvaz Jundishapur University of Medical Science , Iran Title: Nanophthalmic eyes and its associated complications with refractive error correction using rgp contact
    [Show full text]
  • Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss
    cells Review Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss 1, 1, 1 1,2,3 1 Gayle B. Collin y, Navdeep Gogna y, Bo Chang , Nattaya Damkham , Jai Pinkney , Lillian F. Hyde 1, Lisa Stone 1 , Jürgen K. Naggert 1 , Patsy M. Nishina 1,* and Mark P. Krebs 1,* 1 The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; [email protected] (G.B.C.); [email protected] (N.G.); [email protected] (B.C.); [email protected] (N.D.); [email protected] (J.P.); [email protected] (L.F.H.); [email protected] (L.S.); [email protected] (J.K.N.) 2 Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand 3 Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand * Correspondence: [email protected] (P.M.N.); [email protected] (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.) These authors contributed equally to this work. y Received: 29 February 2020; Accepted: 7 April 2020; Published: 10 April 2020 Abstract: Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated.
    [Show full text]
  • Dual Functions for Insulinoma-Associated 1 in Retinal Development
    University of Kentucky UKnowledge Theses and Dissertations--Biology Biology 2015 DUAL FUNCTIONS FOR INSULINOMA-ASSOCIATED 1 IN RETINAL DEVELOPMENT Marie A. Forbes-Osborne University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Forbes-Osborne, Marie A., "DUAL FUNCTIONS FOR INSULINOMA-ASSOCIATED 1 IN RETINAL DEVELOPMENT" (2015). Theses and Dissertations--Biology. 31. https://uknowledge.uky.edu/biology_etds/31 This Doctoral Dissertation is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • HB-EGF Regulates Prss56 Expression During Mouse Decidualization Via EGFR/ERK/EGR2 Signaling Pathway
    234 3 J LIU and others Prss56 involvement in 234:3 247–254 Research mouse decidualization HB-EGF regulates Prss56 expression during mouse decidualization via EGFR/ERK/EGR2 signaling pathway Jie Liu1,2, Fei Gao2, Yue-Fang Liu1, Hai-Ting Dou1, Jia-Qi Yan1, Zong-Min Fan1 and Correspondence Zeng-Ming Yang1 should be addressed 1College of Veterinary Medicine, South China Agricultural University, Guangzhou, China to Z-M Yang 2Department of Biology, Shantou University, Shantou, China Email [email protected] Abstract Embryo implantation and decidualization are key steps for successful reproduction. Key Words Although numerous factors have been identified to be involved in embryo implantation f Prss56 and decidualization, the mechanisms underlying these processes are still unclear. Based f decidualization on our preliminary data, Prss56, a trypsin-like serine protease, is strongly expressed at f uterus implantation site in mouse uterus. However, the expression, regulation and function f endometrium of Prss56 during early pregnancy are still unknown. In mouse uterus, Prss56 is strongly Endocrinology expressed in the subluminal stromal cells at implantation site on day 5 of pregnancy of compared to inter-implantation site. Under delayed implantation, Prss56 expression is undetected. After delayed implantation is activated by estrogen, Prss56 is obviously induced at implantation site. Under artificial decidualization, Prss56 signal is seen at the Journal primary decidual zone at the initial stage of artificial decidualization. When stromal cells are induced for in vitro decidualization, Prss56 expression is significantly elevated.Dtprp expression under in vitro decidualization is suppressed by Prss56 siRNA. In cultured stromal cells, HB-EGF markedly stimulates Prss56 expression through EGFR/ERK pathway.
    [Show full text]
  • The Molecular Basis of Human Anophthalmia and Microphthalmia
    Journal of Developmental Biology Review The Molecular Basis of Human Anophthalmia and Microphthalmia Philippa Harding 1 and Mariya Moosajee 1,2,3,* 1 UCL Institute of Ophthalmology, London, EC1V 9EL, UK 2 Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK 3 Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK * Correspondence: [email protected]; Tel.: +44-207-608-6971 Received: 19 June 2019; Accepted: 8 August 2019; Published: 14 August 2019 Abstract: Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies. Keywords: anophthalmia; microphthalmia; coloboma; eye; genetics; development; induced pluripotent stem cells; SOX2; OTX2; genes 1. Introduction The development of the human eye is a tightly controlled morphogenetic process which requires precise spatial and temporal gene regulation [1–5].
    [Show full text]