Reflex Action Examples in Humans

Total Page:16

File Type:pdf, Size:1020Kb

Reflex Action Examples in Humans Reflex Action Examples In Humans Eocene and Laurentian Bailey ruminating almost initially, though Ty liquors his Atlantis energizes. Is Stern always viviparous and strip Desmondwhen duns conning some parallelepiped and repricing veryprevailingly, informatively isodynamic and squeamishly? and evolutional. Reid enchants his multivalence evert infinitely or discerningly after The knee and demands imposed on enhancing cognitive exam admit card number of fish have you consciously controlled by a newborn transition to save the gamma motor centers that in reflex behavior For example, when a foal suckles its dam, receptors in the teat are activated and impulses conveyed to the pituitary gland by way of the spinal cord. If contraction of a muscle causes the activation of the stretch reflex of the antagonist muscle, the antagonist muscle will contract to resist the movement of the limb. Environmental stressor effects on creativity and decision making. The lower levels of the hierarchy implement the command with such mechanisms as the myotatic reflex, freeing the higher levels to perform other tasks such as planning the next sequence of movements. This twitch may be sufficiently powerful to extend the lower leg at the knee. Give two advantages of using a video to measure the time it took for the hammer tomove to hit the tendon. Any head movements probably have more to do with bringing things out of blind spots and into binocular view. Decreased in clinically affected areas. Rods detect differences in light intensity; cones detect color. Select from our full list of topics. The middle part of the adrenal glands, the adrenal medulla, secretes the hormone adrenaline, which is chemically very similar to the substance noradrenaline produced at the endings of sympathetic nerves. The CNS then sends signals via the nerve networks of the somatic system to the muscles and organs. Schalow G, et al. Stretch reflexes are depressed in parallel to loss of strength. We call these reflex actions. When the tendon is struckwith the hammer, the receptor is stimulated and the lower leg moves forward. What is the need for DNA copy? Then, the alpha motor neuron sends the signal that causes the stretched muscle to contract. Proceeding with the requested move may negatively impact site navigation and SEO. This reflex is controlled by fear. Functions of the cerebellum include fine motor coordination and body movement, posture, and balance. This is important but body movement is controlled by opposing muscle groups, the agonist and antagonist muscles. In the reflex arc, information entered the cord along sensory nerve fibres to elicit activity leaving the cord in motor nerve fibres but, because of the special properties of the synapse, information could not flow in the opposite direction. Then, the sensory neuron sends a signal to the relay neuron. The structure that detects the stimulus. The effected muscles cause action because motor nerve impulses sent by the spinal cord or brain reach the effector organ. Have your friend sit at a table with their dominant hand over the edge. Iles JF, Roberts RC. Which of the following statements about the autotrophs is incorrect? Structure of a neuron and the direction of nerve message transmission. It is in this manner that the muscle spindle is able to maintain its sensitivity through a wide range of muscle length. The diving response is a breathing reflex that is triggered by submergence. How are involuntary actions and reflex actions different from each other? It is through nervous system only that all other systems of our body work. Subscribe to our email list to keep informed on all of the Resuscitation and Critical Care goodness. The axon sends these impulses to another neuron through a junction called synapse. Although each of these reflexes is integrated within the spinal cord, they can be influenced or modified by higher brain centers to either exaggerate or suppress the response. Neuron is the largest cell in the body. What are the some example of a solution, solvent, and solute? The lower motor neurons then stimulate contraction of skeletal muscle to remove or withdraw ourselves from the pain generator. Equine eyes are set to the side of the head, and forward. As a result, one of your muscles or glands is stimulated. How are DTRs graded? Save my name, email, and website in this browser for the next time I comment. Physiopedia is not a substitute for professional advice or expert medical services from a qualified healthcare provider. He thought to the right hand from person becomes inhibited, reflex action in humans are distinct from a priceless object? The quick closing of the eyelids or blinking reflex, when an object approaches the eye. Neurone A is amotor neurone. This answer is CORRECT! Give one otherexample of a reflex action. It has two subsystems. The skin has a sensory function too: the immediate environment is felt through this medium, with sensations of touch, pressure, vibration, cold, heat and pain. Man on his Nature. This stretching relays an electrical signal to the spinal cord, which activates the motor nerve. This helps her find the nipple at feeding time. Action is initiated in the brain. Talkspace, Betterhelp, and Regain. Additionally, the corresponding line profile extracted from EDX mapping is presented in Supplementary Fig. Please enable Cookies and reload the page. The purpose of this kind of reflex is to save the body from the harms of the damaging stimulus. This conducts or transmits impulses from the intermediate neurone to the effector. Voluntary actions need a conscious decision in order to take place. An unpleasant stimulus, such as a pin prick, applied to a limb will cause it to be promptly withdrawn. Smells are not seen because the visual areas of the brain do not receive impulses from olfactory receptors! Reflexes are involuntary, used to protect the body, and are faster than a reaction. This occurs in patients with upper motor neuron damage. Sneezing, coughing, and gagging are similar reflexes in response to foreign bodies in the nose and throat, and the wink reflex helps protect the eyes from injury. It is a sign of brisk reflexes but is not pathological unless it is accompanied by other signs of upper motor neuron damage or is asymmetrical. The cerebrum governs intelligence and reasoning, learning and memory. Clinical management of spasticity. The effectors involved in these reflexes are located within skeletal muscle. However, some learning, such as the location of water, may be facilitated by following and watching other horses. It causes the stimulation of sensory, association, and motor neurons. Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The cell begins then to pump the ions back to their original sides of the membrane. This experiment will be broken into two phases. We promise to deliver quality journalism that stays away from vested interest and political propaganda. Put your understanding of this concept to test by answering a few MCQs. Explain with the help of an example. Reflexes protect your body from things that can harm it. Some of the reflexes are present even at the time of birth. We will never know what it is really like to see or hear like a horse. The sight of food causes a dog to salivate. The brain is located inside the skull of the head. The cell body of a neuron contains cytoplasm and a nucleus. What kind of ERADs do you use in different clinical situations? Many of the cells in the pancreas contain large numbers ofribosomes. Stress also decreases information processing and working memory. What reflex changes would occur in lesions of muscles? Records nerve impulses from single sensory endings and motor nerve fibers, contributing to a better understanding of the physical basis of sensation and the mechanism of muscular control. Published by Houghton Mifflin Company. Somatic nervous system diseases are those that impact the peripheral nerves that are outside of the brain and spinal cord. It is relatively thin but accounts for almost half of the volume of the cerebrum because it is so highly folded. The motor limb then has to descend the spinal cord to reach the motor neurons. What processes would you consider essential for maintaining life? Cranial nerves arise from the brain. Voluntary withdrawal reflex and start to the relative positions by muscle in reflex humans, coordinated organ located in this is subdivided into some example. If this prevents excessive tension on muscles, what about those stories I have heard about mothers lifting cars off of babies and such? This assumption was proved incorrect with the help of Charles Wheatstone, an English scientist and inventor. It courses through the anterior funiculus of the spinal cord, where the majority of the fibers terminate in the upper cervical levels. It is a polysynaptic reflex involving multiple synapses and neurons. This will serve to increase the reflexes. These neurons take in information and translate it to an electrical signal that gets sent to the central nervous system, much like the spikes you hear when doing the cockroach leg experiments. Click Insert to reinsert the template reference. For example, when we are in dim light the pupil of our eye is big so that more light can enter into our eyes and when we are in bright light then the pupil of our eye automatically gets small. The authors declare no competing interests. At the level of the caudal medulla, the corticospinal tract splits into two tracts. Interactive anatomy is the most effective way to learn. All reflex actions are conveyed through the spinal cord by a path called reflex arc.
Recommended publications
  • Of 100 1. the Golgi Tendon Organ Is an Essential Component of Static
    1. The Golgi tendon organ is an essential component of static stretching because it A. increases muscle spindle activity in a tight muscle. Rationale A. Golgi tendon organs decrease muscle spindle activity. B. prevents muscles from stretching too far or too fast. Rationale B. Muscle spindles prevent muscles from stretching too far or too fast. C. increases contraction rate in muscle fibers. Rationale C. Holding a stretch creates tension in the muscle, which stimulates the Golgi tendon organ, causes relaxation of an overactive muscle, and allows optimal lengthening of tissue. D. prevents muscle from being placed under excessive tension.(correct) Rationale D. The Golgi tendon organ prevents muscles from being placed under excessive tension (autogenic inhibition). Question Name 1-1 Certification Thinking Skills Foundational Thinking Current Forms 2011 Practice A Primary Reference Chapter 7, Task 1A1 Page 1 of 100 2. Which of the following is the correct force-couple relationship that allows for the upward rotation of the scapula? A. Longus capitus and brachialis Rationale A. The longus capitus concentrically accelerates cervical flexion and lateral flexion, while the brachialis concentrically accelerates elbow flexion. B. Rhomboid minor and anterior scalenes Rationale B. The rhomboid minor concentrically accelerates scapular retraction and downward rotation, while the anterior scalenes concentrically accelerates cervical flexion, rotation, and lateral flexion. C. Sternocleidomastoid and longus coli Rationale C. The sternocleidomastoid concentrically accelerates cervical flexion, rotation, and lateral flexion while the longus coli concentrically accelerate cervical flexion, lateral flexion, and ipsilateral rotation. D. Upper trapezius and lower portions of the serratus anterior (correct) Rationale D. The upper trapezius and the lower portion of the serratus anterior are muscle groups that move together to produce upward rotation of the scapula.
    [Show full text]
  • Interpretation of Sensory Information from Skeletal Muscle Receptors for External Control Milan Djilas
    Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control Milan Djilas To cite this version: Milan Djilas. Interpretation of Sensory Information From Skeletal Muscle Receptors For External Control. Automatic. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00333530 HAL Id: tel-00333530 https://tel.archives-ouvertes.fr/tel-00333530 Submitted on 23 Oct 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC T H E S E pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Formation doctorale: SYSTEMES AUTOMATIQUES ET MICROELECTRONIQUES Ecole Doctorale: INFORMATION, STRUCTURES ET SYSTEMES présentée et soutenue publiquement par Milan DJILAS le 13 octobre 2008 Titre: INTERPRETATION DES INFORMATIONS SENSORIELLES DES RECEPTEURS DU MUSCLE SQUELETTIQUE POUR LE CONTROLE EXTERNE INTERPRETATION OF SENSORY INFORMATION FROM SKELETAL MUSCLE RECEPTORS FOR EXTERNAL CONTROL JURY Jacques LEVY VEHEL Directeur de Recherches, INRIA Rapporteur
    [Show full text]
  • Fine Structure of the Receptors at the Myotendinous Junction of Human Extraocular Muscles
    Histol Histopath (1 988) 3: 103-113 Histology and Fine structure of the receptors at the myotendinous junction of human extraocular muscles A. Sodii, M. Corsii, M.S. Faussone Pellegrini2and G. Salvii 'Eye Clinic, Chair of Physiopathological Optics and Departrnent of Hurnan Anatorny and Histology, Section of Histology, University of Florence, ltaly Summary. The myotendinous junction of the human lntroduction extraocular muscles was studied by electron microscopy. Some peculiar receptorial structures have been found in The proprioceptors known as tendon organs were first the majority of the samples examined. These structures identified by Golgi in 1880 in skeletal muscles. They were are very small and consist of 1) the terminal portion of first described at electron microscope level by Merrillees one muscle fibre, 2) the tendon into which it inserts and in 1962 and later by other authors (Schoultz and Swett, y), within the tendon, a rich nerve arborization, whose 1972, 1974; Barker, 1974: Zelena and Soukup, 1977; branches are always very close to the rnuscle component. Soukup and Zelena, 1985; Ovalle and Dow, 1983). In the Only one discontinuous layer, made up of tlat cells. extraocular muscles (EOM) the presence of tendon which lack a basa1 lamina and often show pinocytotic organs was first excluded by Golgi himself, but further vesicles, encapsules every musculo-tendinous complex. investigations (Dogiel. 1906: Loffredo-Sampaolo, 1952; The tendinous component consists of amorphous ground Bonavolonta, 1956, 1958) led to their identification and substance of different electron density. of collagen and description at light microscopy level in several animal elastic fibres and is divided in compartments by ramified species.
    [Show full text]
  • Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia
    Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Motor Systems I 1 Emad Eskandar, MD Motor Systems I - Muscles & Spinal Cord Introduction Normal motor function requires the coordination of multiple inter-elated areas of the CNS. Understanding the contributions of these areas to generating movements and the disturbances that arise from their pathology are important challenges for the clinician and the scientist. Despite the importance of diseases that cause disorders of movement, the precise function of many of these areas is not completely clear. The main constituents of the motor system are the cortex, basal ganglia, cerebellum, brainstem, and spinal cord. Cortex Basal Ganglia Cerebellum Thalamus Brainstem Spinal Cord In very broad terms, cortical motor areas initiate voluntary movements. The cortex projects to the spinal cord directly, through the corticospinal tract - also known as the pyramidal tract, or indirectly through relay areas in the brain stem. The cortical output is modified by two parallel but separate re­ entrant side loops. One loop involves the basal ganglia while the other loop involves the cerebellum. The final outputs for the entire system are the alpha motor neurons of the spinal cord, also called the Lower Motor Neurons. Cortex: Planning and initiation of voluntary movements and integration of inputs from other brain areas. Basal Ganglia: Enforcement of desired movements and suppression of undesired movements. Cerebellum: Timing and precision of fine movements, adjusting ongoing movements, motor learning of skilled tasks Brain Stem: Control of balance and posture, coordination of head, neck and eye movements, motor outflow of cranial nerves Spinal Cord: Spontaneous reflexes, rhythmic movements, motor outflow to body.
    [Show full text]
  • Physiology and Pathophysiology 2018/2019 Dental Medicine Examination Synopsis in Physiology
    Medical University of Varna Department of Physiology and Pathophysiology 2018/2019 Dental medicine Examination Synopsis in Physiology Theoretical exam 1. Homeostasis. Control systems of the body – characteristics. Negative feedback mechanism. 2. Cell membranes. Transport of substances through cell membranes. 3. Membrane potential. Resting membrane potential of nerves. 4. Nerve action potential. Propagation of the action potential. Conduction velocity. 5. Signal transmission in nerve fibers. Excitation - the process of eliciting the action potential. Threshold for excitation, refractory period. Inhibition of excitability. 6. Organization and functions of the nervous system. Types of synapses. Electrical synapses. 7. Characteristics of transmission in chemical synapses. 8. Synaptic transmitters. Membrane receptors. 9. Generation of postsynaptic potentials. Generation of action potentials in the axon. Neuronal inhibition - types. Neuroglia. 10. Characteristics of postsynaptic potentials. Spatial and temporal summation in neurons. "Facilitation" of neurons. Characteristics of synaptic transmission. 10. Transmission and processing of signals in neuronal circuits. Convergence, divergence, reverberating circuits. Reflexes - types. 11. Organization of the autonomic nervous system. Location of autonomic ganglia. Characteristics of sympathetic and parasympathetic function - transmitters. 12. Characteristics of sympathetic and parasympathetic function - receptors. 13. Sympathetic or parasympathetic tone. Denervation effects. Autonomic reflexes.
    [Show full text]
  • Neuropsychiatry Block Stretch Reflex and Golgi Tendon Reflex
    NeuroPsychiatry Block Stretch reflex and Golgi Tendon Reflex By Prof. Faten zakareia Physiology Department , College of Medicine , King Saud University 2017 Email: [email protected] Ext:52736 NeuroPsychiatryBlock Motor Functions of the Spinal Cord, The cord Reflexes Chapter 55 (Guyton & Hall) -Reference book/Ganong review of medical physiology • Objectives: Upon completion of this lecture, students are expected to : - Describe the stretch reflex and ts icomponents - Describe the structure and function of the muscle spindle - Differentiate between primary and secondary afferent fibres of muscle spindle, Intrafusal nuclear bag &nuclear chain fibers - Differentiate between the Dynamic gamma efferent and Trail endings discharge and their functional role - Differentiate between static and dynamic stretch reflex& damping mechanism - Describe muscle tone and its abnormalities - Disscuss spinal and supraspinal regulation of the stretch reflex - Describe the components of the inverse stretch reflex (golgi tendon reflex)and its function THE STRETCH REFLEX REFLEX STRETCH (MYOTACTIC) REFLEX https://musom.marshall.edu/anatomy/grosshom/allppt/pdf/Spinalreflexes.pdf CLINICAL TEST | RAPID STRETCH OF MUSCLE (TAP ON MUSCLE TENDON) STIMULUS RESPONSE STRETCHED MUSCLE CONTRACT RAPIDLY (I.E. KNEE JERK) SENSORY MUSCLE SPINDLE PRIMARY RECEPTOR SYNAPSES MONOSYNAPTIC INVOLVED EFFECTS ON CONTRACTS (+) SAME MUSCLE AND SYNERGISTIC MUSCLES MUSCLE OTHER EFFECTS RELAXES (-) ANTAGONISTIC MUSCLE FUNCTION AIDS IN MAINTAINING POSTURE, AVOID MUSCLE RUPTURE,COUNTERS SUDDEN
    [Show full text]
  • Spinal Reflexes
    Spinal Reflexes Lu Chen, Ph.D. MCB, UC Berkeley 1 Simple reflexes such as stretch reflex require coordinated contraction and relaxation of different muscle groups Categories of Muscle Based on Direction of Motion Flexors Æ reduce the angle of joints Extensors Æ increase the angle of joints Categories of Muscle Based on Movement Agonist Æmuscle that serves to move the joint in the same direction as the studied muscle Antagonist Æ muscle that moves the joint in the opposite direction 2 1 Muscle Spindles •Small encapsulated sensory receptors that have a Intrafusal muscle spindle-like shape and are located within the fibers fleshy part of the muscle •In parallel with the muscle fibers capsule •Does not contribute to the overall contractile Sensory force endings •Mechanoreceptors are activated by stretch of the central region Afferent axons •Due to stretch of the whole muscle Efferent axons (including intrafusal f.) •Due to contraction of the polar regions of Gamma motor the intrafusal fibers endings 3 Muscle Spindles Organization 2 kinds of intrafusal muscle fibers •Nuclear bag fibers (2-3) •Dynamic •Static •Nuclear chain fibers (~5) •Static 2 types of sensory fibers •Ia (primary) - central region of all intrafusal fibers •II (secondary) - adjacent to the central region of static nuclear bag fibers and nuclear chain fibers Intrafusal fibers stretched Sensory ending stretched, (loading the spindle) increase firing Muscle fibers lengthens Sensory ending stretched, (stretched) increase firing Spindle unloaded, Muscle fiber shortens decrease firing 4 2 Muscle Spindles Organization Gamma motor neurons innervate the intrafusal muscle fibers. Activation of Shortening of the polar regions gamma neurons of the intrafusal fibers Stretches the noncontractile Increase firing of the center regions sensory endings Therefore, the gamma motor neurons provide a mechanism for adjusting the sensitivity of the muscle spindles.
    [Show full text]
  • Spinal Reflexes Marte Rydland a Reflex Is a Protective Response to Stimulus That Does Not Require Conciousness Reflexes
    Spinal reflexes Marte Rydland A reflex is a protective response to stimulus that does not require conciousness Reflexes Elements of a reflex arc: 1. Receptor 2. Afferent pathway 3. Integration center 4. Efferent pathway 5. Effector Types of reflexes 1. Stretch reflex → Protects from overstretching 2. Golgi tendon reflex → Protects from over contracting 3. Withdrawal reflex → Protects from potentially harmful stimuli Muscle fibers Types of muscle fibers Extrafusal fibers Intrafusal fibers ▪ Outer layer ▪ Encapsulated in sheaths to form ▪ Provide the force for muscle muscle spindle contraction ▪ Innervated by ɣ-motoneurons ▪ Most of skeletal muscle ▪ Smaller than extrafusal fibers ▪ Innervated by ⍺-motoneurons ▪ Too small to generate force ▪ Attach to tendons ▪ Sensory receptors: Detect the stretch of a muscle Intrafusal fibers – Muscle spindle Nuclear bag fibers Nuclear chain fibers • Have nuclei collected in a "bag" • Have nuclei arranged in series region • Are more numerous than nuclear • Onset of stretch bag fibers • Dynamic changes = LENTGH & • Sustained stretch VELOCITY • Static changes = LENGTH • Annulospiraling endings • Flower spray endings • Innervated by group Ia afferents • Innervated by group Ia + II SLOW afferents RAPID RAPID Renshaw inhibition • Inhibitory interneurons • Between LMN/AMN’s • Negative feedback loop • Removes “noise” • Prevents hyperactive muscle contraction How to move a limb? • Antagonizing muscles must do the opposite • Flexors vs. extensors • Reciprocal innervation • Inhibiting interneurons 1. Stretch reflex (myotatic reflex) Stimulus: stretching of the muscle 1. Intrafusal fiber 2. Type Ia sensory fiber (afferent nerve) 3. Monosynaptic 4. α motor neurons (efferent nerve) 5. Extrafusal muscle fibers = Agonist muscle contracts = Antagonist relaxes Knee jerk reflex 2. Golgi tendon reflex (inverse stretch) Stimulus: contraction of the muscle 1.
    [Show full text]
  • Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: a Whole-Mount Muscle Approach
    Wright State University CORE Scholar Neuroscience, Cell Biology & Physiology Faculty Publications Neuroscience, Cell Biology & Physiology 1-25-2017 Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole-Mount Muscle Approach Martha Jean Sonner Wright State University Marie C. Walters Wright State University David R. Ladle Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/ncbp Part of the Medical Cell Biology Commons, Medical Neurobiology Commons, Medical Physiology Commons, Neurosciences Commons, and the Physiological Processes Commons Repository Citation Sonner, M. J., Walters, M. C., & Ladle, D. R. (2017). Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole-Mount Muscle Approach. PLOS ONE, 12 (1), e0170751. https://corescholar.libraries.wright.edu/ncbp/1104 This Article is brought to you for free and open access by the Neuroscience, Cell Biology & Physiology at CORE Scholar. It has been accepted for inclusion in Neuroscience, Cell Biology & Physiology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. RESEARCH ARTICLE Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole- Mount Muscle Approach Martha J. Sonner, Marie C. Walters, David R. Ladle* Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, United States of America * [email protected] a1111111111 Abstract a1111111111 a1111111111 Muscle proprioceptive afferents provide feedback critical for successful execution of motor a1111111111 a1111111111 tasks via specialized mechanoreceptors housed within skeletal muscles: muscle spindles, supplied by group Ia and group II afferents, and Golgi tendon organs, supplied by group Ib afferents.
    [Show full text]
  • The Somatic Nervous System Mimi Jakoi, Phd Jennifer Carbrey, Phd
    Introductory Human Physiology ©copyright Jennifer Carbrey & Emma Jakoi The Somatic Nervous System Mimi Jakoi, PhD Jennifer Carbrey, PhD The underlined headings correspond to the two Somatic Nervous system videos. 1. Introduction and structure The efferent portion of the peripheral nervous system consists of the somatic nervous system and the autonomic nervous system. The autonomic nervous system controls the function of glands, smooth muscle, cardiac muscle, and the neurons of the GI tract. It is composed of two neurons in series that can either excite or inhibit the target organ. In contrast, the somatic nervous system contains single neurons that excite skeletal muscles. The movements controlled by the somatic nervous system can be voluntary or involuntary (reflexes). Motor Unit The axons of motor neurons are myelinated and have large diameters for fast conduction of action potentials. As the axon approaches a skeletal muscle fiber (muscle cell) it usually branches to form synapses with anywhere from three to one thousand muscle fibers. However, each muscle fiber is usually innervated by only a single neuron. A motor unit consists of a neuron and all of the muscle fibers it innervates. A single neuron innervates fibers from only one muscle and the innervated muscle fibers are usually spread throughout the muscle. The portion of the skeletal muscle fiber plasma membrane that synapses with the motor neuron axon is called the motor end plate. Once an action potential arrives at the axon terminal, the depolarization of the membrane opens voltage-gated calcium channels (Fig. 1). An increase in intracellular calcium at the terminal causes release of acetylcholine vesicles into the neuromuscular junction.
    [Show full text]
  • 0-CNS MCQ's File.Pdf
    MCQ’S Color index: FILE . Questions . choices “ALWAYS DO YOUR BEST. WHAT YOU . Answer PLANT NOW, YOU WILL HARVEST LATER .” 1 Question's: 1. In a neuron with a resting membrane potential of 265mV, the distribution 4. Which of the following is best described as an elongated, encapsulated of which ion across the neuronal membrane represents the greatest receptor found in the dermal pegs of glabrous skin and is especially potential electromotive force (EMF)? abundant on lips and fingertips? A) Potassium A) Merkel’s disc B) Chloride B) Free nerve endings C) Sodium C) Meissner’s corpuscle D) Calcium D) Ruffini’s endings 2. Forced rapid breathing results in alkalization of the blood which would 5. Pain receptors in the skin are typically classified as which of the lead to which of the following changes in neuronal activity? following? A) Decrease in neuronal activity A) Encapsulated nerve endings B) Increase in neuronal activity B) Single class of morphologically specialized receptors C) Initial decrease followed by an increase C) Same type of receptor that detects position sense D) No change in neuronal activity D) Free nerve endings 3. The release of neurotransmitter at a chemical synapse in the central 6. Which of the following best describes an expanded tip tactile receptor nervous system is dependent upon which of the following? found in the dermis of hairy skin that is specialized to detect continuously A) Synthesis of acetylcholinesterase applied touch B) Hyperpolarization of the synaptic terminal sensation? C) Opening of ligand-gated ion calcium channels A) Free nerve endings D) Influx of calcium into the presynaptic terminal B) Merkel’s disc C) Pacinian corpuscle D) Ruffini’s endings =B 6 =D 5 =C 4 =D 3 =B 2 =C 2 1 Cont.
    [Show full text]
  • Stretch Reflex & Golgi Tendon Reflex
    NeuroPsychiatry Block Stretch Reflex & Golgi Tendon Reflex By Laiche Djouhri, PhD Dept. of Physiology Email: [email protected] Ext:71044 NeuroPsychiatry Block Chapter 55 Motor Functions of the Spinal Cord, The cord Reflexes (Guyton & Hall) Chapter 3 Neurophysiology (Linda Costanzo) 2 Objectives By the end of this lecture students are expected to: . Describe the components of stretch reflex and Golgi tendon reflex . Differentiate between the functions of muscles spindles and Golgi tendon organ . Explain the roles of alpha and gamma motor neurons in the stretch reflex . Discuss the spinal and supraspinal regulation 10of/6/2016 the stretch reflex 3 What is a Stretch Reflex? . It is a monosynaptic reflex (also known as myotatic reflex) . Is a reflex contraction of muscle resulting from stimulation of the muscle spindle (MS) by stretching the whole muscle . Muscle spindle is the sensory receptor that detects change in muscle length . The classic example of the stretch reflex is the patellar-tendon or knee jerk reflex. What is the significance of stretch reflexes? . They help maintain a normal posture . They function to oppose sudden changes in muscle length 4 10/6/2016 Components of the Stretch Reflex Arc Stretch reflex is a deep Figure 55.5 monosynaptic reflex and its components are: 1. Sensory receptor (muscle spindles) 2. Sensory neuron (group Ia and group II afferents) 3. Integrating center (spinal cord) 4. Motor neurons (α- and γ- spinal motor neurons) 5. Effector (the same muscle This reflex is the simplest; it involves (homonymous) of muscle only 2 neurons & one synapse, spindles) Structure of Muscle Spindles-1 .
    [Show full text]