Algebraic Number Theory Course Notes (Fall 2006) Math 8803, Georgia Tech Matthew Baker E-mail address:
[email protected] School of Mathematics, Georgia Institute of Technol- ogy, Atlanta, GA 30332-0140, USA Contents Preface v Chapter 1. Unique Factorization (and lack thereof) in number rings 1 1. UFD’s, Euclidean Domains, Gaussian Integers, and Fermat’s Last Theorem 1 2. Rings of integers, Dedekind domains, and unique factorization of ideals 7 3. The ideal class group 20 4. Exercises for Chapter 1 30 Chapter 2. Examples and Computational Methods 33 1. Computing the ring of integers in a number field 33 2. Kummer’s theorem on factoring ideals 38 3. The splitting of primes 41 4. Cyclotomic Fields 46 5. Exercises for Chapter 2 54 Chapter 3. Geometry of numbers and applications 57 1. Minkowski’s geometry of numbers 57 2. Dirichlet’s Unit Theorem 69 3. Exercises for Chapter 3 83 Chapter 4. Relative extensions 87 1. Localization 87 2. Galois theory and prime decomposition 96 3. Exercises for Chapter 4 113 Chapter 5. Introduction to completions 115 1. The field Qp 115 2. Absolute values 119 3. Hensel’s Lemma 126 4. Introductory p-adic analysis 128 5. Applications to Diophantine equations 132 Appendix A. Some background results from abstract algebra 139 iii iv CONTENTS 1. Euclidean Domains are UFD’s 139 2. The theorem of the primitive element and embeddings into algebraic closures 141 3. Free modules over a PID 143 Preface These are the lecture notes from a graduate-level Algebraic Number Theory course taught at the Georgia Institute of Technology in Fall 2006.