TAK-4 ® Independent Front Suspension
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design and Development of Semi Trailing Arm Suspension System for an Off-Road Vehicle
International Journal of Research in Engineering, Science and Management 339 Volume-3, Issue-7, July-2020 journals.resaim.com/ijresm | ISSN (Online): 2581-5792 Design and Development of Semi Trailing Arm Suspension System for an Off-Road Vehicle Ishan Hiremath1*, Avanti Nalawade2, Jai Patil3, Swarup Patil4, Riteshkumar Patil5, Swapnil Ugalmugale6 1,2,3,4,6Student, Department of Automobile Engineering, Rajarambapu Institute of Technology, Sangli, India 5Student, Department of Mechanical Engineering, Rajarambapu Institute of Technology, Sangli, India *Corresponding author: [email protected] Abstract: ATV is a basically an off-road vehicle with capability 2. Advantages of Semi-Trailing Arm Suspension to withstand harsh road conditions. Stability, control, performance, and comfort these are the basic requirements for an 1. As semi-trailing arm suspension is a 3-link independent ATV. Suspension system is one of the important systems which is suspension it provides better ride quality and handling. responsible for fulfillment of basic requirements. This paper is 2. In semi-trailing arm suspension during the suspension based on design and development of semi-trailing arm suspension movement the camber angle changes, as a result the tyres for ATV. The report describes the methodology followed to design remain perpendicular to the ground during body roll. a system and analysis of suspension components undergoing major 3. Lower cost, less complexity and more compactness. forces during dynamic conditions. The main objective is to design and develop a suspension system which improves overall 4. It provides better lateral load handling capacity. performance and handling properties of ATV. 5. Better antisquat properties. Keywords: Half shaft geometry, Independent suspension, SAE 3. -
Design and Analysis of Lower Control
ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Issue 4, April 2016 Design and Analysis of Lower Control ARM 1 2 M.Sridharan , Dr.S.Balamurugan P.G Student, Department of Mechanical Engineering, Mahendra Engineering College, Namakkal, Tamilnadu, India1 Head of the Department, Department of Mechanical Engineering, Mahendra Engineering College, Namakkal, Tamilnadu, India2 ABSTRACT: The main objective of this paper is to model and to perform structural analysis of a LOWER CONTROL ARM (LCA) used in the front suspension system, which is a sheet metal component. LCA is modeled in Pro-E software for the given specification. To analyze the LCA, CAE software is used. The load acting on the control arm are dynamic in nature, buckling load analysis is essential. First finite element analysis is performed to calculate the buckling strength, of a control arm. The FEA is carried out using Solid works stimulation package. The design modification has been done and FEA results are compared. The influencing parameters which are affecting the response are identified. After getting the final result of finite element analysis optimization has been done using design of experiment method. Taguchi’s design of experiments has been used to optimize the number of experiments. By reducing thickness of the sheet metal and by suggesting the suitable material the production cost of lower control arm is reduced. This leads to cost saving and improved material quality of the product. KEYWORDS: lower control arm, FEA, I. INTRODUCTION The suspension system caries the vehicle body and transmit all forces between the body and the road without transmitting to the driver and passengers. -
The Self-Steering Axles
THE SELF-STEERING AXLES R O A D R A N G E The costs for fuel and maintenance of vehicles are an increasing component of the running costs for a transport company. > Fuel economy. Fuel prices are influencing the costs of transport. Something can be done only by reducing consumption. The steering axle greatly improve the performance of trailers and semi-trailers, especially over mixed routes, the motor vehicle is less stressed, and reuces fuel consumption. > Lower expenses for the tires. Thanks to steering axles tyres have a longer life: a double benefit for the carriers who drive more kilometres with a set of tyres and have less downtime, because steering axles save the tyre wear. Even recycled tires can be used with increased safety. > Smoother and safer drive. The characteristics of the steering axle are useful especially when great manoeuvrability and flexibility are required - for example in local traffic and of distribution: precise manoeuvres, less damage from bumps, more safety and efficiency. The device for the wheels’ alignment and pneumatic latch are an useful aid for precision and safety also when reverse driving. > ADR range of steering axle. BM Series for capacities up to 7,5 tons BT Series for capacities up to 12 tons BW series for capacities up to 15 tons BX series for capacities up to 22 tons, specific special vehicles for yard or harbour. R O A D R A N G E SELF STEERING AXLES WITH 300 MM DRUM BRAKE TWIN TWIN SINGLE OVERALL AXLE MINIMUM WEIGHT TYPE CAPACITY BRAKE WHEEL CONNECTION WHEEL FACE WHEEL WHEEL WIDTH BEAM WHEEL -
Meritor® Independent Front Suspension Drivetrain System
MERITOR® INDEPENDENT FRONT SUSPENSION DRIVETRAIN SYSTEM Meritor’s state-of-the-art modular drivetrain system for all-wheel drive (AWD) commercial trucks features the Independent Front Suspension (IFS) module equipped with modern steering geometry and air disc brake technology, and a low-profile shift on-the-fly transfer case. The IFS, available in drive or non-drive options, is a part of Meritor’s field-proven and widely acclaimed ProTec™ ISAS® line of independent suspensions. This bolt-on, modular solution does not require modifications to existing frame rails and maintains vehicle ride height. FEATURES AND BENEFITS ■ Proven Independent Suspension Axle System technology – The ISAS product line has been fitted on high-mobility vehicles for over 20 years. The Independent Front Suspension system leverages decades of expertise in designing and manufacturing field-proven systems. ■ Bolt-on system – The Independent Front Suspension does not require modifications to frame rails ■ 5 to 12 inch ride height reduction – Improves vehicle roll stability versus best-in-class beam axle ■ Modular solution – Maintains the same ride height of a rear-wheel drive (RWD) truck ■ Lower center of gravity – Better vehicle maneuverability and stability for safe and confident handling ■ 60 percent reduction in cab and driver-absorbed power – Ride harshness improvements as well as reduction in unwanted steering feedback lead to less physical fatigue for the driver, and higher reliability of the cab ■ 2-times the wheel travel – The Independent Front Suspension provides -
Extra Care Protection
Extra Care Protection Powertrain Coverage Engine Front/Rear Wheel Drive Engine block and all internal components, cylinder heads, oil pan, engine Final drive housing and all internal parts, drive shafts, front hub, bearings, mounts, intake manifold, exhaust manifold, harmonic balancer, flywheel, starter, differential carrier assembly, axle carrier, axle case, axle bearing, rear axle hub air cleaner, timing belt and cover, accelerator rod and cable, vacuum pump, bearings, universal joints, propeller shafts, axle housing and all internal parts, expansion plugs, engine dipstick and tube, valve covers, camshaft cover, timing drive shaft centre supports, constant velocity joints and boots, axle shafts, front belt tensioner, water pump, fuel pump, fan and/or motor, fluid coupling, radiator, axle hub bearings. thermostat, oil cooler and steel lines, injection pump, timing gear and chain, engine control computer, oil pump. Four Wheel Drive Transfer case and all internal components, front/centre/rear differential Manual or Automatic Transmission/Transaxle assemblies and all internal components, front hub and spindle assembly Case and all internal parts, transmission mounts, transmission cooler and steel (including locking device). lines, oil pan, clutch cover, clutch master cylinder, clutch release cylinder, torque converter, dipstick and tube, kickdown linkage. Seals/Gaskets/Fluids/Filters All seals and gaskets used to contain fluid/lubricants within covered components, replacement of coolant, refrigerant, lubricants and filters when required as a result of a failure of a covered component. Comprehensive Coverage *New* Hybrid Components (For Hybrid Vehicles Only) High Tech Components Lexus hybrid owners can now enjoy added peace of mind with Extra Care All computers, actuators and sensors used in the following electronically Protection. -
Wheel Alignment Simplified
The WHAT and WHY of Toe Caster - Camber Kingpin Inclination - Thrust Angle Steering Angle – Wheel setback WHEEL ALIGNMENT SIMPLIFIED Wheel alignment is often considered complicated and hard to understand In the days of the rigid chassis construction with solid axles, when tyres were poor and road speeds were low, wheel alignment was simply a matter of ensuring that the wheels rolled along the road in parallel paths. This was easily accomplished by means of using a toe gauge or simple tape measure. The steering wheel could then also simply be repositioned on the splines of the steering shaft. Camber and Caster was easily adjustable by means of shims. Today wheel alignment is of course more sophisticated as there are several angles to consider when doing wheel alignment on the modern vehicle with Independent suspension systems, good performing tyres and high road speeds. Below are the most common angles and their terminology and for the correction of wheel alignment and the diagnoses thereof, the understanding of the principals of these angles will become necessary. Doing the actual corrections of wheel alignment is a fairly simple task and in many instances it is easily accomplished by some mechanical adjustments. However Wheel Alignment diagnosis is not so straightforward and one will need to understand the interaction between the wheel alignment angles as well as the influence the various angles have on each other. In addition there are also external factors one will need to consider. Wheel Alignment Specifications are normally given in angular values of degrees and minutes A circle consists of 360 segments called DEGREES, symbolized by the indicator ° Each DEGREE again has 60 segments called MINUTES symbolized by the indicator ‘. -
Eclipse Cross
MITSUBISHI ECLIPSE CROSS The Turning Point Features, powertrain combinations, trim lines and equipment described refer to European specification models (MME34 area) They may vary market by market within that area, according to specific model specification All data subject to final homologation (Further data to be released at launch time) - Summary – The “RED CAR” at a GLANCE CORPORATE – The First Enabler DESIGN – Vibrant & Defiant DRIVING DYNAMICS – Smooth Operator PACKAGING – Clever ‘SUV’ Living FEATURES – Cool Tech SAFETY - Palette *** (All data - MMC’s own internal measurement) - The “RED CAR” at a GLANCE - I - Timing: October 2013: XR-PHEV Concept @ Tokyo Motor Show March 2015: XR-PHEV II Concept @ Geneva Motor Show March 2017: World premiere @ Geneva Motor Show October 2017: Start of Production – EU specification models (see below detail) End of CY17: Start of Sales – EU specification models: MME34 Markets LHD 1.5 petrol RHD petrol LHD 2.2 DiD RHD 2.2 DiD SoP October 2017 November 2017 TbA TbA SoS* December 2017 January 2018 TbA TbA *Actual Start of Sales varying market by market, according to resp. launch plans 2018: Sequential roll out in Japan, North America, Russia, Australia/New Zealand and other regions. II - Positioning: First enabler for the next generation of Mitsubishi Motors’ automobiles & positioning for which it returns to the MMC fundamentals: • Authentic SUV Brand (vs. ‘marketing’ SUVs): 4WD since 1936 / Super-All Wheel Control (S-AWC) system since 1987 SUVs: 77% sales in Europe – CY16 (incl. L200 -
SMX-GM725 FITS: Chevrolet/GMC •2007-2016 Silverado/Sierra/Suburban/Tahoe 1500 4WD/2WD/AWD INSTRUCTIONS Thank You for Choosing Suspensionmaxx for Your Vehicle
INSTALLATION INSTRUCTIONS PART#: SMX-GM725 FITS: Chevrolet/GMC •2007-2016 Silverado/Sierra/Suburban/Tahoe 1500 4WD/2WD/AWD INSTRUCTIONS Thank you for choosing SuspensionMaxx for your vehicle. This kit is designed to add suspension travel SuspensionMAXX kits are designed to be easily installed and increase front and ground clearance. Specially and completely reversible to the factory supplied settings. designed tools and experience are required to complete These instructions are supplied for ease of installation, the installation properly. These parts should only be correct procedures and safety. Automotive experience installed by a qualified mechanic otherwise an unsafe recommended. vehicle and/or injury may result. Consult manufactures service manual for proper torque specifications and REQUIRED TOOLS procedures. Instructions are supplied for the leveling kit installation only. Safety is important. Use safe • Load-rated floor jack working habits. • Safety stands x2 • Wheel Chocks • Metric tool set WARNING! • Torque Wrench This suspension system will enhance off road performance and increase • Loctite threadlocker for all fasteners ground clearance. Larger tires will increase vehicle roll center height. The vehicle will handle and respond to driver steering and braking dif- ferently from a stock factory equipped passenger car or truck. Extreme care must be used to prevent loss of control or vehicle rollover during abrupt maneuvers both on and off-road. Failure to operate this vehicle safely can result in vehicle damage, serious injury or death to the driver and passengers. Always wear your seat belt and reduce your speed, avoid sharp turns, inclines and abrupt maneuvers. Tread lightly, re- spect nature and enjoy the Off-Road Experience! Help keep it available for future generations. -
VW Suspension Technical Article
VW Tech Tip VW Suspension Technical Article Tech Tip: by Charles Adams The following is a technical THE TRUTH ABOUT SUSPENSIONS MYTH: Lowering or raising my car will give it greater performance than I article written for better If you want a smooth ride and not just looks, there is more than meets could expect at stock height. For ex- understanding of the rear the eye at a quick glance. Anyone ample if I simply lower my car it will corner better than my friend’s car that air-cooled VW suspension can lower or raise a vehicle and call it good, but just like any good en- is not lowered. Alternatively, if I raise as well as our products. For gine build, if you seek performance, my car it will perform better off road, absorbing bumps and jumps, than my the majority of people, the everything should be prepared in advance and every component’s friend’s car that is not raised. rear VW suspension is little function should be understood. It understood and more is more than just ordering the most FACT: Every suspension rides at its costly parts, assembling them, and greatest potential when it is riding often misunderstood. blowing away the competition. Yet within the parameters that it was suspensions are not a mystery and designed for. This means that facto- they certainly are not rocket science. ry suspensions perform the greatest The truth is that they are simply and when the ride at factory height and easily understood if they are ex- the geometry is not tampered with. -
A Comparative Study of the Suspension for an Off-Road Vehicle
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072 A Comparative study of the Suspension for an Off-Road Vehicle Sivadanus.S Department of Manufacturing Engineering, College of Engineering – Guindy, Chennai ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Humans use different vehicles to travel in is set nothing can be adjusted or moved. This type of different terrains for comfort and ease of travel. An off-terrain suspension will not be considered in the scope of this project vehicle is generally used for rugged terrain and needs a largely due to its lack of adjustability. completely different dynamics in suspension comparison to an on-road vehicle. The aim of this project is to identify and Independent suspension systems provide more effective determine the parameters of vehicle dynamics with a proper functionality in traction and stability for off-roading study of suspension and to initiate a comparative study for an applications. Independent suspension systems provide flex off-road vehicle using different models. (the ability for one wheel to move vertically while still Key Words: Suspension, Vehicle Dynamics, Off-road allowing the other wheels to stay in contact with the Vehicle, Control arms, Camber surface). 1.INTRODUCTION There are many different versions and variations of independent suspensions, which include swing axle Suspension suspensions, transverse leaf spring suspensions, trailing and The role of a suspension system within a vehicle is to ensure semi-trailing suspensions, Macpherson strut suspensions, that contact between the tires and driving surface is and double wishbone suspensions. Control arms are used for continuously maintained. -
Design and FEA Analysis of a Double Wishbone Suspension System
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072 Design and FEA Analysis of a Double Wishbone Suspension System Smit Shendge1, Heet Patel2, Yash Shinde3 1,2,3U.G. Student from the Department of Automobile Engineering at University of Wolverhampton, India ----------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In this research study an independent type 1. 1 Background suspension system is considered to be exact a double A double wishbone suspension system was introduced in wishbone suspension system used in racing vehicle is the year of 1930s which was later implemented by Citroen a considered. First research on existing double wishbone French automaker in its model Rosalie and Traction Avant suspension system is made to design a new double wishbone in year 1934. Later Packard Motor Car Company based in suspension system. A double wishbone suspension parts are Detroit; Michigan also implemented this suspension from designed in a CAD tool Onshape and assembled in the CAD year 1935 in its Packard One-Twenty model. Observing tool itself. This geometry is then imported to an analysis tool Double wishbone suspension system and Macpherson strut Simscale for FEA analysis or to be exact static and dynamic suspension system it feels like they are related to each other analysis. Materials of various parts are considered according but that’s not the case a Macpherson strut suspension to the standards and both the analysis are carried out to design inspiration was taken from the landing gears of an validate if the made suspension assembly is a good design in aeroplane which has similar setup like Macpherson and terms of strength. -
Brake Adjuster's Handbook
STATE OF CALIFORNIA HANDBOOK FOR BRAKE ADJUSTERS May 2015 BUREAU OF AUTOMOTIVE REPAIR BRAKE ADJUSTERS’ HANDBOOK FOREWORD This Handbook is intended to serve as a reference for Official Brake Adjusting Stations and as study material for licensed brake adjusters and persons desiring to be licensed as adjusters. See the applicable Candidate Handbook for further information. This handbook includes a short history of the development of automotive braking equipment, and the procedures for licensing of Official Brake Adjusting Stations and Official Brake Adjusters. In addition to the information contained in this Handbook, persons desiring to be licensed as adjusters must possess a knowledge of vehicle braking systems, adjustment techniques and repair procedures sufficient to ensure that all work is performed correctly and with due regard for the safety of the motoring public. This handbook will not supply all the information needed to pass a licensing exam. No attempt has been made to relate the information contained herein to the specific design of a particular manufacturer. Accordingly, each official brake station must maintain as references the current service manuals and technical instructions appropriate to the types and designs of brake systems serviced, inspected and repaired by the brake station. Installation, repair and adjustment of motor vehicle brake equipment shall be performed in accordance with applicable laws, regulations and the current instructions and specifications of the manufacturer. Periodically, supplemental bulletins may be distributed by the Bureau of Automotive Repair (BAR or Bureau) containing information regarding changes in laws, regulations or technical procedures concerning the inspection, servicing, repair and adjustment of vehicle braking equipment.