On Stabiliser Techniques and Their Application to Simulation and Certification of Quantum Devices

Total Page:16

File Type:pdf, Size:1020Kb

On Stabiliser Techniques and Their Application to Simulation and Certification of Quantum Devices On stabiliser techniques and their application to simulation and certification of quantum devices INAUGURAL-DISSERTATION ZUR ERLANGUNG DES AKADEMISCHEN GRADES doctor rerum naturalium (Dr. rer. nat.) IN THEORETISCHER PHYSIK der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von MARKUS HEINRICH aus Offenburg Köln, 2021 Gutachter: Prof. Dr. David Gross PD Dr. Rochus Klesse Prof. Dr. Markus Müller Tag der Disputation: 3. Mai 2021 ABSTRACT The stabiliser formalism is a widely used and successful subtheory of quantum mechanics consisting of stabiliser states, Clifford unitaries and Pauli measurements. The power of the formalism comes from the description of its elements via simple group theory. Although the origins of the formalism lie in quantum error correction and fault-tolerant quantum computing, the utility of the formalism goes beyond that. The Gottesman-Knill theorem states that the dynamics of stabiliser states under Clif- ford unitaries and Pauli measurements can be efficiently simulated on a classical com- puter. This algorithm can be extended to arbitrary states and unitaries in multiple ways at the cost of an increased runtime. This runtime can be seen as a quantification of the non- stabiliser resources needed to implement a quantum circuit. Moreover, as non-stabiliser elements are necessary for universal quantum computing, the runtime provides a way to measure the “non-classicality” of a computation. This is particularly pronounced in the magic state model of quantum computing where the only non-stabiliser elements are given by magic states. Hence, in the resource theory of magic, resources are measured through magic monotones which are operationally linked to runtimes of classical simulation algo- rithms. In this thesis, I discuss different aspects of the resource theory of magic. The men- tioned classical simulation algorithms require the computation of magic monotones which is in general a computationally intractable problem. However, I show that the compu- tational complexity can be exponentially reduced for certain classes of symmetric states, such as copies of magic states. To this end, the symmetries of the convex hull of stabiliser states are characterised and linked to their properties as so-called designs. In addition, I study the recently introduced class of completely stabiliser-preserving channels (CSP), which is the class of quantum channels unable to generate magic resources. It is shown that this class is strictly larger than the class of stabiliser operations, composed of Clifford unitaries and Pauli measurements. This finding could have several interesting conse- quences. First, it is likely that CSP is efficiently simulable which would allow classi- cal simulation beyond the Gottesman-Knill theorem. Second, it is possible that optimal magic state distillation rates cannot be achieved via stabiliser operations and this gap is in fact significant. Further applications of the stabiliser formalism come through design theory. A uni- tary t-design is an ensemble of unitaries which reproduce the first t moments of the Haar measure on the unitary group. Randomness in the form of Haar-random unitaries is an essential building block in many quantum information protocols. Implementing such Haar-random unitaries is however often impractical. Here, designs can exhibit consider- ably lower resource requirements while still being random enough for most applications. Some of the most prominent examples of such protocols concern the certification and characterisation of quantum systems, such as randomised benchmarking. Interestingly, the group of Clifford unitaries forms a unitary 3-design and is often the prime choice thanks to efficient group operations. i ii In this thesis, I summarise my recent results obtained with collaborators in construct- ing approximate unitary t-designs from the Clifford group supplemented by only few non- Clifford gates. Intriguingly, this construction uses only O˜ (t4) single qubit non-Clifford gates and is independent of the number of qubits n. Overall, this yields a gate count of O˜ (n2t4) which is a significant improvement over O˜ (n2t10) for the Brandao-Harrow- Horodecki construction based on local random circuits. To provide context for this result, I review the representation theory of the Clifford group and define the Clifford semigroup. In an attempt to generalise approximations results for the unitary group to the Clifford group, the Clifford semigroup is investigated for suitable approximations of the Clifford twirl. CONTENTS Abstract i Contents iii Introduction to this dissertation v I The phase space representation of the stabiliser formalism 1 1 Introduction 3 2 Stabiliser formalism for qubits 5 3 Symplectic structures over finite fields 11 3.1 Finite fields and discrete symplectic vector spaces . 11 3.2 The Weil representation in odd characteristic . 18 3.3 A Weil-like representation in even characteristic . 23 4 Stabiliser formalism in prime-power dimensions 29 4.1 The Heisenberg-Weyl and Clifford groups . 29 4.2 Stabiliser states and codes . 32 4.3 Fq versus Fp structure . 39 4.4 Simulation of stabiliser circuits . 41 5 Applications 45 5.1 Discrete Wigner function . 45 5.2 Mutually unbiased bases . 51 5.3 Algorithms . 52 6 Further topics 57 6.1 Construction of Galois extensions of fields and rings . 57 6.2 On the problems in even characteristic . 60 II Classical simulation and the resource theory of magic 71 7 Introduction 73 8 Robustness of Magic and the stabiliser polytope 77 8.1 Introduction . 78 8.2 Robustness of Magic . 82 8.3 Exploiting stabiliser symmetries . 83 8.4 Computing the robustness of magic . 91 8.5 Conclusion & Outlook . 102 8.A Equivalence of the two robustness measures . 103 iii iv CONTENTS 8.B On the dual RoM problem . 104 8.C Symmetries of 3-designs . 105 8.D Numerical implementation . 108 8.E Symmetry reduction of convex optimisation problems . 109 9 Axiomatic vs. operational approaches to resource theories of magic 115 9.1 Introduction . 116 9.2 Preliminaries . 117 9.3 Results . 120 9.4 Summary and open questions . 125 9.A Phase space formalism in a nutshell . 126 9.B Proof of Corollary 9.1 . 128 9.C Polar form of bipartite stabiliser states . 130 9.D Proof that L is extremal . 133 9.E Proof that SO1 = CSP1 .............................. 142 9.F Analysis of the channel decomposition of L . 144 10 Open questions 147 III Exact and approximate unitary designs from the Clifford group 149 11 Introduction 151 12 Unitary designs and the Clifford group 155 12.1 Definitions . 155 12.2 The Clifford group as a design . 158 12.3 Tensor power representations of the Clifford group . 161 13 Group designs are rare and essentially Clifford 171 14 Approximate t-designs with few non-Clifford gates 175 14.1 Introduction . 175 14.2 Results . 176 14.3 Technical background . 179 15 Approximations of the Clifford projector 187 15.1 Introduction . 187 15.2 The Clifford frame operator . 189 15.3 Approximation of the Clifford projector . 191 Conclusion 197 Acknowledgments 201 Bibliography 203 Formalia 219 Zusammenfassung in deutscher Sprache . 219 Erklärung zur Dissertation . 221 Teilpublikationen . 221 INTRODUCTION TO THIS DISSERTATION The defining goal of quantum information science is to study how information can be manipulated by the quantum-mechanical laws of nature. During the last 30 years, sig- nificant progress has been made in developing ideas and methods to store, transmit or process information using quantum effects. Consequently, quantum information science has matured to a broad and prospering field with diverse research directions that reach from quantum communication to quantum computing and the characterisation of quan- tum processes. Among other things, the research finds that faster and more secure ways of communication as well as more powerful computing is possible with quantum de- vices. Some of these ideas have already been successfully demonstrated in a series of proof-of-principle experiments [1–6]. Quantum key distribution is arguably the most advanced quantum technology as several networks have demonstrated over the years. Furthermore, researchers have recently claimed the first quantum advantage of a quan- tum computer over classical computers [5, 6]. Careful voices, however, expect realistic usecases for quantum computers to lie years ahead of us. Nevertheless, these ideas bear the potential to have a technological impact comparable with the silicon revolution of classical computers. Although the development is still in an early stage and high techno- logical barriers have to be overcome, these prospects have already gained a lot of public and political attention. Due to the sensitivity of quantum systems to their environment, the design of quan- tum devices is delicate and makes a close collaboration between theory and experiment necessary. On the theoretical side, a number of methods have been developed which allow to characterise a quantum system to a varying level of detail [7–16]. This allows to quantify the amount of noise or to determine its form. Furthermore, it can be certified that a quantum device is functioning properly. As quantum computations are especially sensitive to noise, these techniques are of special importance there. Besides the char- acterisation of noise, benchmarking the individual components of a quantum computer has become a common method of quantifying its performance [17–23]. At the current state-of-the art, the results of quantum computation can often be simulated on a classical computer can be used to certify the function of a quantum computer [24–39]. Many of these methods are based on a special subclass of quantum states and op- erations with astonishing properties. This subclass consists of stabiliser states, Clifford unitaries, and Pauli measurements, and allows for an efficient description through the so- called stabiliser formalism. In particular, the dynamics of stabiliser states under Clifford unitaries and the outcomes of Pauli measurements can be efficiently simulated on a clas- sical computer – a result which is known as the Gottesman-Knill theorem [40]. Neverthe- less, this subclass can be used to demonstrate many quantum phenomena.
Recommended publications
  • The Theory of Induced Representations in Field Theory
    QMW{PH{95{? hep-th/yymmnnn The Theory of Induced Representations in Field Theory Jose´ M. Figueroa-O'Farrill ABSTRACT These are some notes on Mackey's theory of induced representations. They are based on lectures at the ITP in Stony Brook in the Spring of 1987. They were intended as an exercise in the theory of homogeneous spaces (as principal bundles). They were never meant for distribution. x1 Introduction The theory of group representations is by no means a closed chapter in mathematics. Although for some large classes of groups all representations are more or less completely classified, this is not the case for all groups. The theory of induced representations is a method of obtaining representations of a topological group starting from a representation of a subgroup. The classic example and one of fundamental importance in physics is the Wigner construc- tion of representations of the Poincar´egroup. Later Mackey systematized this construction and made it applicable to a large class of groups. The method of induced representations appears geometrically very natural when expressed in the context of (homogeneous) vector bundles over a coset manifold. In fact, the representation of a group G induced from a represen- tation of a subgroup H will be decomposed as a \direct integral" indexed by the elements of the space of cosets G=H. The induced representation of G will be carried by the completion of a suitable subspace of the space of sections through a given vector bundle over G=H. In x2 we review the basic notions about coset manifolds emphasizing their connections with principal fibre bundles.
    [Show full text]
  • Lecture Notes in Galois Theory
    Lecture Notes in Galois Theory Lectures by Dr Sheng-Chi Liu Throughout these notes, signifies end proof, and N signifies end of example. Table of Contents Table of Contents i Lecture 1 Review of Group Theory 1 1.1 Groups . 1 1.2 Structure of cyclic groups . 2 1.3 Permutation groups . 2 1.4 Finitely generated abelian groups . 3 1.5 Group actions . 3 Lecture 2 Group Actions and Sylow Theorems 5 2.1 p-Groups . 5 2.2 Sylow theorems . 6 Lecture 3 Review of Ring Theory 7 3.1 Rings . 7 3.2 Solutions to algebraic equations . 10 Lecture 4 Field Extensions 12 4.1 Algebraic and transcendental numbers . 12 4.2 Algebraic extensions . 13 Lecture 5 Algebraic Field Extensions 14 5.1 Minimal polynomials . 14 5.2 Composites of fields . 16 5.3 Algebraic closure . 16 Lecture 6 Algebraic Closure 17 6.1 Existence of algebraic closure . 17 Lecture 7 Field Embeddings 19 7.1 Uniqueness of algebraic closure . 19 Lecture 8 Splitting Fields 22 8.1 Lifts are not unique . 22 Notes by Jakob Streipel. Last updated December 6, 2019. i TABLE OF CONTENTS ii Lecture 9 Normal Extensions 23 9.1 Splitting fields and normal extensions . 23 Lecture 10 Separable Extension 26 10.1 Separable degree . 26 Lecture 11 Simple Extensions 26 11.1 Separable extensions . 26 11.2 Simple extensions . 29 Lecture 12 Simple Extensions, continued 30 12.1 Primitive element theorem, continued . 30 Lecture 13 Normal and Separable Closures 30 13.1 Normal closure . 31 13.2 Separable closure . 31 13.3 Finite fields .
    [Show full text]
  • REPRESENTATION THEORY. WEEK 4 1. Induced Modules Let B ⊂ a Be
    REPRESENTATION THEORY. WEEK 4 VERA SERGANOVA 1. Induced modules Let B ⊂ A be rings and M be a B-module. Then one can construct induced A module IndB M = A ⊗B M as the quotient of a free abelian group with generators from A × M by relations (a1 + a2) × m − a1 × m − a2 × m, a × (m1 + m2) − a × m1 − a × m2, ab × m − a × bm, and A acts on A ⊗B M by left multiplication. Note that j : M → A ⊗B M defined by j (m) = 1 ⊗ m is a homomorphism of B-modules. Lemma 1.1. Let N be an A-module, then for ϕ ∈ HomB (M, N) there exists a unique ψ ∈ HomA (A ⊗B M, N) such that ψ ◦ j = ϕ. Proof. Clearly, ψ must satisfy the relation ψ (a ⊗ m)= aψ (1 ⊗ m)= aϕ (m) . It is trivial to check that ψ is well defined. Exercise. Prove that for any B-module M there exists a unique A-module satisfying the conditions of Lemma 1.1. Corollary 1.2. (Frobenius reciprocity.) For any B-module M and A-module N there is an isomorphism of abelian groups ∼ HomB (M, N) = HomA (A ⊗B M, N) . F Example. Let k ⊂ F be a field extension. Then induction Indk is an exact functor from the category of vector spaces over k to the category of vector spaces over F , in the sense that the short exact sequence 0 → V1 → V2 → V3 → 0 becomes an exact sequence 0 → F ⊗k V1⊗→ F ⊗k V2 → F ⊗k V3 → 0. Date: September 27, 2005.
    [Show full text]
  • MRD Codes: Constructions and Connections
    MRD Codes: Constructions and Connections John Sheekey April 12, 2019 This preprint is of a chapter to appear in Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications. Radon Series on Computational and Applied Mathematics, K.-U. Schmidt and A. Winterhof (eds.). The tables on clas- sifications will be periodically updated (in blue) when further results arise. If you have any data that you would like to share, please contact the author. Abstract Rank-metric codes are codes consisting of matrices with entries in a finite field, with the distance between two matrices being the rank of their difference. Codes with maximum size for a fixed minimum distance are called Maximum Rank Distance (MRD) codes. Such codes were constructed and studied independently by Delsarte (1978), Gabidulin (1985), Roth (1991), and Cooperstein (1998). Rank-metric codes have seen renewed interest in recent years due to their applications in random linear network coding. MRD codes also have interesting connections to other topics such as semifields (finite nonassociative division algebras), finite geometry, linearized polynomials, and cryptography. In this chapter we will survey the known constructions and applications of MRD codes, and present some open problems. arXiv:1904.05813v1 [math.CO] 11 Apr 2019 1 Definitions and Preliminaries 1.1 Rank-metric codes Coding theory is the branch of mathematics concerned with the efficient and accurate transfer of information. Error-correcting codes are used when communication is over a channel in which errors may occur. This requires a set equipped with a distance function, and a subset of allowed codewords; if errors are assumed to be small, then a received message is decoded to the nearest valid codeword.
    [Show full text]
  • Representations of Finite Groups’ Iordan Ganev 13 August 2012 Eugene, Oregon
    Notes for ‘Representations of Finite Groups’ Iordan Ganev 13 August 2012 Eugene, Oregon Contents 1 Introduction 2 2 Functions on finite sets 2 3 The group algebra C[G] 4 4 Induced representations 5 5 The Hecke algebra H(G; K) 7 6 Characters and the Frobenius character formula 9 7 Exercises 12 1 1 Introduction The following notes were written in preparation for the first talk of a week-long workshop on categorical representation theory. We focus on basic constructions in the representation theory of finite groups. The participants are likely familiar with much of the material in this talk; we hope that this review provides perspectives that will precipitate a better understanding of later talks of the workshop. 2 Functions on finite sets Let X be a finite set of size n. Let C[X] denote the vector space of complex-valued functions on X. In what follows, C[X] will be endowed with various algebra structures, depending on the nature of X. The simplest algebra structure is pointwise multiplication, and in this case we can identify C[X] with the algebra C × C × · · · × C (n times). To emphasize pointwise multiplication, we write (C[X], ptwise). A C[X]-module is the same as X-graded vector space, or a vector bundle on X. To see this, let V be a C[X]-module and let δx 2 C[X] denote the delta function at x. Observe that δ if x = y δ · δ = x x y 0 if x 6= y It follows that each δx acts as a projection onto a subspace Vx of V and Vx \ Vy = 0 if x 6= y.
    [Show full text]
  • Representation Theory with a Perspective from Category Theory
    Representation Theory with a Perspective from Category Theory Joshua Wong Mentor: Saad Slaoui 1 Contents 1 Introduction3 2 Representations of Finite Groups4 2.1 Basic Definitions.................................4 2.2 Character Theory.................................7 3 Frobenius Reciprocity8 4 A View from Category Theory 10 4.1 A Note on Tensor Products........................... 10 4.2 Adjunction.................................... 10 4.3 Restriction and extension of scalars....................... 12 5 Acknowledgements 14 2 1 Introduction Oftentimes, it is better to understand an algebraic structure by representing its elements as maps on another space. For example, Cayley's Theorem tells us that every finite group is isomorphic to a subgroup of some symmetric group. In particular, representing groups as linear maps on some vector space allows us to translate group theory problems to linear algebra problems. In this paper, we will go over some introductory representation theory, which will allow us to reach an interesting result known as Frobenius Reciprocity. Afterwards, we will examine Frobenius Reciprocity from the perspective of category theory. 3 2 Representations of Finite Groups 2.1 Basic Definitions Definition 2.1.1 (Representation). A representation of a group G on a finite-dimensional vector space is a homomorphism φ : G ! GL(V ) where GL(V ) is the group of invertible linear endomorphisms on V . The degree of the representation is defined to be the dimension of the underlying vector space. Note that some people refer to V as the representation of G if it is clear what the underlying homomorphism is. Furthermore, if it is clear what the representation is from context, we will use g instead of φ(g).
    [Show full text]
  • Counting and Effective Rigidity in Algebra and Geometry
    COUNTING AND EFFECTIVE RIGIDITY IN ALGEBRA AND GEOMETRY BENJAMIN LINOWITZ, D. B. MCREYNOLDS, PAUL POLLACK, AND LOLA THOMPSON ABSTRACT. The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2–manifolds (resp., 3–manifolds). By work of Reid, this spectrum determines the commensurability class of the 2–manifold (resp., 3–manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3–manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest. 1. INTRODUCTION 1.1. Inverse problems. 1.1.1. Algebraic problems. Given a degree d central division algebra D over a field k, the set of isomorphism classes of maximal subfields MF(D) of D is a basic and well studied invariant of D. Question 1. Do there exist non-isomorphic, central division algebras D1;D2=k with MF(D1) = MF(D2)? Restricting to the class of number fields k, by a well-known consequence of class field theory, when D=k is a quaternion algebra, MF(D) = MF(D0) if and only if D =∼ D0 as k–algebras.
    [Show full text]
  • Computing Isomorphisms and Embeddings of Finite
    Computing isomorphisms and embeddings of finite fields Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori and Eric´ Schost May 4, 2017 Abstract Let Fq be a finite field. Given two irreducible polynomials f; g over Fq, with deg f dividing deg g, the finite field embedding problem asks to compute an explicit descrip- tion of a field embedding of Fq[X]=f(X) into Fq[Y ]=g(Y ). When deg f = deg g, this is also known as the isomorphism problem. This problem, a special instance of polynomial factorization, plays a central role in computer algebra software. We review previous algorithms, due to Lenstra, Allombert, Rains, and Narayanan, and propose improvements and generalizations. Our detailed complexity analysis shows that our newly proposed variants are at least as efficient as previously known algorithms, and in many cases significantly better. We also implement most of the presented algorithms, compare them with the state of the art computer algebra software, and make the code available as open source. Our experiments show that our new variants consistently outperform available software. Contents 1 Introduction2 2 Preliminaries4 2.1 Fundamental algorithms and complexity . .4 2.2 The Embedding Description problem . 11 arXiv:1705.01221v1 [cs.SC] 3 May 2017 3 Kummer-type algorithms 12 3.1 Allombert's algorithm . 13 3.2 The Artin{Schreier case . 18 3.3 High-degree prime powers . 20 4 Rains' algorithm 21 4.1 Uniquely defined orbits from Gaussian periods . 22 4.2 Rains' cyclotomic algorithm . 23 5 Elliptic Rains' algorithm 24 5.1 Uniquely defined orbits from elliptic periods .
    [Show full text]
  • Mor04, Mor12], Provides a Foundational Tool for 1 Solving Problems in A1-Enumerative Geometry
    THE TRACE OF THE LOCAL A1-DEGREE THOMAS BRAZELTON, ROBERT BURKLUND, STEPHEN MCKEAN, MICHAEL MONTORO, AND MORGAN OPIE Abstract. We prove that the local A1-degree of a polynomial function at an isolated zero with finite separable residue field is given by the trace of the local A1-degree over the residue field. This fact was originally suggested by Morel's work on motivic transfers, and by Kass and Wickelgren's work on the Scheja{Storch bilinear form. As a corollary, we generalize a result of Kass and Wickelgren relating the Scheja{Storch form and the local A1-degree. 1. Introduction The A1-degree, first defined by Morel [Mor04, Mor12], provides a foundational tool for 1 solving problems in A1-enumerative geometry. In contrast to classical notions of degree, 1 n n the local A -degree is not integer valued: given a polynomial function f : Ak ! Ak with 1 1 A isolated zero p, the local A -degree of f at p, denoted by degp (f), is defined to be an element of the Grothendieck{Witt group of the ground field. Definition 1.1. Let k be a field. The Grothendieck{Witt group GW(k) is defined to be the group completion of the monoid of isomorphism classes of symmetric non-degenerate bilinear forms over k. The group operation is the direct sum of bilinear forms. We may also give GW(k) a ring structure by taking tensor products of bilinear forms for our multiplication. The local A1-degree, which will be defined in Definition 2.9, can be related to other important invariants at rational points.
    [Show full text]
  • Hidden Number Problems
    Hidden Number Problems Barak Shani A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics The University of Auckland 2017 Abstract The hidden number problem is the problem of recovering an unknown group element (the \hidden number") given evaluations of some function on products of the hidden number with known elements in the group. This problem enjoys a vast variety of applications, and provides cross-fertilisation among different areas of mathematics. Bit security is a research field in mathematical cryptology that studies leakage of in- formation in cryptographic systems. Of particular interest are public-key cryptosystems, where the study revolves around the information about the private keys that the public keys leak. Ideally no information is leaked, or more precisely extraction of partial in- formation about the secret keys is (polynomially) equivalent to extraction of the entire keys. Accordingly, studies in this field focus on reducing the problem of recovering the private key to the problem of recovering some information about it. This is done by designing algorithms that use the partial information to extract the keys. The hidden number problem was originated to study reductions of this kind. This thesis studies the hidden number problem in different groups, where the functions are taken to output partial information on the binary representation of the input. A spe- cial focus is directed towards the bit security of Diffie–Hellman key exchange. The study presented here provides new results on the hardness of extracting partial information about Diffie–Hellman keys. Contents 1 Introduction 1 1.1 Summary of Contributions .
    [Show full text]
  • Induced Representations and Frobenius Reciprocity 1
    Induced Representations and Frobenius Reciprocity Math G4344, Spring 2012 1 Generalities about Induced Representations For any group G and subgroup H, we get a restriction functor G ResH : Rep(G) ! Rep(H) that gives a representation of H from a representation of G, by simply restricting the group action to H. This is an exact functor. We would like to be able to go in the other direction, building up representations of G from representations of its subgroups. What we want is an induction functor G IndH : Rep(H) ! Rep(G) that should be an adjoint to the restriction functor. This adjointness relation is called \Frobenius Reciprocity". Unfortunately, there are two possible adjoints, Ind could be a left-adjoint G G HomG(IndH (V );W ) = HomH (V; ResH (W )) or a right-adjoint. Let's call the right-adjoint \coInd" G G HomG(V; coIndH (W )) = HomH (ResH (V );W ) Given an algebra A, with sub-algebra B, tensor product ⊗ and Hom of modules provide such functors. Since A HomA(A ⊗B V; W ) = HomB(V; ResB(W )) we can get a left-adjoint version of induction using the tensor product and since A HomA(V; HomB(A; W )) = HomB(ResB(V );W ) we can get a right-adjoint version of induction using Hom. So Definition 1 (Induction for finite groups). For H a subgroup of G, both finite groups, and V a representation of H, one has representations of G defined by G IndH (V ) = CG ⊗CH V and G coIndH (V ) = HomCH (CG; V ) and 1 G Theorem 1 (Frobenius reciprocity for finite groups).
    [Show full text]
  • Constructive and Computational Aspects of Cryptographic Pairings
    Constructive and Computational Aspects of Cryptographic Pairings Michael Naehrig Constructive and Computational Aspects of Cryptographic Pairings PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 7 mei 2009 om 16.00 uur door Michael Naehrig geboren te Stolberg (Rhld.), Duitsland Dit proefschrift is goedgekeurd door de promotor: prof.dr. T. Lange CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Naehrig, Michael Constructive and Computational Aspects of Cryptographic Pairings / door Michael Naehrig. – Eindhoven: Technische Universiteit Eindhoven, 2009 Proefschrift. – ISBN 978-90-386-1731-2 NUR 919 Subject heading: Cryptology 2000 Mathematics Subject Classification: 94A60, 11G20, 14H45, 14H52, 14Q05 Printed by Printservice Technische Universiteit Eindhoven Cover design by Verspaget & Bruinink, Nuenen c Copyright 2009 by Michael Naehrig Fur¨ Lukas und Julius Promotor: prof.dr. T. Lange Commissie: prof.dr.dr.h.c. G. Frey (Universit¨at Duisburg-Essen) prof.dr. M. Scott (Dublin City University) prof.dr.ir. H.C.A. van Tilborg prof.dr. A. Blokhuis prof.dr. D.J. Bernstein (University of Illinois at Chicago) prof.dr. P.S.L.M. Barreto (Universidade de S˜ao Paulo) Alles, was man tun muss, ist, die richtige Taste zum richtigen Zeitpunkt zu treffen. Johann Sebastian Bach Thanks This dissertation would not exist without the help, encouragement, motivation, and company of many people. I owe much to my supervisor, Tanja Lange. I thank her for her support; for all the efforts she made, even in those years, when I was not her PhD student; for taking care of so many things; and for being a really good supervisor.
    [Show full text]