On Finding Totally Real Quintic Number Fields of Minimal Signature Group Rank

Total Page:16

File Type:pdf, Size:1020Kb

On Finding Totally Real Quintic Number Fields of Minimal Signature Group Rank ON FINDING TOTALLY REAL QUINTIC NUMBER FIELDS OF MINIMAL SIGNATURE GROUP RANK A Thesis Presented by Jason B. Hill to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Mathematics April 6, 2006 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fullfillment of the requirements for the degree of Master of Science, specializing in Mathe- matics. Thesis Examination Committee: Advisor David S. Dummit, Ph.D. Jonathan W. Sands, Ph.D. Chairperson Christian Skalka, Ph.D. Vice President for Frances E. Carr, Ph.D. Research and Dean of the Graduate College Date: April 6, 2006 Abstract An algorithm is created to find the totally real quintic number field(s) of smallest field discriminant satisfying a given property. This algorithm is efficient and improves upon current number field table building techniques in the sense that only computations on totally real fields are ever considered. The algorithm is then used to locate totally real quintic number fields of all signature group ranks, including the first known instance of a field with a totally positive system of fundamental units. Acknowledgements I would like to thank David S. Dummit, my advisor, for his assistance and guidance. I also wish to thank my thesis defense committee members Christian Skalka and Jonathan W. Sands. Special thanks should be given to Michael E. Pohst for several conversations that helped my research greatly. Also, I am appreciative of the efforts of Larry Kost in securing comput- ing resources on campus. In addition, I thank my father Jeffrey Hill and the mathematics graduate students at The University of Vermont for their continued support. ii Table of Contents Acknowledgements ............................................................. ii Chapter 1. Background and Motivation . 1 2. Introduction . 4 3. Hunter’s Theorem . 10 4. Generating Totally Real Quintic Number Fields . 16 Placing a Lower Bound on a2 ......................................... 18 Placing an Upper Bound on a2 ....................................... 19 Bounding a3 with Polynomial Discriminants . 20 Bounding a4 with Minima and Maxima . 21 Bounding a5 with Minima and Maxima . 23 An Algorithm for Generating Totally Real Quintic Number Fields . 24 5. Tables of Quintic Number Fields of Small Discriminant . 28 6. Finding Fields of Smallest Discriminant . 31 7. Examples Fields of Smallest Discriminant . 35 8. Totally Real Quintic Number Fields of Minimal Signature Group Rank . 37 The Smallest Discriminant Rank 5 Field. 37 The Smallest Discriminant Rank 4 Field. 37 The Smallest Discriminant Rank 3 Field. 38 An Example of a Rank 2 Field. 38 An Example of a Rank 1 Field. 40 9. Conclusion . 44 References ..................................................................... 45 Background and Motivation 1 1 Background and Motivation Suppose K is a Galois extension of a field k with an abelian Galois group G. The Stark Conjectures assert that there are connections between the (algebraically defined) group of units of K and the (analytically defined) Artin L-series of k defined by K. More precisely, suppose that S is a set of places in k containing the Archimedean primes and the finite primes that are ramified in K/k, and suppose further (for simplicity) that S contains at least 3 places. For any character χ of G, let LS(s, χ) denote the (imprimitive) Artin L-series defined by −1 Y χ(σp) L (s, χ) = 1 − S Nps (p,S)=1 where p ranges over all (finite) prime ideals not contained in the set S and χ is viewed as an ideal character by class field theory. The usual ‘rank one abelian Stark Conjecture’ (first formulated in the 1970’s) says that if S contains a place v that splits completely from k to K, then there should exist an element in K that evaluates the derivative at s = 0 of these L-series: 1 X L0(0, χ) = − χ(σ) ln |σ| . e w σ∈G where e denotes the number of roots of unity in K. In short, there should be an “L-function evaluator”. In the case where v is an Archimedean prime, the evaluator should in fact be a unit, the so-called “Stark unit” for K. In addition to providing a closed form expression for the value of these L-series, to account for ‘extra factors of 2,’ Stark further hypothesized an “abelian condition” that K(1/e) should be an abelian extension of k (a priori, it would be only metacyclic). The Stark Conjectures are extremely important fundamental questions in algebraic num- ber theory. Background and Motivation 2 In a conversation with Dummit in October, 1994, Stark suggested that few computations had been done on Stark’s Conjecture testing its “functoriality” (very much not the word Stark would have used), i.e., the compatibility of various Stark units when their fields are subfields of a common field. As early as 1995, while involved with Sands and Tangedal in computations relating to Stark’s Conjecture in the case where k is a totally real cubic field, Dummit observed that it was possible to construct examples similar to the classical ‘rank one’ situation (namely, in which all the characters were of rank 1, i.e., had a zero at s = 0 or order at least 1), but where there was no place v that split completely in the extension K/k. Over the course of several years, Dummit formulated (but did not publish, although some lectures on the topic were given in 1997-2000) a “robust Stark Conjecture”, mentioning this work to Stark in 1998. The feature of a single unit serving as an “L-function evaluator” is lost in Dummit’s version. In preparing a talk delivered at the Mathematical Sciences Research Institute in Berkeley in December 2001, Stark had the idea that this evaluator feature could be recovered in an ‘extended’ version of the Conjecture, still forgoing the assumption of a totally split prime. In discussing this extension with Dummit late in 2003, unpublished computations by Dummit provided a counterexample to the original formulation. A revised ‘extended Conjecture’ was then formulated by Stark, and this version was considered by Stark’s student Erickson in his 2004 Ph.D. dissertation. There are differences between the ‘robust Stark Conjecture’ and the ‘extended Stark Conjecture’, and the precise relation between them has not been resolved. For example, the “L-function evaluator” is present in the extended version and absent in the robust version, but the “abelian condition” is present in the robust version and absent (by examples of Erickson) in the extended version. To test both conjectures it is necessary to construct fields k having abelian extensions K with the property that every character χ of the Galois group G has rank at least one, and such that the difference between the class group and the strict class group of k is as large as possible. The first examples would occur for a totally Background and Motivation 3 real quintic base field k. The difference between the class group and the strict class group of k is determined by the size of the signature group of the units in k, with the largest difference occurring when k has a basis of fundamental units which are totally positive (i.e., rank of signature group 1). No examples of such a totally real quintic are provided in the existing literature. In fact, signature groups of rank 2 are not available. Two examples of rank 3 signature groups for totally real quintics provide evidence for both conjectures, but are not sufficient to distinguish between them or to test them beyond the evidence already known. Also, the application to Stark’s Conjecture involves the computation of values of derivatives of L- series to extremely high precision, so it is important to construct examples with a minimal possible field discriminant, since this is the primary limiting factor in the computational time required. In addition to the interest in finding totally real quintic number fields with a totally positive system of fundamental units for application to considerations of Stark’s Conjecture, the question of the distribution of unit group signature ranks for number fields of given degree and signature type (e.g., totally real) is of intrinsic interest. The question of “how many” number fields there are with a given signature structure for their unit groups is analogous to the question of how many number fields there are with a given class group, the ‘answer’ to which is provided by the so-called “Cohen-Lenstra” heuristics. No such heuristics appear to have been formulated in the case of unit groups. The purpose of this thesis is to provide examples of totall real quintic fields with small unit signature groups and to provide numerical data on which a heuristic might be formulated. Introduction 4 2 Introduction We first set our notation. Let K = Q(α) be a number field of degree n over Q generated by α. Denote the discriminant and ring of integers of K by d(K) and OK , respectively. The unit group of K is by definition the group of units in the ring OK and is given by U = { ∈ O |N () = ±1}. K K K/Q The torsion elements in UK are given by the roots of unity in K, a finite cyclic subgroup µ(K) generated by a root of unity ζ. Let [r, s] denote the signature of the field K, given by the number r of real embeddings ρ : K → R and the number s of pairs σ, σ : K → C of complex conjugate embeddings. Dirichlet’s unit theorem states that the group of units UK is isomorphic to the direct product of µ(K) and a free abelian group of rank t = r + s − 1.
Recommended publications
  • Lecture Notes in Galois Theory
    Lecture Notes in Galois Theory Lectures by Dr Sheng-Chi Liu Throughout these notes, signifies end proof, and N signifies end of example. Table of Contents Table of Contents i Lecture 1 Review of Group Theory 1 1.1 Groups . 1 1.2 Structure of cyclic groups . 2 1.3 Permutation groups . 2 1.4 Finitely generated abelian groups . 3 1.5 Group actions . 3 Lecture 2 Group Actions and Sylow Theorems 5 2.1 p-Groups . 5 2.2 Sylow theorems . 6 Lecture 3 Review of Ring Theory 7 3.1 Rings . 7 3.2 Solutions to algebraic equations . 10 Lecture 4 Field Extensions 12 4.1 Algebraic and transcendental numbers . 12 4.2 Algebraic extensions . 13 Lecture 5 Algebraic Field Extensions 14 5.1 Minimal polynomials . 14 5.2 Composites of fields . 16 5.3 Algebraic closure . 16 Lecture 6 Algebraic Closure 17 6.1 Existence of algebraic closure . 17 Lecture 7 Field Embeddings 19 7.1 Uniqueness of algebraic closure . 19 Lecture 8 Splitting Fields 22 8.1 Lifts are not unique . 22 Notes by Jakob Streipel. Last updated December 6, 2019. i TABLE OF CONTENTS ii Lecture 9 Normal Extensions 23 9.1 Splitting fields and normal extensions . 23 Lecture 10 Separable Extension 26 10.1 Separable degree . 26 Lecture 11 Simple Extensions 26 11.1 Separable extensions . 26 11.2 Simple extensions . 29 Lecture 12 Simple Extensions, continued 30 12.1 Primitive element theorem, continued . 30 Lecture 13 Normal and Separable Closures 30 13.1 Normal closure . 31 13.2 Separable closure . 31 13.3 Finite fields .
    [Show full text]
  • MRD Codes: Constructions and Connections
    MRD Codes: Constructions and Connections John Sheekey April 12, 2019 This preprint is of a chapter to appear in Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications. Radon Series on Computational and Applied Mathematics, K.-U. Schmidt and A. Winterhof (eds.). The tables on clas- sifications will be periodically updated (in blue) when further results arise. If you have any data that you would like to share, please contact the author. Abstract Rank-metric codes are codes consisting of matrices with entries in a finite field, with the distance between two matrices being the rank of their difference. Codes with maximum size for a fixed minimum distance are called Maximum Rank Distance (MRD) codes. Such codes were constructed and studied independently by Delsarte (1978), Gabidulin (1985), Roth (1991), and Cooperstein (1998). Rank-metric codes have seen renewed interest in recent years due to their applications in random linear network coding. MRD codes also have interesting connections to other topics such as semifields (finite nonassociative division algebras), finite geometry, linearized polynomials, and cryptography. In this chapter we will survey the known constructions and applications of MRD codes, and present some open problems. arXiv:1904.05813v1 [math.CO] 11 Apr 2019 1 Definitions and Preliminaries 1.1 Rank-metric codes Coding theory is the branch of mathematics concerned with the efficient and accurate transfer of information. Error-correcting codes are used when communication is over a channel in which errors may occur. This requires a set equipped with a distance function, and a subset of allowed codewords; if errors are assumed to be small, then a received message is decoded to the nearest valid codeword.
    [Show full text]
  • Counting and Effective Rigidity in Algebra and Geometry
    COUNTING AND EFFECTIVE RIGIDITY IN ALGEBRA AND GEOMETRY BENJAMIN LINOWITZ, D. B. MCREYNOLDS, PAUL POLLACK, AND LOLA THOMPSON ABSTRACT. The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2–manifolds (resp., 3–manifolds). By work of Reid, this spectrum determines the commensurability class of the 2–manifold (resp., 3–manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3–manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest. 1. INTRODUCTION 1.1. Inverse problems. 1.1.1. Algebraic problems. Given a degree d central division algebra D over a field k, the set of isomorphism classes of maximal subfields MF(D) of D is a basic and well studied invariant of D. Question 1. Do there exist non-isomorphic, central division algebras D1;D2=k with MF(D1) = MF(D2)? Restricting to the class of number fields k, by a well-known consequence of class field theory, when D=k is a quaternion algebra, MF(D) = MF(D0) if and only if D =∼ D0 as k–algebras.
    [Show full text]
  • Computing Isomorphisms and Embeddings of Finite
    Computing isomorphisms and embeddings of finite fields Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori and Eric´ Schost May 4, 2017 Abstract Let Fq be a finite field. Given two irreducible polynomials f; g over Fq, with deg f dividing deg g, the finite field embedding problem asks to compute an explicit descrip- tion of a field embedding of Fq[X]=f(X) into Fq[Y ]=g(Y ). When deg f = deg g, this is also known as the isomorphism problem. This problem, a special instance of polynomial factorization, plays a central role in computer algebra software. We review previous algorithms, due to Lenstra, Allombert, Rains, and Narayanan, and propose improvements and generalizations. Our detailed complexity analysis shows that our newly proposed variants are at least as efficient as previously known algorithms, and in many cases significantly better. We also implement most of the presented algorithms, compare them with the state of the art computer algebra software, and make the code available as open source. Our experiments show that our new variants consistently outperform available software. Contents 1 Introduction2 2 Preliminaries4 2.1 Fundamental algorithms and complexity . .4 2.2 The Embedding Description problem . 11 arXiv:1705.01221v1 [cs.SC] 3 May 2017 3 Kummer-type algorithms 12 3.1 Allombert's algorithm . 13 3.2 The Artin{Schreier case . 18 3.3 High-degree prime powers . 20 4 Rains' algorithm 21 4.1 Uniquely defined orbits from Gaussian periods . 22 4.2 Rains' cyclotomic algorithm . 23 5 Elliptic Rains' algorithm 24 5.1 Uniquely defined orbits from elliptic periods .
    [Show full text]
  • Mor04, Mor12], Provides a Foundational Tool for 1 Solving Problems in A1-Enumerative Geometry
    THE TRACE OF THE LOCAL A1-DEGREE THOMAS BRAZELTON, ROBERT BURKLUND, STEPHEN MCKEAN, MICHAEL MONTORO, AND MORGAN OPIE Abstract. We prove that the local A1-degree of a polynomial function at an isolated zero with finite separable residue field is given by the trace of the local A1-degree over the residue field. This fact was originally suggested by Morel's work on motivic transfers, and by Kass and Wickelgren's work on the Scheja{Storch bilinear form. As a corollary, we generalize a result of Kass and Wickelgren relating the Scheja{Storch form and the local A1-degree. 1. Introduction The A1-degree, first defined by Morel [Mor04, Mor12], provides a foundational tool for 1 solving problems in A1-enumerative geometry. In contrast to classical notions of degree, 1 n n the local A -degree is not integer valued: given a polynomial function f : Ak ! Ak with 1 1 A isolated zero p, the local A -degree of f at p, denoted by degp (f), is defined to be an element of the Grothendieck{Witt group of the ground field. Definition 1.1. Let k be a field. The Grothendieck{Witt group GW(k) is defined to be the group completion of the monoid of isomorphism classes of symmetric non-degenerate bilinear forms over k. The group operation is the direct sum of bilinear forms. We may also give GW(k) a ring structure by taking tensor products of bilinear forms for our multiplication. The local A1-degree, which will be defined in Definition 2.9, can be related to other important invariants at rational points.
    [Show full text]
  • Hidden Number Problems
    Hidden Number Problems Barak Shani A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics The University of Auckland 2017 Abstract The hidden number problem is the problem of recovering an unknown group element (the \hidden number") given evaluations of some function on products of the hidden number with known elements in the group. This problem enjoys a vast variety of applications, and provides cross-fertilisation among different areas of mathematics. Bit security is a research field in mathematical cryptology that studies leakage of in- formation in cryptographic systems. Of particular interest are public-key cryptosystems, where the study revolves around the information about the private keys that the public keys leak. Ideally no information is leaked, or more precisely extraction of partial in- formation about the secret keys is (polynomially) equivalent to extraction of the entire keys. Accordingly, studies in this field focus on reducing the problem of recovering the private key to the problem of recovering some information about it. This is done by designing algorithms that use the partial information to extract the keys. The hidden number problem was originated to study reductions of this kind. This thesis studies the hidden number problem in different groups, where the functions are taken to output partial information on the binary representation of the input. A spe- cial focus is directed towards the bit security of Diffie–Hellman key exchange. The study presented here provides new results on the hardness of extracting partial information about Diffie–Hellman keys. Contents 1 Introduction 1 1.1 Summary of Contributions .
    [Show full text]
  • Constructive and Computational Aspects of Cryptographic Pairings
    Constructive and Computational Aspects of Cryptographic Pairings Michael Naehrig Constructive and Computational Aspects of Cryptographic Pairings PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 7 mei 2009 om 16.00 uur door Michael Naehrig geboren te Stolberg (Rhld.), Duitsland Dit proefschrift is goedgekeurd door de promotor: prof.dr. T. Lange CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Naehrig, Michael Constructive and Computational Aspects of Cryptographic Pairings / door Michael Naehrig. – Eindhoven: Technische Universiteit Eindhoven, 2009 Proefschrift. – ISBN 978-90-386-1731-2 NUR 919 Subject heading: Cryptology 2000 Mathematics Subject Classification: 94A60, 11G20, 14H45, 14H52, 14Q05 Printed by Printservice Technische Universiteit Eindhoven Cover design by Verspaget & Bruinink, Nuenen c Copyright 2009 by Michael Naehrig Fur¨ Lukas und Julius Promotor: prof.dr. T. Lange Commissie: prof.dr.dr.h.c. G. Frey (Universit¨at Duisburg-Essen) prof.dr. M. Scott (Dublin City University) prof.dr.ir. H.C.A. van Tilborg prof.dr. A. Blokhuis prof.dr. D.J. Bernstein (University of Illinois at Chicago) prof.dr. P.S.L.M. Barreto (Universidade de S˜ao Paulo) Alles, was man tun muss, ist, die richtige Taste zum richtigen Zeitpunkt zu treffen. Johann Sebastian Bach Thanks This dissertation would not exist without the help, encouragement, motivation, and company of many people. I owe much to my supervisor, Tanja Lange. I thank her for her support; for all the efforts she made, even in those years, when I was not her PhD student; for taking care of so many things; and for being a really good supervisor.
    [Show full text]
  • Arxiv:2010.09374V1 [Math.AG] 19 Oct 2020 Lsdfils N Eoescasclcut Over Counts Classical Recovers One fields
    Applications to A1-enumerative geometry of the A1-degree Sabrina Pauli Kirsten Wickelgren Abstract These are lecture notes from the conference Arithmetic Topology at the Pacific Institute of Mathemat- ical Sciences on applications of Morel’s A1-degree to questions in enumerative geometry. Additionally, we give a new dynamic interpretation of the A1-Milnor number inspired by the first named author’s enrichment of dynamic intersection numbers. 1 Introduction A1-homotopy theory provides a powerful framework to apply tools from algebraic topology to schemes. In these notes, we discuss Morel’s A1-degree, giving the analog of the Brouwer degree in classical topology, and applications to enumerative geometry. Instead of the integers, the A1-degree takes values in bilinear forms, or more precisely, in the Grothendieck-Witt ring GW(k) of a field k, defined to be the group completion of isomorphism classes of symmetric, non-degenerate bilinear k-forms. This can result in an enumeration of algebro-geometric objects valued in GW(k), giving an A1-enumerative geometry over non-algebraically closed fields. One recovers classical counts over C using the rank homomorphism GW(k) Z, but GW(k) can contain more information. This information can record arithmetic-geometric properties→ of the objects being enumerated over field extensions of k. In more detail, we start with the classical Brouwer degree. We introduce enough A1-homotopy theory to describe Morel’s degree and use the Eisenbud-Khimshiashvili-Levine signature formula to give context for the degree and a formula for the local A1-degree. The latter is from joint work of Jesse Kass and the second-named author.
    [Show full text]
  • LECTURES on COHOMOLOGICAL CLASS FIELD THEORY Number
    LECTURES on COHOMOLOGICAL CLASS FIELD THEORY Number Theory II | 18.786 | Spring 2016 Taught by Sam Raskin at MIT Oron Propp Last updated August 21, 2017 Contents Preface......................................................................v Lecture 1. Introduction . .1 Lecture 2. Hilbert Symbols . .6 Lecture 3. Norm Groups with Tame Ramification . 10 Lecture 4. gcft and Quadratic Reciprocity. 14 Lecture 5. Non-Degeneracy of the Adèle Pairing and Exact Sequences. 19 Lecture 6. Exact Sequences and Tate Cohomology . 24 Lecture 7. Chain Complexes and Herbrand Quotients . 29 Lecture 8. Tate Cohomology and Inverse Limits . 34 Lecture 9. Hilbert’s Theorem 90 and Cochain Complexes . 38 Lecture 10. Homotopy, Quasi-Isomorphism, and Coinvariants . 42 Lecture 11. The Mapping Complex and Projective Resolutions . 46 Lecture 12. Derived Functors and Explicit Projective Resolutions . 52 Lecture 13. Homotopy Coinvariants, Abelianization, and Tate Cohomology. 57 Lecture 14. Tate Cohomology and Kunr ..................................... 62 Lecture 15. The Vanishing Theorem Implies Cohomological lcft ........... 66 Lecture 16. Vanishing of Tate Cohomology Groups. 70 Lecture 17. Proof of the Vanishing Theorem . 73 Lecture 18. Norm Groups, Kummer Theory, and Profinite Cohomology . 76 Lecture 19. Brauer Groups . 81 Lecture 20. Proof of the First Inequality . 86 Lecture 21. Artin and Brauer Reciprocity, Part I. 92 Lecture 22. Artin and Brauer Reciprocity, Part II . 96 Lecture 23. Proof of the Second Inequality . 101 iii iv CONTENTS Index........................................................................ 108 Index of Notation . 110 Bibliography . 113 Preface These notes are for the course Number Theory II (18.786), taught at mit in the spring semester of 2016 by Sam Raskin. The original course page can be found online here1; in addition to these notes, it includes an annotated bibliography for the course, as well as problem sets, which are frequently referenced throughout the notes.
    [Show full text]
  • A Quadratic Refinement of the Grothendieck–Lefschetz–Verdier Trace Formula
    A QUADRATIC REFINEMENT OF THE GROTHENDIECK{LEFSCHETZ{VERDIER TRACE FORMULA MARC HOYOIS Abstract. We prove a trace formula in stable motivic homotopy theory over a general base scheme, equating the trace of an endomorphism of a smooth proper scheme with the \Euler characteristic integral" of a certain cohomotopy class over its scheme of fixed points. When the base is a field and the fixed points are ´etale,we compute this integral in terms of Morel's identification of the ring of endomorphisms of the motivic sphere spectrum with the Grothendieck{Witt ring. In particular, we show that the Euler characteristic of an ´etale algebra corresponds to the class of its trace form in the Grothendieck{Witt ring. Contents 1. Introduction and examples 2 2. Review of the formalism of six operations 6 3. Duality in stable motivic homotopy theory 10 4. Proof of the main theorem 16 5. The Euler characteristic of separable field extensions 21 Appendix A. On the purity isomorphism 25 Appendix B. Coherence lemmas 27 Appendix C. Elimination of noetherian hypotheses 31 References 38 arXiv:1309.6147v3 [math.AG] 28 Aug 2014 Date: September 6, 2018. 1 2 MARC HOYOIS 1. Introduction and examples Let k be a field, X a smooth proper k-scheme, and f : X ! X a k-morphism. The Grothendieck{Lefschetz{ Verdier trace formula, originally proved in [Gro77, Expos´eIII, x4], identifies the trace of the action of f on the `-adic cohomology of X with the integral of a cohomology class on the scheme of fixed points Xf . In the special case where Xf is ´etaleover k, the trace formula takes the following simple form: Theorem 1.1.
    [Show full text]
  • The Ring-LWE Problem in Lattice-Based Cryptography: in Praise of Twisted Embeddings
    Noname manuscript No. (will be inserted by the editor) The Ring-LWE Problem in Lattice-based Cryptography: In Praise of Twisted Embeddings Jheyne N. Ortiz () · Robson R. de Araujo · Diego F. Aranha · Sueli I. R. Costa · Ricardo Dahab the date of receipt and acceptance should be inserted later Abstract Our main result in this work is the extension of the Ring-LWE problem in lattice-based cryptography to include algebraic lattices, realized through twisted embeddings. We define the class of problems Twisted Ring-LWE, which replaces the canonical embedding by an extended form. We prove that our generalization for Ring-LWE is secure by providing a security reduction from Ring-LWE to Twisted Ring-LWE in both search and decision forms. It is also shown that the addition of a new parameter, the torsion factor defining the twisted embedding, does not affect the asymptotic approximation factors in the worst-case to average-case reduc- tions. Thus, Twisted Ring-LWE maintains the consolidated hardness guarantee of Ring-LWE and increases the existing scope of algebraic lattices that can be consid- ered for cryptographic applications. Additionally, we expand on the results of Ducas and Durmus (Public-Key Cryptography, 2012) on spherical Gaussian distributions to the proposed class of lattices under certain restrictions. Thus, sampling from a spherical Gaussian distribution can be done directly in the respective number field, while maintaining its shape and standard deviation when seen in Rn via twisted embeddings. Keywords Lattice-based cryptography · Twisted embeddings · Ring-LWE · Spherical Gaussian sampling · Zn-equivalent lattices Acknowledgements The authors were supported in part by the Brazilian Coordination for the Improvement of Higher Education Personnel Foundation (CAPES) under grant numbers J.N.
    [Show full text]
  • Counting and Effective Rigidity in Algebra and Geometry 2
    COUNTING AND EFFECTIVE RIGIDITY IN ALGEBRA AND GEOMETRY BENJAMIN LINOWITZ, D. B. MCREYNOLDS, PAUL POLLACK, AND LOLA THOMPSON ABSTRACT. The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2–manifolds (resp., 3–manifolds). By work of Reid, this spectrum determines the commensurability class of the 2–manifold (resp., 3–manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3–manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest. 1. INTRODUCTION 1.1. Inverse problems. 1.1.1. Algebraic problems. Given a degree d central division algebra D over a field k, the set of isomorphism classes of maximal subfields MF(D) of D is a basic and well studied invariant of D. Question 1. Do there exist non-isomorphic, central division algebras D1,D2/k with MF(D1)= MF(D2)? Restricting to the class of number fields k, by a well-known consequenceof class field theory, when D/k is a quaternion algebra, MF(D)= MF(D′) if andonlyif D ∼= D′ as k–algebras.
    [Show full text]