Snapshot: Hedgehog Signaling Pathway Miao-Hsueh Chen, Christopher W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Analysis of the Homeobox Gene Tur-2 During Mouse Embryogenesis
Functional Analysis of The Homeobox Gene Tur-2 During Mouse Embryogenesis Shao Jun Tang A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Graduate Department of Molecular and Medical Genetics University of Toronto March, 1998 Copyright by Shao Jun Tang (1998) National Library Bibriothèque nationale du Canada Acquisitions and Acquisitions et Bibiiographic Services seMces bibliographiques 395 Wellington Street 395, rue Weifington OtbawaON K1AW OttawaON KYAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence alIowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor sell reproduire, prêter' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Functional Analysis of The Homeobox Gene TLr-2 During Mouse Embryogenesis Doctor of Philosophy (1998) Shao Jun Tang Graduate Department of Moiecular and Medicd Genetics University of Toronto Abstract This thesis describes the clonhg of the TLx-2 homeobox gene, the determination of its developmental expression, the characterization of its fiuiction in mouse mesodem and penpheral nervous system (PNS) developrnent, the regulation of nx-2 expression in the early mouse embryo by BMP signalling, and the modulation of the function of nX-2 protein by the 14-3-3 signalling protein during neural development. -
Sonic Hedgehog-Gli1 Signaling and Cellular Retinoic Acid Binding Protein 1 Gene Regulation in Motor Neuron Differentiation and Diseases
International Journal of Molecular Sciences Article Sonic Hedgehog-Gli1 Signaling and Cellular Retinoic Acid Binding Protein 1 Gene Regulation in Motor Neuron Differentiation and Diseases Yu-Lung Lin y, Yi-Wei Lin y, Jennifer Nhieu y, Xiaoyin Zhang and Li-Na Wei * Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] (Y.-L.L.); [email protected] (Y.-W.L.); [email protected] (J.N.); [email protected] (X.Z.) * Correspondence: [email protected]; Tel.: +1-612-6259402 Contributed equally. y Received: 29 April 2020; Accepted: 7 June 2020; Published: 9 June 2020 Abstract: Cellular retinoic acid-binding protein 1 (CRABP1) is highly expressed in motor neurons. Degenerated motor neuron-like MN1 cells are engineered by introducing SODG93A or AR-65Q to model degenerated amyotrophic lateral sclerosis (ALS) or spinal bulbar muscular atrophy neurons. Retinoic acid (RA)/sonic hedgehog (Shh)-induced embryonic stem cells differentiation into motor neurons are employed to study up-regulation of Crabp1 by Shh. In SODG93A or AR-65Q MN1 neurons, CRABP1 level is reduced, revealing a correlation of motor neuron degeneration with Crabp1 down-regulation. Up-regulation of Crabp1 by Shh is mediated by glioma-associated oncogene homolog 1 (Gli1) that binds the Gli target sequence in Crabp10s neuron-specific regulatory region upstream of minimal promoter. Gli1 binding triggers chromatin juxtaposition with minimal promoter, activating transcription. Motor neuron differentiation and Crabp1 up-regulation are both inhibited by blunting Shh with Gli inhibitor GANT61. Expression data mining of ALS and spinal muscular atrophy (SMA) motor neurons shows reduced CRABP1, coincided with reduction in Shh-Gli1 signaling components. -
Role of Gas1 Down-Regulation in Mitogenic Stimulation of Quiescent NIH3T3 Cells by V-Src
Oncogene (1998) 17, 1629 ± 1638 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Role of Gas1 down-regulation in mitogenic stimulation of quiescent NIH3T3 cells by v-Src Milena Grossi1, S Anna La Rocca1, Gloria Pierluigi1, Serena Vannucchi1, Elisabetta M Ruaro2, Claudio Schneider2 and Franco TatoÁ 1 1Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Biologia Cellulare e dello Sviluppo, UniversitaÁ di Roma `La Sapienza', Vie degli Apuli, 100185-Roma, Italy and 2Laboratorio Nazionale Consorzio Interuniversitario per le Biotecnologie, 34012-Trieste, Italy Quiescent mammalian ®broblasts can be induced to re- interfering with the early serum response (Del Sal et enter the cell cycle by growth factors and oncoproteins. al., 1992). Gas1-induced growth arrest appears to be We studied the pathway(s) through which v-Src, the mediated by p53, with no requirement for its sequence- oncogenic tyrosine kinase encoded by the v-src oncogene speci®c transactivating function (Del Sal et al., 1995). of Rous sarcoma virus, forces serum-starved NIH3T3 Ample evidence documents that positive signalling cells to enter S-phase. To this purpose, we isolated and from growth factors and oncogene products very often characterized a polyclonal population of NIH3T3 cells involves the activation of a major biochemical pathway transformed by the MR31 retroviral vector, encoding known as the Ras-pathway (Kazlauskas, 1994; Mar- G418 resistance and the v-src temperature-sensitive allele shall, 1994; McCormick, 1994; Schlessinger, 1994). In from the mutant ts LA31 PR-A. NIH(MR31) cells order to activate this pathway, ultimately leading to S- displayed a temperature-conditional transformed pheno- phase entry, transduction of signals generated at the type and could be made quiescent by serum deprivation cell membrane is needed and performed by adaptor at the restrictive temperature. -
Role of Sonic Hedgehog Signaling Pathway in Neuroblastoma Development
Review Article Biology and Medicine, 1 (4): Rev2, 2009 eISSN: 09748369, www.biolmedonline.com Role of Sonic hedgehog signaling pathway in neuroblastoma development Mehdi Hayat Shahi1,2,3,§, Subrata Sinha2, *Mohammad Afzal3, *Javier S Castresana1 1Unidad de Biologia de Tumoures Cerebrales, Universidad de Navarra, 31008 Pamplona, Spain. 2Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi-110029, India. 3Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India. §Present address: Department of Genetics and Pathology, Rudbeck Laboratory, University of Uppsala, Uppsala- 75185, Sweden. *Corresponding Authors: Javier S Castresana, [email protected] Mohammad Afzal, [email protected] Abstract Malignant transformation of normal cells is a complex and accumulative process. Understanding this event gives insight into mechanisms of developmental biology and physical interaction of cellular machinery with surrounding ambient factors. However, the trend of embryonic malignancy is not interactive with ambient factors, rather a cause of deregulations of internal developmental process. In this review, we have attempted to explore the possibility of Sonic hedgehog role (Shh) in the development of neuroblastoma tumour. It is the major extra cranial tumour and develops in very early stage of childhood. Sonic hedgehog signaling is very well studied in another major childhood tumour i.e. medulloblastoma that contributes 20-25% of childhood tumours, and one-fourth of medulloblastoma is due to abnormality in the Shh signaling pathway. Therefore, we would consider whether Shh could also contribute to the development of neuroblastoma. Although scientists are coming up with the role of Shh in the neuroblastoma, the Sonic hedgehog signaling is very much one of the promising pathways because of its multi-dimensional role not only in CNS development but also in organogenesis and other major tumour development. -
Gastrointestinal Defects of the Gas1 Mutant Involve Dysregulated Hedgehog and Ret Signaling
144 Research Article Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling Sandrine Biau1,2,*, Shiying Jin1,* and Chen-Ming Fan1,` 1Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, Maryland 21218, USA 22iE Foundation, International Institute for Water and Environmental Engineering, Rue de la Science, 01 BP 594, Ouagadougou 01, Burkina Faso *These authors contributed equally to this work `Author for correspondence ([email protected]) Biology Open 2, 144–155 doi: 10.1242/bio.20123186 Received 24th September 2012 Accepted 2nd October 2012 Summary The gastrointestinal (GI) tract defines the digestive system and in the GI tract. Because Gas1 has been shown to inhibit Ret is composed of the stomach, intestine and colon. Among the signaling elicited by Glial cell line-derived neurotrophic factor major cell types lining radially along the GI tract are the (Gdnf), we explored whether Gas1 mutant enteric neurons epithelium, mucosa, smooth muscles and enteric neurons. displayed any alteration of Ret signaling levels. Indeed, isolated The Hedgehog (Hh) pathway has been implicated in directing mutant enteric progenitors not only showed increased levels of various aspects of the developing GI tract, notably the mucosa phospho-Ret and its downstream effectors, phospho-Akt and and smooth muscle growth, and enteric neuron patterning, phospho-Erk, but also displayed altered responses to Gdnf and while the Ret signaling pathway is selectively required for Shh. We therefore conclude that phenotypes observed in the enteric neuron migration, proliferation, and differentiation. The Gas1 mutant are due to a combination of reduced Hh signaling growth arrest specific gene 1 (Gas1) encodes a GPI-anchored and increased Ret signaling. -
Multiple Roles of Sonic Hedgehog in the Developing Human Cortex Are Suggested by Its Widespread Distribution
Brain Structure and Function https://doi.org/10.1007/s00429-018-1621-5 ORIGINAL ARTICLE Multiple roles of Sonic Hedgehog in the developing human cortex are suggested by its widespread distribution Fani Memi1,3 · Nada Zecevic1 · Nevena Radonjić2 Received: 29 September 2017 / Accepted: 25 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Sonic Hedgehog (Shh) plays an instrumental role in brain development, fine-tuning processes such as cell proliferation, patterning, and fate specification. Although, mutations in the SHH pathway in humans are associated with various neurode- velopmental disorders, ranging from holoprosencephaly to schizophrenia, its expression pattern in the developing human brain is not well established. We now determined the previously not reported wide expression of SHH in the human fetal cerebral cortex during most of the gestation period (10–40 gestational weeks). This spatiotemporal distribution puts Shh in a position to influence the fundamental processes involved in corticogenesis. SHH expression increased during development, shifting from progenitor cells in the proliferative zones to neurons, both glutamatergic and GABAergic, and astrocytes in upper cortical compartments. Importantly, the expression of its downstream effectors and complementary receptors revealed evolutionary differences inSHH -pathway gene expression between humans and rodents. Keywords Cerebral cortex · Human fetal brain · Morphogen · SHH receptors Introduction generally well conserved in mammals, a number of changes and novelties have emerged during evolution that may Corticogenesis is a developmental process that requires underlie the biological basis for the higher cognitive and coordination of the signaling pathways providing mitogenic motor abilities that are specific to humans (Geschwind and signals and guiding the regulation of symmetric/asymmetric Rakic 2013; Silbereis et al. -
Sonic Hedgehog Signaling Limits Atopic Dermatitis Via Gli2-Driven Immune Regulation
Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation Eleftheria Papaioannou, … , Ryan F. L. O’Shaughnessy, Tessa Crompton J Clin Invest. 2019. https://doi.org/10.1172/JCI125170. Research Article Immunology Inflammation Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin, and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor–b (TGF-b) in Tregs signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4+ T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4+ T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven Treg cell–mediated immune suppression, paving the way for a potential new therapeutic strategy. Find the latest version: http://jci.me/125170/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation Eleftheria Papaioannou,1 Diana C. Yánez,1,2 Susan Ross,1 Ching-In Lau,1 Anisha Solanki,1 Mira Manilal Chawda,1 Alex Virasami,1 Ismael Ranz,3 Masahiro Ono,1,4 Ryan F. -
Products for Morphogen Research
R&D Systems Tools for Cell Biology Research™ Products for Morphogen Research BMP-4 NEURAL PLATE BMP-7 PROSPECTIVE NEURAL CREST NON-NEURAL ECTODERM Noggin Shh Noggin PRESOMITIC MESODERM NOTOCHORD NON-NEURAL ECTODERM FUTURE FLOOR PLATE BMP-4 Shh Noggin DORSAL AORTA ROOF PLATE Products for Morphogen Research for Products Noggin Wnt-1 Wnt-3a Wnt-4 NT-3 Wnt-6 Wnt-7a EARLY SOMITE Myf5 NEURAL TUBE Pax3 Sim1 BMP-4 INTERMEDIATE MESODERM Shh ShhShh NogginNoggin BMP-4 DORSAL AORTA Ihh NOTOCHORD MORPHOGENS Morphogens are molecules that regulate cell fate during development. Formation of morphogen concentration gradients directs the biological responses of surrounding cells. Graded responses occur as a result of morphogens binding to specific cell surface receptors that subsequently activate intracellular signaling pathways and promote or repress gene expression at specific threshold concentrations. Activation or inactivation of these signaling pathways provides positional information that ultimately determines tissue organization and morphology. Research in model organisms has revealed that morphogens are involved in many aspects of development. For example, morphogens are required in Drosophila for patterning of the dorso-ventral and anterior-posterior axes, segment patterning, and positional signaling in the leg and wing imaginal discs. Proteins belonging to the Wingless/Wnt, Notch, Hedgehog, and TGF-b families have been identified as morphogens that direct a number of these processes. Research in higher organisms has demonstrated that homologues of these same signaling molecules regulate vertebrate axis formation, anterior/posterior polarity during limb development, mesoderm patterning, and numerous other processes that establish an organism’s basic body structure. R&D Systems offers a wide selection of proteins, antibodies, and ELISAs for morphogen-related developmental research. -
The Transcriptional Activator PAX3–FKHR
Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The transcriptional activator PAX3–FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo Frédéric Relaix,1 Mariarosa Polimeni,2 Didier Rocancourt,1 Carola Ponzetto,3 Beat W. Schäfer,4 and Margaret Buckingham1,5 1CNRS URA 2375, Department of Developmental Biology, Pasteur Institute, 75724 Paris Cedex 15, France; 2Department of Experimental Medicine, Section of Anatomy, University of Pavia, 27100 Pavia, Italy; 3Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, 10126 Turin, Italy; 4Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, CH-8032 Zurich, Switzerland Pax3 is a key transcription factor implicated in development and human disease. To dissect the role of Pax3 in myogenesis and establish whether it is a repressor or activator, we generated loss- and gain-of-function alleles by targeting an nLacZ reporter and a sequence encoding the oncogenic fusion protein PAX3–FKHR into the Pax3 locus. Rescue of the Pax3 mutant phenotypes by PAX3–FKHR suggests that Pax3 acts as a transcriptional activator during embryogenesis. This is confirmed by a Pax reporter mouse. However, mice expressing PAX3–FKHR display developmental defects, including ectopic delamination and inappropriate migration of muscle precursor cells. These events result from overexpression of c-met, leading to constitutive activation of Met signaling, despite the absence of the ligand SF/HGF. Haploinsufficiency of c-met rescues this phenotype, confirming the direct genetic link with Pax3. The gain-of-function phenotype is also characterized by overactivation of MyoD. -
Rapid Changes in Morphogen Concentration Control Self-Organized
RESEARCH COMMUNICATION Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells Idse Heemskerk1†, Kari Burt1, Matthew Miller1, Sapna Chhabra2, M Cecilia Guerra1, Lizhong Liu1, Aryeh Warmflash1,3* 1Department of Biosciences, Rice University, Houston, United States; 2Systems, Synthetic and Physical Biology Program, Rice University, Houston, United States; 3Department of Bioengineering, Rice University, Houston, United States Abstract During embryonic development, diffusible signaling molecules called morphogens are thought to determine cell fates in a concentration-dependent way. Yet, in mammalian embryos, concentrations change rapidly compared to the time for making cell fate decisions. Here, we use human embryonic stem cells (hESCs) to address how changing morphogen levels influence differentiation, focusing on how BMP4 and Nodal signaling govern the cell-fate decisions associated with gastrulation. We show that BMP4 response is concentration dependent, but that expression of many Nodal targets depends on rate of concentration change. Moreover, in a self- organized stem cell model for human gastrulation, expression of these genes follows rapid changes in endogenous Nodal signaling. Our study shows a striking contrast between the specific ways ligand dynamics are interpreted by two closely related signaling pathways, highlighting both the *For correspondence: subtlety and importance of morphogen dynamics for understanding mammalian embryogenesis [email protected] and designing optimized protocols for directed stem cell differentiation. Editorial note: This article has been through an editorial process in which the authors decide how † Present address: Department to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all of Cell and Developmental the issues have been addressed (see decision letter). -
Coincident Two Mutations and One Single Nucleotide Polymorphism of the PTCH1 Gene in a Family with Naevoid Basal Cell Carcinoma Syndrome
Letters to the Editor 635 Coincident Two Mutations and One Single Nucleotide Polymorphism of the PTCH1 Gene in a Family with Naevoid Basal Cell Carcinoma Syndrome Shoko Abe1, Kenji Kabashima1*, Jun-ichi Sakabe1, Takatoshi Shimauchi1, Zhang Yan2, Tetsuji Okamoto2 and Yoshiki Tokura1 1Department of Dermatology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, and 2Department of Molecular Oral Medicine and Maxillofacial Surgery 1, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan. E-mail: [email protected] Accepted May 7, 2008. Sir, at nucleotide position 667 within exon 3 and an intervening se- Naevoid basal cell carcinoma syndrome (NBCCS, OMIM quence (IVS)16 -3T > C, and a SNP; IVS10 -8T > C, were detected in all three cases. A deletion of AGAC causes a frameshift and a #109400), also called Gorlin’s syndrome, is an autosomal subsequent stop codon in exon 3, which prematurely truncates dominant disease that affects about 1 in 60,000 indivi- the protein (Fig. 1a). In addition, the IVS16 -3T > C could lead duals (1, 2). NBCCS is associated with various skeletal to an aberrant splicing and truncation of PTCH1 (10–12). and neurocutaneous abnormalities. Major manifestations To detect the expression level of PTCH1 protein in the skin, are multiple basal cell carcinomas (BCCs), odontogenic an immunohistochemical study was performed using goat poly- clonal anti-PTCH1 antibody (G-19; Santa Cruz Biotechnology, keratocysts, palmoplantar dyskeratotic pits and intra- Santa Cruz, CA, USA). Enzyme reactions were developed with cranial calcification (3). In addition, rib and vertebral conventional substrates for diamino-benzidine (Sigma, St Louis, malformations, epidermal cysts, macrocephaly, facial MO, USA) (13). -
Annominer Is a New Web-Tool to Integrate Epigenetics, Transcription
www.nature.com/scientificreports OPEN AnnoMiner is a new web‑tool to integrate epigenetics, transcription factor occupancy and transcriptomics data to predict transcriptional regulators Arno Meiler1,3, Fabio Marchiano2,3, Margaux Haering2, Manuela Weitkunat1, Frank Schnorrer1,2 & Bianca H. Habermann1,2* Gene expression regulation requires precise transcriptional programs, led by transcription factors in combination with epigenetic events. Recent advances in epigenomic and transcriptomic techniques provided insight into diferent gene regulation mechanisms. However, to date it remains challenging to understand how combinations of transcription factors together with epigenetic events control cell‑type specifc gene expression. We have developed the AnnoMiner web‑server, an innovative and fexible tool to annotate and integrate epigenetic, and transcription factor occupancy data. First, AnnoMiner annotates user‑provided peaks with gene features. Second, AnnoMiner can integrate genome binding data from two diferent transcriptional regulators together with gene features. Third, AnnoMiner ofers to explore the transcriptional deregulation of genes nearby, or within a specifed genomic region surrounding a user‑provided peak. AnnoMiner’s fourth function performs transcription factor or histone modifcation enrichment analysis for user‑provided gene lists by utilizing hundreds of public, high‑quality datasets from ENCODE for the model organisms human, mouse, Drosophila and C. elegans. Thus, AnnoMiner can predict transcriptional regulators for a studied