Container Format ALL Picture Aspect Ratio

Total Page:16

File Type:pdf, Size:1020Kb

Container Format ALL Picture Aspect Ratio Sony Toshiba Panasonic Container Format ALL Sample Aspect Ratio - aspect_ratio_idc 1:1, 10:11, 40:33, 4:3, (sar_width, sar_height - if necessary) plus 12:11, 16:11 for 50Hz Picture Aspect Ratio - Container 4:3, 16:9 Picture Aspect Ratio - Active Resolution 720x480, 1280x720, 1920x1080, plus 720x576 for 50Hz Overscan / Cropping Optional for devices to crop L+R to 704 with overscan flag in AVC elementary stream Black Padding Send coordinates of active picture [using private data stream as previously proposed] (SHANE to provide footnote based on Salli proposal) Horizontal Sub-sampling No Quantization range[2] 16-235, 0-253 legal range as defined in Rec 601 and 709 Color space [3] Req 601 for PD, SD, Req 709 for HD 50 hertz or not? Optional for Europe etc Frame rates 29.97, 23.976 plus 25 for 50Hz Progressive / interlace Both Recommended practice topics Interlaced temporal sub-sampling, filtering Gamma curve, render intent, display adaptation [1] e.g. NTSC, PAL, anamorphic, sq, … [2] e.g. 16-235, 0-255, +/-128, … [3] e.g. Rec 601, 709; negative coefficients Microsoft Example ALL HD 1:1, 10:11, 40:33, 4:3 Encoded frame 4:3 , 16:9 1.33, 1.78, 1.85, 2.35 PD 320x240, 416x240, SD 640x480, 720x480 NTSC, 864x480, HD 1280x720, 1440x1080, 1920x1080 AVC cropping parameters specified in stream and ISO Track size equals decoder output size e.g. 1080 or 704, not 1088 or 720 encoded size OK, but encode AVC cropping parameters of actual picture area Yes, e.g. 720x480 16:9 NTSC 1440x1080 16:9 16-235, 0-253 visible range, not clipped, as defined in Rec 601 and 709 Req 601 for PD, SD; Req 709 for HD, negative RGB DecodeOK required, publication 14.99,regional 23.976, 25, 29.97, 50, Both59.94 Optimized for progressive display, default AVC 4:2:0 subsample locations Encoded with studio monitor gamma. Display correction applied by device (e.g. 2.4 for computer or hand held, 1.5 for home theater) Notes to Discuss: • [MS] Attempting to pre-correct for limited devices at encoding (e.g. vertical resolution filtering to prevent “CRT flicker”, encoding letterbox bars, encoded pulldown, etc.) usually compromises high end devices (progressive displays, 120Hz, motion interpolation, automatic PAR adaptation, etc.) • [MS] Might recommend safe areas based on device cropping to 4:3 • [MS] Clarification of “exact scan” pixel dimensions to avoid unnecessary scaling (e.g. 704 or 720 = 4:3? = 16:9 anamorphic?) Display intent must be specified explicitly using correct SAR in h.264 • [SPE] Proposes a new MP4 box for optional frame crop. • Crop box parameters shall be constant through an entire track • Crop box must exist in every sync sample for random access. • Luma crop parameters must be a multiple of 2 to compensate for 4:2:0 subsampling of chroma pixels. • Top and Bottom luma crop parameters are limited to a multiple of 4 to compensate for field based presentations in 4:2:0. • Composition objects such as subtitles require positioning methods to coordinate with frame cropping. This is not included in the scope of this box and must be defined elsewhere. • [MS] Vertical coding size can be any number of lines up to defined maximum number. • [MS] Some of current internet streaming distributed contents are encoded with respect to aspect ratio of the source video. • PC software platforms are capable of handling as it is done today • CE platforms may not be capable of handling flexible sized videoformat • Limited guaranteed video format supported in LSI • Increase in testing –can not guarantee every combination • [SPE] Define active video window in MP4 file format as DECE unique user data • [SPE] Contents are encoded with embedded black lines as done today (for non-internet streaming contents) • [SPE] PC software uses MP4 file format to crop the embedded black lines as post process before displaying the contents. • [SPE] CE platform displays/outputs with black lines –may optionally crop the black lines. [MS] Attempting to pre-correct for limited devices at encoding (e.g. vertical resolution filtering to prevent “CRT flicker”, encoding letterbox bars, encoded pulldown, etc.) usually compromises high end devices (progressive displays, 120Hz, motion interpolation, automatic PAR adaptation, etc.) [MS] Clarification of “exact scan” pixel dimensions to avoid unnecessary scaling (e.g. 704 or 720 = 4:3? = 16:9 anamorphic?) Display intent must be specified explicitly using correct SAR in h.264 Luma crop parameters must be a multiple of 2 to compensate for 4:2:0 subsampling of chroma pixels. Top and Bottom luma crop parameters are limited to a multiple of 4 to compensate for field based presentations in 4:2:0. Composition objects such as subtitles require positioning methods to coordinate with frame cropping. This is not included in the scope of this box and must be defined elsewhere. [MS] Vertical coding size can be any number of lines up to defined maximum number. [MS] Some of current internet streaming distributed contents are encoded with respect to aspect ratio of the source video. [SPE] Contents are encoded with embedded black lines as done today (for non-internet streaming contents) [SPE] PC software uses MP4 file format to crop the embedded black lines as post process before displaying the contents. [SPE] CE platform displays/outputs with black lines –may optionally crop the black lines. [MS] Attempting to pre-correct for limited devices at encoding (e.g. vertical resolution filtering to prevent “CRT flicker”, encoding letterbox bars, encoded pulldown, etc.) usually compromises high end devices (progressive displays, 120Hz, motion interpolation, automatic PAR adaptation, etc.) [MS] Clarification of “exact scan” pixel dimensions to avoid unnecessary scaling (e.g. 704 or 720 = 4:3? = 16:9 anamorphic?) Display intent must be specified explicitly using correct SAR in h.264 Composition objects such as subtitles require positioning methods to coordinate with frame cropping. This is not included in the scope of this box and must be defined elsewhere. [MS] Attempting to pre-correct for limited devices at encoding (e.g. vertical resolution filtering to prevent “CRT flicker”, encoding letterbox bars, encoded pulldown, etc.) usually compromises high end devices (progressive displays, 120Hz, motion interpolation, automatic PAR adaptation, etc.) Sample Pixel Aspect Ratio Pixel aspect ratio (often abbreviated PAR) is a mathematical ratio that describes how the width of pixels in a digital image compares to their height. Most digital imaging systems describe an image as a grid of very small but nonetheless square pixels. However, some imaging systems, especially those which must maintain compatibility with Standard-definition television motion pictures, define an image as a grid of rectangular pixels in which the width of the pixel is slightly different from that of its height. Pixel Aspect Ratio describes this difference. Use of Pixel Aspect Ratio mostly involves pictures pertaining to standard-definition television and some other exceptional cases. Most other imaging systems, including those which comply with SMPTE standards and practices, use square pixels. Pixel aspect ratios of common video formats Pixel Aspect Ratio values for common standard-definition video formats are listed below. Note that for each video format, three different types of Pixel Aspect Ratio values are listed: Rec.601, a Rec.601-compliant value, which is considered the real Pixel Aspect Ratio of standard-definition video of that type. (Read Explanation) Digital, which is roughly equivalent to Rec.601 and is more suitable to use in Digital Video Editing software. (Read Explanation) Picture Pixel Aspect Ratio Video Dimension Pixel Aspect Ratio (Decimal) System s Rec.601 Digital Rec.601 Digital Standard (4:3) PAL 720×576 (e.g. 576i) 704×576 59:54:00 12:11 Widescreen (16:9)352×288 PAL 118:81 16:11 Standard (4:3) NTSC 720×480 (e.g. 480i) 704×480 10:11 Widescreen (16:9)352×240 NTSC 40:33:00 Picture Aspect Ratio - Active Picture TV - 1.33 (4:3), 1.78 (16:9) Movies – 1.33 (4:3), 1.85, 2.35, 2.40 Common aspect ratios: 1.33 (4:3 TV), 1.78 (16:9 TV), 1.85 2.0, 2.33, 2.4(film), 16:9 anamorphic 708x483 SMPTE D1 display aperture 704x480 ATSC 4:3? 720x480 DVD 4:3? The aspect ratio of an image is its width divided by its height. Aspect ratios are mathematically expressed as x :y (pronounced "x-to-y") and x×y (pronounced "x-by-y"). The most common aspect ratios used today in the presentation of films in movie theaters are 1.85:1 and 2.39:1[1]. Two common videographic aspect ratios are 4:3 (1.33:1), universal for standard-definition video formats, and 16:9 (1.78:1), universal to high-definition television and European digital television. Other cinema and video aspect ratios exist, but are used infrequently. In still camera photography, the most common aspect ratios are 4:3, 3:2, and more recently being found in consumer cameras, previously only commonly seen in professional cameras, 16:9[2][3]. Other aspect ratios, such as 5:4, 6:7, and 1:1 (square format), are used in photography as well. Converting formats of unequal ratios is done by either cropping the original image to the receiving format's aspect ratio (zooming), by adding horizontal mattes (letterboxing) or vertical mattes (pillarboxing) to retain the original format's aspect ratio, or by distorting the image to fill the receiving format's ratio. Cinematographic aspect ratios are usually denoted as a decimal fraction width to unit height, while videographic aspect ratios are usually denoted by ratios of whole numbers. Resolution The display resolution of a digital television or display typically refers to the number of distinct pixels in each dimension that can be displayed.
Recommended publications
  • Designing a Cinema Auditorium
    ROLV GJESTLAND HOW TO DESIGN A CINEMA AUDITORIUM Practical guidelines for architects, cinema owners and others involved in planning and building cinemas HOW TO USE THIS BOOK This book can be read from beginning to end, to learn more about the elements that need to be taken into consideration when designing a cinema auditorium. But it may also be used as a reference in the design process, as the different parts of the auditorium are planned. Just be aware that making a change in one element might affect others. Designing a cinema auditorium is quite easy if you follow the rules. Although, if everyone follows all the rules, all auditoriums would look the same. Go beyond the rules, but always keep in mind that the main purpose of a cinema auditorium is to give the audience the best film experience. In addition, there are many other rooms in a cinema complex where you can use your creativity to create great experiences for patrons and make them want to come back. FEEDBACK This is the first edition of the book, and I am sure someone will miss something, someone will disagree with something and something will be incomplete or difficult to understand. Please do not hesitate to share your opinions, so the next edition can be better and the next one after that… Please use the contact info below. ABOUT THE AUTHOR Rolv Gjestland has a master's degree in metallurgy from the Norwegian University of Science and Technology. He is now advisor in cinema concepts, design, logistics and technology for Film&Kino, the nonprofit trade organisation for Norwegian cinemas.
    [Show full text]
  • CINERAMA: the First Really Big Show
    CCINEN RRAMAM : The First Really Big Show DIVING HEAD FIRST INTO THE 1950s:: AN OVERVIEW by Nick Zegarac Above left: eager audience line ups like this one for the “Seven Wonders of the World” debut at the Cinerama Theater in New York were short lived by the end of the 1950s. All in all, only seven feature films were actually produced in 3-strip Cinerama, though scores more were advertised as being shot in the process. Above right: corrected three frame reproduction of the Cypress Water Skiers in ‘This is Cinerama’. Left: Fred Waller, Cinerama’s chief architect. Below: Lowell Thomas; “ladies and gentlemen, this is Cinerama!” Arguably, Cinerama was the most engaging widescreen presentation format put forth during the 1950s. From a visual standpoint it was the most enveloping. The cumbersome three camera set up and three projector system had been conceptualized, designed and patented by Fred Waller and his associates at Paramount as early as the 1930s. However, Hollywood was not quite ready, and certainly not eager, to “revolutionize” motion picture projection during the financially strapped depression and war years…and who could blame them? The standardized 1:33:1(almost square) aspect ratio had sufficed since the invention of 35mm celluloid film stock. Even more to the point, the studios saw little reason to invest heavily in yet another technology. The induction of sound recording in 1929 and mounting costs for producing films in the newly patented 3-strip Technicolor process had both proved expensive and crippling adjuncts to the fluidity that silent B&W nitrate filming had perfected.
    [Show full text]
  • Dtavhal Programmers Interface Table of Contents
    DTAvHAL Programmers Interface Revision 0.1 Copyright (c) 2004-2012 Drastic Technologies Ltd. All Rights Reserved www.drastic.tv Table of Contents DTAvHAL Programmers Interface......................................................................................1 Introduction.....................................................................................................................3 Direct Link Usage...........................................................................................................3 Windows 32 OS – using 32 bit..............................................................................3 Windows 64 – using 32 bit....................................................................................3 Windows 64 – using 64 bit....................................................................................3 Mac OS-X..............................................................................................................3 Linux 64.................................................................................................................3 Functions.........................................................................................................................5 avOpen...................................................................................................................5 avClose..................................................................................................................5 avChannels.............................................................................................................5
    [Show full text]
  • Square Vs Non-Square Pixels
    Square vs non-square pixels Adapted from: Flash + After Effects By Chris Jackson Square vs non square pixels can cause problems when exporting flash for TV and video if you get it wrong. Here Chris Jackson explains how best to avoid these mistakes... Before you adjust the Stage width and height, you need to be aware of the pixel aspect ratio. This refers to the width and height of each pixel that makes up an image. Computer screens display square pixels. Every pixel has an aspect ratio of 1:1. Video uses non-square rectangular pixels, actually scan lines. To make matters even more complicated, the pixel aspect ratio is not consistent between video formats. NTSC video uses a non-square pixel that is taller than it is wide. It has a pixel aspect ratio of 1:0.906. PAL is just the opposite. Its pixels are wider than they are tall with a pixel aspect ratio of 1:1.06. Figure 1: The pixel aspect ratio can produce undesirable image distortion if you do not compensate for the difference between square and non-square pixels. Flash only works in square pixels on your computer screen. As the Flash file migrates to video, the pixel aspect ratio changes from square to non-square. The end result will produce a slightly stretched image on your television screen. On NTSC, round objects will appear flattened. PAL stretches objects making them appear skinny. The solution is to adjust the dimensions of the Flash Stage. A common Flash Stage size used for NTSC video is 720 x 540 which is slightly taller than its video size of 720 x 486 (D1).
    [Show full text]
  • History of Widescreen Aspect Ratios
    HISTORY OF WIDESCREEN ASPECT RATIOS ACADEMY FRAME In 1889 Thomas Edison developed an early type of projector called a Kinetograph, which used 35mm film with four perforations on each side. The frame area was an inch wide and three quarters of an inch high, producing a ratio of 1.37:1. 1932 the Academy of Motion Picture Arts and Sciences made the Academy Ratio the standard Ratio, and was used in cinemas until 1953 when Paramount Pictures released Shane, produced with a Ratio of 1.66:1 on 35mm film. TELEVISION FRAME The standard analogue television screen ratio today is 1.33:1. The Aspect Ratio is the relationship between the width and height. A Ratio of 1.33:1 or 4:3 means that for every 4 units wide it is 3 units high (4 / 3 = 1.33). In the 1950s, Hollywood's attempt to lure people away from their television sets and back into cinemas led to a battle of screen sizes. Fred CINERAMA Waller of Paramount's Special Effects Department developed a large screen system called Cinerama, which utilised three cameras to record a single image. Three electronically synchronised projectors were used to project an image on a huge screen curved at an angle of 165 degrees, producing an aspect ratio of 2.8:1. This Is Cinerama was the first Cinerama film released in 1952 and was a thrilling travelogue which featured a roller-coaster ride. See Film Formats. In 1956 Metro Goldwyn Mayer was planning a CAMERA 65 ULTRA PANAVISION massive remake of their 1926 silent classic Ben Hur.
    [Show full text]
  • A Brief Intro to Photoshop. Four by Three (4:3): That's For
    A brief intro to Photoshop. Although many other image manipulation tools are cheaper and a bit more user friendly, Photoshop is the leading tool for digital image manipulation. As you will see, our uses of Photoshop are basic, but for the introductory student they do require a little bit of work. Please don’t become bogged down in Photoshop. Complete these simple tasks and move on. Four by three (4:3): that’s for me! The industry standard for video and digital video production is an aspect ratio of 4:3. That means the measurements of the screen on which you will see your story finished is 4:3 and we must make all the images you scan fit into that size. The standard measurement for a computer is 640 pixels by 480 pixels (640 x 480 is 4:3!) If an image is scanned or cropped to be a different ratio, then in the end your image will be stretched and distorted to fit the screen, whether you like it or not. Example: You have to put your image through a sizing operation if you want to avoid this distortion. These are your options: 1 Option 1: The Black Bars 1. Open the picture you are working on. Go to FILE > OPEN. Select your file. 2. First make sure that the background is set to black. At the bottom of the tool bar are two little boxes, one on the top left, and one on the bottom right. Click on the bottom left corner box of the COLOR PICKER and choose black in the color picker window.
    [Show full text]
  • 13A Computer Video (1022-1143)
    Section13a COMPUTER VIDEO 12 Inch Design ............................1024-1027 Adobe ...........................................1028-1043 AJA ................................................1044-1063 Apple.............................................1064-1079 Avid ...............................................1080-1083 Automatic Duck..........................1084-1085 BlackMagic Design ....................1086-1099 Boris FX .........................................1100-1109 Video Cineform ........................................1110-1111 DigiEffects .....................................1112-1113 Contour Design......................................1114 Grass Valley ...................................1115-1119 Intel..........................................................1120 JL Cooper ......................................1122-1123 Matrox ...........................................1124-1127 MOTU .............................................1128-1129 SourceBook Newtek ..........................................1130-1133 Red Giant ......................................1134-1139 Sony ...............................................1140-1143 Sorenson.................................................1144 Tiffen........................................................1145 Obtaining information and ordering from B&H is quick and The easy. When you call us, just punch in the corresponding Quick Dial number anytime during our welcome message. The Quick Dial code then directs you to the specific professional sales associates in our order department.
    [Show full text]
  • The Electricimage™ Reference
    Book Page 1 Friday, July 21, 2000 4:18 PM The ElectricImage™ Reference A guide to the ElectricImage™ Animation System Version 2.0 Book Page 2 Friday, July 21, 2000 4:18 PM © 1989, 1990, 1991, 1992, 1993, 1994 Electric Image, Inc. All Rights Reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Electric Image. The software described in this manual is furnished under license and may only be used or copied in accordance with the terms of such license. The information in this manual is furnished for informational use only, is subject to change without notice and should not be construed as a commitment by Electric Image. Electric Image assumes no responsibility or liability for any errors or inaccuracies that may appear in this book. Electric Image recommends that you observe the rights of the original artist or publisher of the images you scan or acquire in the use of texture maps, reflection maps, bump maps, backgrounds or any other usage. If you plan to use a previously published image, contact the artist or publisher for information on obtaining permission. ElectricImage, Pixel Perfect Rendering and Animation, Mr. Fractal, and Mr. Font are trademarks of Electric Image. Macintosh and Apple are registered trademarks of Apple Computer, Incorporated. Other brand names and product names are trademarks or registered trademarks of their respective companies. This document written and designed by Stephen Halperin at: Electric Image, Inc. 117 East Colorado Boulevard Suite 300 Pasadena, California 91105 Cover image by Jay Roth.
    [Show full text]
  • Cinerama to Digital Cinema: from the Zenith to the Decline Written by Enric Mas ( ) January 11, 2016
    Enric Mas nitsenblanc.cat Cinerama to digital cinema: from the zenith to the decline Written by Enric Mas ( http://nitsenblanc.cat ) January 11, 2016 I try to imagine what the audience felt when they first saw a movie in Cinerama... but I cannot. I wonder, did they feel the same as I did when I saw a projection in 70 mm IMAX for the first time? Some clues tell me the answer is no. Howard Rust, of the International Cinerama Society, gave me an initial clue: “I was talking to a chap the other day who’d just been to see IMAX. ‘Sensational’, he said. ‘But, you know… it still doesn’t give you the same pins and needles up and down the back of your spin that Cinerama does’ ”. 1 What is its secret? Why is every film seen in Cinerama a unique event that is remembered for decades? We have another clue in a man who had worked with D.W. Griffith in That Royle Girl (1925), who produced and directed technically innovative short films, where black performers appeared, a rarity at the time, including the first appearance of Billie Holiday (Symphony in Black: A Rhapsody of Negro Life , 1935). He created a new imaging system (Vitarama) for the World’s Fair in New York (1939), joining 11 projectors of 16 mm, which reached a vertical image of 75 degrees high and 130 degrees wide, 2,3 developments which led to the most advanced artillery simulator in the world, which was used to train future aircraft gunners in World War II.
    [Show full text]
  • FILM FORMATS ------8 Mm Film Is a Motion Picture Film Format in Which the Filmstrip Is Eight Millimeters Wide
    FILM FORMATS ------------------------------------------------------------------------------------------------------------ 8 mm film is a motion picture film format in which the filmstrip is eight millimeters wide. It exists in two main versions: regular or standard 8 mm and Super 8. There are also two other varieties of Super 8 which require different cameras but which produce a final film with the same dimensions. ------------------------------------------------------------------------------------------------------------ Standard 8 The standard 8 mm film format was developed by the Eastman Kodak company during the Great Depression and released on the market in 1932 to create a home movie format less expensive than 16 mm. The film spools actually contain a 16 mm film with twice as many perforations along each edge than normal 16 mm film, which is only exposed along half of its width. When the film reaches its end in the takeup spool, the camera is opened and the spools in the camera are flipped and swapped (the design of the spool hole ensures that this happens properly) and the same film is exposed along the side of the film left unexposed on the first loading. During processing, the film is split down the middle, resulting in two lengths of 8 mm film, each with a single row of perforations along one edge, so fitting four times as many frames in the same amount of 16 mm film. Because the spool was reversed after filming on one side to allow filming on the other side the format was sometime called Double 8. The framesize of 8 mm is 4,8 x 3,5 mm and 1 m film contains 264 pictures.
    [Show full text]
  • Digital Signage Guidelines
    DIGITAL SIGNAGE GUIDELINES Content on your displays is the electronic process of bringing posters and fliers to life. In preparation for designing content there are some specifications that should be followed to ensure a high-quality presentation. Display Template Display Orientation: Landscape Displays/TV resolutions: 1920 x 1080 Aspect Ratio: 16:9 (Recommended) can be 4:3 The entire template should be 1920 x 1080 as shown below. The region where main content will be (the area where rotating content will be displayed) should be in a ratio of 16:9 (recommended) or 4:3. Example below as indicated by the arrow is 1344 x 720 which is a 16:9 ratio. Just be consistent. If the main content area is 16:9 then graphics need to be 16:9. If main content area is 4:3 then graphics needs to be 4:3. All other regions can be built around this area to fill the template. 1080 1920 Digital Content Most presentations start with an event or information that needs to reach a wide audience. Information that is pertinent to this event is jotted down and the evolution of a “flier” forms. For print purposes, most users would go to Word or Publisher and start creating a flier. However when making digital content, Word is not recommended. So, what program is best suited for this? PowerPoint This happens to be the most popular program. Powerpoint is designed for presentations that will be projected to a wide variety of screens, so orientation and aspect ratios are already taken into account.
    [Show full text]
  • Eidr 2.6 Data Fields Reference
    EIDR 2.6 DATA FIELDS REFERENCE Table of Contents 1 INTRODUCTION ............................................................................................................................................... 5 1.1 Introduction to Content ................................................................................................................................ 5 1.2 Composite Details ......................................................................................................................................... 5 1.3 How to read the Tables ................................................................................................................................. 6 1.4 EIDR IDs ........................................................................................................................................................ 7 2 BASE OBJECT TYPE ......................................................................................................................................... 9 2.1 Summary ...................................................................................................................................................... 9 2.2 Referent Type Details ................................................................................................................................. 25 2.3 Title Details ................................................................................................................................................ 26 2.4 Language Code Details ...............................................................................................................................
    [Show full text]