Reflex Action Examples in Humans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Of 100 1. the Golgi Tendon Organ Is an Essential Component of Static
1. The Golgi tendon organ is an essential component of static stretching because it A. increases muscle spindle activity in a tight muscle. Rationale A. Golgi tendon organs decrease muscle spindle activity. B. prevents muscles from stretching too far or too fast. Rationale B. Muscle spindles prevent muscles from stretching too far or too fast. C. increases contraction rate in muscle fibers. Rationale C. Holding a stretch creates tension in the muscle, which stimulates the Golgi tendon organ, causes relaxation of an overactive muscle, and allows optimal lengthening of tissue. D. prevents muscle from being placed under excessive tension.(correct) Rationale D. The Golgi tendon organ prevents muscles from being placed under excessive tension (autogenic inhibition). Question Name 1-1 Certification Thinking Skills Foundational Thinking Current Forms 2011 Practice A Primary Reference Chapter 7, Task 1A1 Page 1 of 100 2. Which of the following is the correct force-couple relationship that allows for the upward rotation of the scapula? A. Longus capitus and brachialis Rationale A. The longus capitus concentrically accelerates cervical flexion and lateral flexion, while the brachialis concentrically accelerates elbow flexion. B. Rhomboid minor and anterior scalenes Rationale B. The rhomboid minor concentrically accelerates scapular retraction and downward rotation, while the anterior scalenes concentrically accelerates cervical flexion, rotation, and lateral flexion. C. Sternocleidomastoid and longus coli Rationale C. The sternocleidomastoid concentrically accelerates cervical flexion, rotation, and lateral flexion while the longus coli concentrically accelerate cervical flexion, lateral flexion, and ipsilateral rotation. D. Upper trapezius and lower portions of the serratus anterior (correct) Rationale D. The upper trapezius and the lower portion of the serratus anterior are muscle groups that move together to produce upward rotation of the scapula. -
Interpretation of Sensory Information from Skeletal Muscle Receptors for External Control Milan Djilas
Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control Milan Djilas To cite this version: Milan Djilas. Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control. Automatic. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00333530 HAL Id: tel-00333530 https://tel.archives-ouvertes.fr/tel-00333530 Submitted on 23 Oct 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC T H E S E pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Formation doctorale: SYSTEMES AUTOMATIQUES ET MICROELECTRONIQUES Ecole Doctorale: INFORMATION, STRUCTURES ET SYSTEMES présentée et soutenue publiquement par Milan DJILAS le 13 octobre 2008 Titre: INTERPRETATION DES INFORMATIONS SENSORIELLES DES RECEPTEURS DU MUSCLE SQUELETTIQUE POUR LE CONTROLE EXTERNE INTERPRETATION OF SENSORY INFORMATION FROM SKELETAL MUSCLE RECEPTORS FOR EXTERNAL CONTROL JURY Jacques LEVY VEHEL Directeur de Recherches, INRIA Rapporteur -
Fine Structure of the Receptors at the Myotendinous Junction of Human Extraocular Muscles
Histol Histopath (1 988) 3: 103-113 Histology and Fine structure of the receptors at the myotendinous junction of human extraocular muscles A. Sodii, M. Corsii, M.S. Faussone Pellegrini2and G. Salvii 'Eye Clinic, Chair of Physiopathological Optics and Departrnent of Hurnan Anatorny and Histology, Section of Histology, University of Florence, ltaly Summary. The myotendinous junction of the human lntroduction extraocular muscles was studied by electron microscopy. Some peculiar receptorial structures have been found in The proprioceptors known as tendon organs were first the majority of the samples examined. These structures identified by Golgi in 1880 in skeletal muscles. They were are very small and consist of 1) the terminal portion of first described at electron microscope level by Merrillees one muscle fibre, 2) the tendon into which it inserts and in 1962 and later by other authors (Schoultz and Swett, y), within the tendon, a rich nerve arborization, whose 1972, 1974; Barker, 1974: Zelena and Soukup, 1977; branches are always very close to the rnuscle component. Soukup and Zelena, 1985; Ovalle and Dow, 1983). In the Only one discontinuous layer, made up of tlat cells. extraocular muscles (EOM) the presence of tendon which lack a basa1 lamina and often show pinocytotic organs was first excluded by Golgi himself, but further vesicles, encapsules every musculo-tendinous complex. investigations (Dogiel. 1906: Loffredo-Sampaolo, 1952; The tendinous component consists of amorphous ground Bonavolonta, 1956, 1958) led to their identification and substance of different electron density. of collagen and description at light microscopy level in several animal elastic fibres and is divided in compartments by ramified species. -
Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia
Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Motor Systems I 1 Emad Eskandar, MD Motor Systems I - Muscles & Spinal Cord Introduction Normal motor function requires the coordination of multiple inter-elated areas of the CNS. Understanding the contributions of these areas to generating movements and the disturbances that arise from their pathology are important challenges for the clinician and the scientist. Despite the importance of diseases that cause disorders of movement, the precise function of many of these areas is not completely clear. The main constituents of the motor system are the cortex, basal ganglia, cerebellum, brainstem, and spinal cord. Cortex Basal Ganglia Cerebellum Thalamus Brainstem Spinal Cord In very broad terms, cortical motor areas initiate voluntary movements. The cortex projects to the spinal cord directly, through the corticospinal tract - also known as the pyramidal tract, or indirectly through relay areas in the brain stem. The cortical output is modified by two parallel but separate re entrant side loops. One loop involves the basal ganglia while the other loop involves the cerebellum. The final outputs for the entire system are the alpha motor neurons of the spinal cord, also called the Lower Motor Neurons. Cortex: Planning and initiation of voluntary movements and integration of inputs from other brain areas. Basal Ganglia: Enforcement of desired movements and suppression of undesired movements. Cerebellum: Timing and precision of fine movements, adjusting ongoing movements, motor learning of skilled tasks Brain Stem: Control of balance and posture, coordination of head, neck and eye movements, motor outflow of cranial nerves Spinal Cord: Spontaneous reflexes, rhythmic movements, motor outflow to body. -
Physiology and Pathophysiology 2018/2019 Dental Medicine Examination Synopsis in Physiology
Medical University of Varna Department of Physiology and Pathophysiology 2018/2019 Dental medicine Examination Synopsis in Physiology Theoretical exam 1. Homeostasis. Control systems of the body – characteristics. Negative feedback mechanism. 2. Cell membranes. Transport of substances through cell membranes. 3. Membrane potential. Resting membrane potential of nerves. 4. Nerve action potential. Propagation of the action potential. Conduction velocity. 5. Signal transmission in nerve fibers. Excitation - the process of eliciting the action potential. Threshold for excitation, refractory period. Inhibition of excitability. 6. Organization and functions of the nervous system. Types of synapses. Electrical synapses. 7. Characteristics of transmission in chemical synapses. 8. Synaptic transmitters. Membrane receptors. 9. Generation of postsynaptic potentials. Generation of action potentials in the axon. Neuronal inhibition - types. Neuroglia. 10. Characteristics of postsynaptic potentials. Spatial and temporal summation in neurons. "Facilitation" of neurons. Characteristics of synaptic transmission. 10. Transmission and processing of signals in neuronal circuits. Convergence, divergence, reverberating circuits. Reflexes - types. 11. Organization of the autonomic nervous system. Location of autonomic ganglia. Characteristics of sympathetic and parasympathetic function - transmitters. 12. Characteristics of sympathetic and parasympathetic function - receptors. 13. Sympathetic or parasympathetic tone. Denervation effects. Autonomic reflexes. -
Neuropsychiatry Block Stretch Reflex and Golgi Tendon Reflex
NeuroPsychiatry Block Stretch reflex and Golgi Tendon Reflex By Prof. Faten zakareia Physiology Department , College of Medicine , King Saud University 2017 Email: [email protected] Ext:52736 NeuroPsychiatryBlock Motor Functions of the Spinal Cord, The cord Reflexes Chapter 55 (Guyton & Hall) -Reference book/Ganong review of medical physiology • Objectives: Upon completion of this lecture, students are expected to : - Describe the stretch reflex and ts icomponents - Describe the structure and function of the muscle spindle - Differentiate between primary and secondary afferent fibres of muscle spindle, Intrafusal nuclear bag &nuclear chain fibers - Differentiate between the Dynamic gamma efferent and Trail endings discharge and their functional role - Differentiate between static and dynamic stretch reflex& damping mechanism - Describe muscle tone and its abnormalities - Disscuss spinal and supraspinal regulation of the stretch reflex - Describe the components of the inverse stretch reflex (golgi tendon reflex)and its function THE STRETCH REFLEX REFLEX STRETCH (MYOTACTIC) REFLEX https://musom.marshall.edu/anatomy/grosshom/allppt/pdf/Spinalreflexes.pdf CLINICAL TEST | RAPID STRETCH OF MUSCLE (TAP ON MUSCLE TENDON) STIMULUS RESPONSE STRETCHED MUSCLE CONTRACT RAPIDLY (I.E. KNEE JERK) SENSORY MUSCLE SPINDLE PRIMARY RECEPTOR SYNAPSES MONOSYNAPTIC INVOLVED EFFECTS ON CONTRACTS (+) SAME MUSCLE AND SYNERGISTIC MUSCLES MUSCLE OTHER EFFECTS RELAXES (-) ANTAGONISTIC MUSCLE FUNCTION AIDS IN MAINTAINING POSTURE, AVOID MUSCLE RUPTURE,COUNTERS SUDDEN -
Spinal Reflexes
Spinal Reflexes Lu Chen, Ph.D. MCB, UC Berkeley 1 Simple reflexes such as stretch reflex require coordinated contraction and relaxation of different muscle groups Categories of Muscle Based on Direction of Motion Flexors Æ reduce the angle of joints Extensors Æ increase the angle of joints Categories of Muscle Based on Movement Agonist Æmuscle that serves to move the joint in the same direction as the studied muscle Antagonist Æ muscle that moves the joint in the opposite direction 2 1 Muscle Spindles •Small encapsulated sensory receptors that have a Intrafusal muscle spindle-like shape and are located within the fibers fleshy part of the muscle •In parallel with the muscle fibers capsule •Does not contribute to the overall contractile Sensory force endings •Mechanoreceptors are activated by stretch of the central region Afferent axons •Due to stretch of the whole muscle Efferent axons (including intrafusal f.) •Due to contraction of the polar regions of Gamma motor the intrafusal fibers endings 3 Muscle Spindles Organization 2 kinds of intrafusal muscle fibers •Nuclear bag fibers (2-3) •Dynamic •Static •Nuclear chain fibers (~5) •Static 2 types of sensory fibers •Ia (primary) - central region of all intrafusal fibers •II (secondary) - adjacent to the central region of static nuclear bag fibers and nuclear chain fibers Intrafusal fibers stretched Sensory ending stretched, (loading the spindle) increase firing Muscle fibers lengthens Sensory ending stretched, (stretched) increase firing Spindle unloaded, Muscle fiber shortens decrease firing 4 2 Muscle Spindles Organization Gamma motor neurons innervate the intrafusal muscle fibers. Activation of Shortening of the polar regions gamma neurons of the intrafusal fibers Stretches the noncontractile Increase firing of the center regions sensory endings Therefore, the gamma motor neurons provide a mechanism for adjusting the sensitivity of the muscle spindles. -
Spinal Reflexes Marte Rydland a Reflex Is a Protective Response to Stimulus That Does Not Require Conciousness Reflexes
Spinal reflexes Marte Rydland A reflex is a protective response to stimulus that does not require conciousness Reflexes Elements of a reflex arc: 1. Receptor 2. Afferent pathway 3. Integration center 4. Efferent pathway 5. Effector Types of reflexes 1. Stretch reflex → Protects from overstretching 2. Golgi tendon reflex → Protects from over contracting 3. Withdrawal reflex → Protects from potentially harmful stimuli Muscle fibers Types of muscle fibers Extrafusal fibers Intrafusal fibers ▪ Outer layer ▪ Encapsulated in sheaths to form ▪ Provide the force for muscle muscle spindle contraction ▪ Innervated by ɣ-motoneurons ▪ Most of skeletal muscle ▪ Smaller than extrafusal fibers ▪ Innervated by ⍺-motoneurons ▪ Too small to generate force ▪ Attach to tendons ▪ Sensory receptors: Detect the stretch of a muscle Intrafusal fibers – Muscle spindle Nuclear bag fibers Nuclear chain fibers • Have nuclei collected in a "bag" • Have nuclei arranged in series region • Are more numerous than nuclear • Onset of stretch bag fibers • Dynamic changes = LENTGH & • Sustained stretch VELOCITY • Static changes = LENGTH • Annulospiraling endings • Flower spray endings • Innervated by group Ia afferents • Innervated by group Ia + II SLOW afferents RAPID RAPID Renshaw inhibition • Inhibitory interneurons • Between LMN/AMN’s • Negative feedback loop • Removes “noise” • Prevents hyperactive muscle contraction How to move a limb? • Antagonizing muscles must do the opposite • Flexors vs. extensors • Reciprocal innervation • Inhibiting interneurons 1. Stretch reflex (myotatic reflex) Stimulus: stretching of the muscle 1. Intrafusal fiber 2. Type Ia sensory fiber (afferent nerve) 3. Monosynaptic 4. α motor neurons (efferent nerve) 5. Extrafusal muscle fibers = Agonist muscle contracts = Antagonist relaxes Knee jerk reflex 2. Golgi tendon reflex (inverse stretch) Stimulus: contraction of the muscle 1. -
Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: a Whole-Mount Muscle Approach
Wright State University CORE Scholar Neuroscience, Cell Biology & Physiology Faculty Publications Neuroscience, Cell Biology & Physiology 1-25-2017 Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole-Mount Muscle Approach Martha Jean Sonner Wright State University Marie C. Walters Wright State University David R. Ladle Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/ncbp Part of the Medical Cell Biology Commons, Medical Neurobiology Commons, Medical Physiology Commons, Neurosciences Commons, and the Physiological Processes Commons Repository Citation Sonner, M. J., Walters, M. C., & Ladle, D. R. (2017). Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole-Mount Muscle Approach. PLOS ONE, 12 (1), e0170751. https://corescholar.libraries.wright.edu/ncbp/1104 This Article is brought to you for free and open access by the Neuroscience, Cell Biology & Physiology at CORE Scholar. It has been accepted for inclusion in Neuroscience, Cell Biology & Physiology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. RESEARCH ARTICLE Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole- Mount Muscle Approach Martha J. Sonner, Marie C. Walters, David R. Ladle* Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, United States of America * [email protected] a1111111111 Abstract a1111111111 a1111111111 Muscle proprioceptive afferents provide feedback critical for successful execution of motor a1111111111 a1111111111 tasks via specialized mechanoreceptors housed within skeletal muscles: muscle spindles, supplied by group Ia and group II afferents, and Golgi tendon organs, supplied by group Ib afferents. -
The Somatic Nervous System Mimi Jakoi, Phd Jennifer Carbrey, Phd
Introductory Human Physiology ©copyright Jennifer Carbrey & Emma Jakoi The Somatic Nervous System Mimi Jakoi, PhD Jennifer Carbrey, PhD The underlined headings correspond to the two Somatic Nervous system videos. 1. Introduction and structure The efferent portion of the peripheral nervous system consists of the somatic nervous system and the autonomic nervous system. The autonomic nervous system controls the function of glands, smooth muscle, cardiac muscle, and the neurons of the GI tract. It is composed of two neurons in series that can either excite or inhibit the target organ. In contrast, the somatic nervous system contains single neurons that excite skeletal muscles. The movements controlled by the somatic nervous system can be voluntary or involuntary (reflexes). Motor Unit The axons of motor neurons are myelinated and have large diameters for fast conduction of action potentials. As the axon approaches a skeletal muscle fiber (muscle cell) it usually branches to form synapses with anywhere from three to one thousand muscle fibers. However, each muscle fiber is usually innervated by only a single neuron. A motor unit consists of a neuron and all of the muscle fibers it innervates. A single neuron innervates fibers from only one muscle and the innervated muscle fibers are usually spread throughout the muscle. The portion of the skeletal muscle fiber plasma membrane that synapses with the motor neuron axon is called the motor end plate. Once an action potential arrives at the axon terminal, the depolarization of the membrane opens voltage-gated calcium channels (Fig. 1). An increase in intracellular calcium at the terminal causes release of acetylcholine vesicles into the neuromuscular junction. -
0-CNS MCQ's File.Pdf
MCQ’S Color index: FILE . Questions . choices “ALWAYS DO YOUR BEST. WHAT YOU . Answer PLANT NOW, YOU WILL HARVEST LATER .” 1 Question's: 1. In a neuron with a resting membrane potential of 265mV, the distribution 4. Which of the following is best described as an elongated, encapsulated of which ion across the neuronal membrane represents the greatest receptor found in the dermal pegs of glabrous skin and is especially potential electromotive force (EMF)? abundant on lips and fingertips? A) Potassium A) Merkel’s disc B) Chloride B) Free nerve endings C) Sodium C) Meissner’s corpuscle D) Calcium D) Ruffini’s endings 2. Forced rapid breathing results in alkalization of the blood which would 5. Pain receptors in the skin are typically classified as which of the lead to which of the following changes in neuronal activity? following? A) Decrease in neuronal activity A) Encapsulated nerve endings B) Increase in neuronal activity B) Single class of morphologically specialized receptors C) Initial decrease followed by an increase C) Same type of receptor that detects position sense D) No change in neuronal activity D) Free nerve endings 3. The release of neurotransmitter at a chemical synapse in the central 6. Which of the following best describes an expanded tip tactile receptor nervous system is dependent upon which of the following? found in the dermis of hairy skin that is specialized to detect continuously A) Synthesis of acetylcholinesterase applied touch B) Hyperpolarization of the synaptic terminal sensation? C) Opening of ligand-gated ion calcium channels A) Free nerve endings D) Influx of calcium into the presynaptic terminal B) Merkel’s disc C) Pacinian corpuscle D) Ruffini’s endings =B 6 =D 5 =C 4 =D 3 =B 2 =C 2 1 Cont. -
Stretch Reflex & Golgi Tendon Reflex
NeuroPsychiatry Block Stretch Reflex & Golgi Tendon Reflex By Laiche Djouhri, PhD Dept. of Physiology Email: [email protected] Ext:71044 NeuroPsychiatry Block Chapter 55 Motor Functions of the Spinal Cord, The cord Reflexes (Guyton & Hall) Chapter 3 Neurophysiology (Linda Costanzo) 2 Objectives By the end of this lecture students are expected to: . Describe the components of stretch reflex and Golgi tendon reflex . Differentiate between the functions of muscles spindles and Golgi tendon organ . Explain the roles of alpha and gamma motor neurons in the stretch reflex . Discuss the spinal and supraspinal regulation 10of/6/2016 the stretch reflex 3 What is a Stretch Reflex? . It is a monosynaptic reflex (also known as myotatic reflex) . Is a reflex contraction of muscle resulting from stimulation of the muscle spindle (MS) by stretching the whole muscle . Muscle spindle is the sensory receptor that detects change in muscle length . The classic example of the stretch reflex is the patellar-tendon or knee jerk reflex. What is the significance of stretch reflexes? . They help maintain a normal posture . They function to oppose sudden changes in muscle length 4 10/6/2016 Components of the Stretch Reflex Arc Stretch reflex is a deep Figure 55.5 monosynaptic reflex and its components are: 1. Sensory receptor (muscle spindles) 2. Sensory neuron (group Ia and group II afferents) 3. Integrating center (spinal cord) 4. Motor neurons (α- and γ- spinal motor neurons) 5. Effector (the same muscle This reflex is the simplest; it involves (homonymous) of muscle only 2 neurons & one synapse, spindles) Structure of Muscle Spindles-1 .