LECTURES on COHOMOLOGICAL CLASS FIELD THEORY Number
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AZUMAYA, SEMISIMPLE and IDEAL ALGEBRAS* Introduction. If a Is An
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 4, July 1972 AZUMAYA, SEMISIMPLE AND IDEAL ALGEBRAS* BY M. L. RANGA RAO Communicated by Dock S. Rim, January 31, 1972 Introduction. If A is an algebra over a commutative ring, then for any ideal I of R the image of the canonical map / ® R A -» A is an ideal of A, denoted by IA and called a scalar ideal. The algebra A is called an ideal algebra provided that / -> IA defines a bijection from the ideals of R to the ideals of A. The contraction map denned by 21 -> 91 n JR, being the inverse mapping, each ideal of A is a scalar ideal and every ideal of R is a contraction of an ideal of A. It is known that any Azumaya algebra is an ideal algebra (cf. [2], [4]). In this paper we initiate the study of ideal algebras and obtain a new characterization of Azumaya algebras. We call an algebra finitely genera ted (or projective) if the R-module A is, and show that a finitely generated algebra A is Azumaya iff its enveloping algebra is ideal (1.7). Hattori introduced in [9] the notion of semisimple algebras over a commutative ring as those algebras whose relative global dimension [10] is zero. If R is a Noetherian ring, central, finitely generated semisimple algebras have the property that their maximal ideals are all scalar ideals [6, Theorem 1.6]. It is also known that for R, a Noetherian integrally closed domain, finitely generated, projective, central semisimple algebras are maximal orders in central simple algebras [9, Theorem 4.6]. -
Number Theoretic Symbols in K-Theory and Motivic Homotopy Theory
Number Theoretic Symbols in K-theory and Motivic Homotopy Theory Håkon Kolderup Master’s Thesis, Spring 2016 Abstract We start out by reviewing the theory of symbols over number fields, emphasizing how this notion relates to classical reciprocity lawsp and algebraic pK-theory. Then we compute the second algebraic K-group of the fields pQ( −1) and Q( −3) based on Tate’s technique for K2(Q), and relate the result for Q( −1) to the law of biquadratic reciprocity. We then move into the realm of motivic homotopy theory, aiming to explain how symbols in number theory and relations in K-theory and Witt theory can be described as certain operations in stable motivic homotopy theory. We discuss Hu and Kriz’ proof of the fact that the Steinberg relation holds in the ring π∗α1 of stable motivic homotopy groups of the sphere spectrum 1. Based on this result, Morel identified the ring π∗α1 as MW the Milnor-Witt K-theory K∗ (F ) of the ground field F . Our last aim is to compute this ring in a few basic examples. i Contents Introduction iii 1 Results from Algebraic Number Theory 1 1.1 Reciprocity laws . 1 1.2 Preliminary results on quadratic fields . 4 1.3 The Gaussian integers . 6 1.3.1 Local structure . 8 1.4 The Eisenstein integers . 9 1.5 Class field theory . 11 1.5.1 On the higher unit groups . 12 1.5.2 Frobenius . 13 1.5.3 Local and global class field theory . 14 1.6 Symbols over number fields . -
Lecture Notes in Galois Theory
Lecture Notes in Galois Theory Lectures by Dr Sheng-Chi Liu Throughout these notes, signifies end proof, and N signifies end of example. Table of Contents Table of Contents i Lecture 1 Review of Group Theory 1 1.1 Groups . 1 1.2 Structure of cyclic groups . 2 1.3 Permutation groups . 2 1.4 Finitely generated abelian groups . 3 1.5 Group actions . 3 Lecture 2 Group Actions and Sylow Theorems 5 2.1 p-Groups . 5 2.2 Sylow theorems . 6 Lecture 3 Review of Ring Theory 7 3.1 Rings . 7 3.2 Solutions to algebraic equations . 10 Lecture 4 Field Extensions 12 4.1 Algebraic and transcendental numbers . 12 4.2 Algebraic extensions . 13 Lecture 5 Algebraic Field Extensions 14 5.1 Minimal polynomials . 14 5.2 Composites of fields . 16 5.3 Algebraic closure . 16 Lecture 6 Algebraic Closure 17 6.1 Existence of algebraic closure . 17 Lecture 7 Field Embeddings 19 7.1 Uniqueness of algebraic closure . 19 Lecture 8 Splitting Fields 22 8.1 Lifts are not unique . 22 Notes by Jakob Streipel. Last updated December 6, 2019. i TABLE OF CONTENTS ii Lecture 9 Normal Extensions 23 9.1 Splitting fields and normal extensions . 23 Lecture 10 Separable Extension 26 10.1 Separable degree . 26 Lecture 11 Simple Extensions 26 11.1 Separable extensions . 26 11.2 Simple extensions . 29 Lecture 12 Simple Extensions, continued 30 12.1 Primitive element theorem, continued . 30 Lecture 13 Normal and Separable Closures 30 13.1 Normal closure . 31 13.2 Separable closure . 31 13.3 Finite fields . -
Determining Large Groups and Varieties from Small Subgroups and Subvarieties
Determining large groups and varieties from small subgroups and subvarieties This course will consist of two parts with the common theme of analyzing a geometric object via geometric sub-objects which are `small' in an appropriate sense. In the first half of the course, we will begin by describing the work on H. W. Lenstra, Jr., on finding generators for the unit groups of subrings of number fields. Lenstra discovered that from the point of view of computational complexity, it is advantageous to first consider the units of the ring of S-integers of L for some moderately large finite set of places S. This amounts to allowing denominators which only involve a prescribed finite set of primes. We will de- velop a generalization of Lenstra's method which applies to find generators of small height for the S-integral points of certain algebraic groups G defined over number fields. We will focus on G which are compact forms of GLd for d ≥ 1. In the second half of the course, we will turn to smooth projective surfaces defined by arithmetic lattices. These are Shimura varieties of complex dimension 2. We will try to generate subgroups of finite index in the fundamental groups of these surfaces by the fundamental groups of finite unions of totally geodesic projective curves on them, that is, via immersed Shimura curves. In both settings, the groups we will study are S-arithmetic lattices in a prod- uct of Lie groups over local fields. We will use the structure of our generating sets to consider several open problems about the geometry, group theory, and arithmetic of these lattices. -
Local Class Field Theory Via Lubin-Tate Theory and Applications
Local Class Field Theory via Lubin-Tate Theory and Applications Misja F.A. Steinmetz Supervisor: Prof. Fred Diamond June 2016 Abstract In this project we will introduce the study of local class field theory via Lubin-Tate theory following Yoshida [Yos08]. We explain how to construct the Artin map for Lubin-Tate extensions and we will show this map gives an isomorphism onto the Weil group of the maximal Lubin-Tate extension of our local field K: We will, furthermore, state (without proof) the other results needed to complete a proof of local class field theory in the classical sense. At the end of the project, we will look at a result from a recent preprint of Demb´el´e,Diamond and Roberts which gives an 1 explicit description of a filtration on H (GK ; Fp(χ)) for K a finite unramified extension of Qp and × χ : GK ! Fp a character. Using local class field theory, we will prove an analogue of this result for K a totally tamely ramified extension of Qp: 1 Contents 1 Introduction 3 2 Local Class Field Theory5 2.1 Formal Groups..........................................5 2.2 Lubin-Tate series.........................................6 2.3 Lubin-Tate Modules.......................................7 2.4 Lubin-Tate Extensions for OK ..................................8 2.5 Lubin-Tate Groups........................................9 2.6 Generalised Lubin-Tate Extensions............................... 10 2.7 The Artin Map.......................................... 11 2.8 Local Class Field Theory.................................... 13 1 3 Applications: Filtration on H (GK ; Fp(χ)) 14 3.1 Definition of the filtration.................................... 14 3.2 Computation of the jumps in the filtration.......................... -
MRD Codes: Constructions and Connections
MRD Codes: Constructions and Connections John Sheekey April 12, 2019 This preprint is of a chapter to appear in Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications. Radon Series on Computational and Applied Mathematics, K.-U. Schmidt and A. Winterhof (eds.). The tables on clas- sifications will be periodically updated (in blue) when further results arise. If you have any data that you would like to share, please contact the author. Abstract Rank-metric codes are codes consisting of matrices with entries in a finite field, with the distance between two matrices being the rank of their difference. Codes with maximum size for a fixed minimum distance are called Maximum Rank Distance (MRD) codes. Such codes were constructed and studied independently by Delsarte (1978), Gabidulin (1985), Roth (1991), and Cooperstein (1998). Rank-metric codes have seen renewed interest in recent years due to their applications in random linear network coding. MRD codes also have interesting connections to other topics such as semifields (finite nonassociative division algebras), finite geometry, linearized polynomials, and cryptography. In this chapter we will survey the known constructions and applications of MRD codes, and present some open problems. arXiv:1904.05813v1 [math.CO] 11 Apr 2019 1 Definitions and Preliminaries 1.1 Rank-metric codes Coding theory is the branch of mathematics concerned with the efficient and accurate transfer of information. Error-correcting codes are used when communication is over a channel in which errors may occur. This requires a set equipped with a distance function, and a subset of allowed codewords; if errors are assumed to be small, then a received message is decoded to the nearest valid codeword. -
Local-Global Methods in Algebraic Number Theory
LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry. -
Counting and Effective Rigidity in Algebra and Geometry
COUNTING AND EFFECTIVE RIGIDITY IN ALGEBRA AND GEOMETRY BENJAMIN LINOWITZ, D. B. MCREYNOLDS, PAUL POLLACK, AND LOLA THOMPSON ABSTRACT. The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2–manifolds (resp., 3–manifolds). By work of Reid, this spectrum determines the commensurability class of the 2–manifold (resp., 3–manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3–manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest. 1. INTRODUCTION 1.1. Inverse problems. 1.1.1. Algebraic problems. Given a degree d central division algebra D over a field k, the set of isomorphism classes of maximal subfields MF(D) of D is a basic and well studied invariant of D. Question 1. Do there exist non-isomorphic, central division algebras D1;D2=k with MF(D1) = MF(D2)? Restricting to the class of number fields k, by a well-known consequence of class field theory, when D=k is a quaternion algebra, MF(D) = MF(D0) if and only if D =∼ D0 as k–algebras. -
Number Theory
Number Theory Alexander Paulin October 25, 2010 Lecture 1 What is Number Theory Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z is the canonical ring. It structure as a group under addition is very simple: it is the infinite cyclic group. The mystery of Z is its structure as a monoid under multiplication and the way these two structure coalesce. As a monoid we can reduce the study of Z to that of understanding prime numbers via the following 2000 year old theorem. Theorem. Every positive integer can be written as a product of prime numbers. Moreover this product is unique up to ordering. This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern language this is the statement that Z is a unique factorization domain (UFD). Another deep fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly easy to understand - the free commutative monoid with countably infinitely many generators cross the cyclic group of order 2. The point is that in isolation addition and multiplication are easy, but together when have vast hidden depth. At this point we are faced with two potential avenues of study: analytic versus algebraic. By analytic I questions like trying to understand the distribution of the primes throughout Z. By algebraic I mean understanding the structure of Z as a monoid and as an abelian group and how they interact. -
22 Ring Class Fields and the CM Method
18.783 Elliptic Curves Spring 2015 Lecture #22 04/30/2015 22 Ring class fields and the CM method p Let O be an imaginary quadratic order of discriminant D, let K = Q( D), and let L be the splitting field of the Hilbert class polynomial HD(X) over K. In the previous lecture we showed that there is an injective group homomorphism Ψ: Gal(L=K) ,! cl(O) that commutes with the group actions of Gal(L=K) and cl(O) on the set EllO(C) = EllO(L) of roots of HD(X) (the j-invariants of elliptic curves with CM by O). To complete the proof of the the First Main Theorem of Complex Multiplication, which asserts that Ψ is an isomorphism, we need to show that Ψ is surjective; this is equivalent to showing the HD(X) is irreducible over K. At the end of the last lecture we introduced the Artin map p 7! σp, which sends each unramified prime p of K to the unique automorphism σp 2 Gal(L=K) for which Np σp(x) ≡ x mod q; (1) for all x 2 OL and primes q of L dividing pOL (recall that σp is independent of q because Gal(L=K) ,! cl(O) is abelian). Equivalently, σp is the unique element of Gal(L=K) that Np fixes q and induces the Frobenius automorphism x 7! x of Fq := OL=q, which is a generator for Gal(Fq=Fp), where Fp := OK =p. Note that if E=C has CM by O then j(E) 2 L, and this implies that E can be defined 2 3 by a Weierstrass equation y = x + Ax + B with A; B 2 OL. -
Class Group Computations in Number Fields and Applications to Cryptology Alexandre Gélin
Class group computations in number fields and applications to cryptology Alexandre Gélin To cite this version: Alexandre Gélin. Class group computations in number fields and applications to cryptology. Data Structures and Algorithms [cs.DS]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066398. tel-01696470v2 HAL Id: tel-01696470 https://tel.archives-ouvertes.fr/tel-01696470v2 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Informatique École Doctorale Informatique, Télécommunications et Électronique (Paris) Présentée par Alexandre GÉLIN Pour obtenir le grade de DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE Calcul de Groupes de Classes d’un Corps de Nombres et Applications à la Cryptologie Thèse dirigée par Antoine JOUX et Arjen LENSTRA soutenue le vendredi 22 septembre 2017 après avis des rapporteurs : M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern devant le jury composé de : M. Karim BELABAS Professeur, Université de Bordeaux M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern M. -
Identifying the Matrix Ring: Algorithms for Quaternion Algebras And
IDENTIFYING THE MATRIX RING: ALGORITHMS FOR QUATERNION ALGEBRAS AND QUADRATIC FORMS JOHN VOIGHT Abstract. We discuss the relationship between quaternion algebras and qua- dratic forms with a focus on computational aspects. Our basic motivating problem is to determine if a given algebra of rank 4 over a commutative ring R embeds in the 2 × 2-matrix ring M2(R) and, if so, to compute such an embedding. We discuss many variants of this problem, including algorithmic recognition of quaternion algebras among algebras of rank 4, computation of the Hilbert symbol, and computation of maximal orders. Contents 1. Rings and algebras 3 Computable rings and algebras 3 Quaternion algebras 5 Modules over Dedekind domains 6 2. Standard involutions and degree 6 Degree 7 Standard involutions 7 Quaternion orders 8 Algorithmically identifying a standard involution 9 3. Algebras with a standard involution and quadratic forms 10 Quadratic forms over rings 10 Quadratic forms over DVRs 11 Identifying quaternion algebras 14 Identifying quaternion orders 15 4. Identifying the matrix ring 16 Zerodivisors 16 arXiv:1004.0994v2 [math.NT] 30 Apr 2012 Conics 17 5. Splitting fields and the Hilbert symbol 19 Hilbert symbol 19 Local Hilbert symbol 20 Representing local fields 22 Computing the local Hilbert symbol 22 6. The even local Hilbert symbol 23 Computing the Jacobi symbol 26 Relationship to conics 28 Date: May 28, 2018. 1991 Mathematics Subject Classification. Primary 11R52; Secondary 11E12. Key words and phrases. Quadratic forms, quaternion algebras, maximal orders, algorithms, matrix ring, number theory. 1 2 JOHN VOIGHT 7. Maximal orders 28 Computing maximal orders, generally 28 Discriminants 29 Computing maximal orders 29 Complexity analysis 32 Relationship to conics 34 8.