Live Long, Live Well: Area Agency on Aging Area Plan 2012–2016

Total Page:16

File Type:pdf, Size:1020Kb

Live Long, Live Well: Area Agency on Aging Area Plan 2012–2016 Live Long, Live Well: Area Agency on Aging Area Plan 2012–2016 Fiscal Year 2013-2014 Update Division of Social Services Aging and Adult Services 10 North San Pedro Road, Suite 1023 San Rafael, CA 94903 415-473-7118 www.marincounty.org/aging 1 TABLE OF CONTENTS Page Number Transmittal Letter 3 Executive Summary 4 Planning Process / Establishing Priorities 5-7 Major Changes in the PSA 8-9 FY 13/14 Priorities 10-14 Public Hearings 15-17 Area Plan Narrative Goals and Objectives 18-24 Service Unit Plan (SUP) Objectives 25-52 Priority Services 53-54 Notice of Intent to Provide Direct Services 55-56 Request for Approval to Provide Direct Services 57-59 Governing Board 60 Advisory Council 61-63 Legal Assistance 64-67 Organization Chart 68 Assurances 69-75 2 TRANSMITTAL LETTER Area Plan Update Fiscal Year 2013-2014 AAA Name: Marin County Division of Aging and Adult Services PSA Number 5 This Area Plan is hereby submitted to the California Department of Aging for approval. The Governing Board and the Advisory Council have each had the opportunity to participate in the planning process and to review and comment on the Area Plan. The Governing Board, Advisory Council, and Area Agency Director actively support the planning and development of community-based systems of care and will ensure compliance with the assurances set forth in this Area Plan. The undersigned recognize the responsibility within each community to establish systems in order to address the care needs of older individuals and their family caregivers in this planning and service area. 1. Judy Arnold ___________________________________ _______________ President, Marin County Board of Supervisors Date 2. Marjorie Belknap, M.D. ___________________________________ ________________ Chair, Marin County Commission on Aging Date 3. Annette Balter ___________________________________ ________________ Program Manager, Division of Aging and Adult Services Date 3 LIVE LONG, LIVE WELL: MARIN COUNTY AREA PLAN FOR AGING 2012-2016, FISCAL YEAR 2013–2014 UPDATE EXECUTIVE SUMMARY Every four years, the Older Americans Act requires Area Agencies on Aging (AAA) to submit an Area Plan that reflects strategies and activities to best serve the needs of older adults and family caregivers in their designated Planning and Service Area (PSA). The Marin County, Division of Aging and Adult Services (DAAS), designated as PSA 5, is one of 33 PSAs in California. The Division is responsible for the planning, coordination, administration, and monitoring of programs and services for older adults in Marin County. The Live Long, Live Well: Marin County Area Plan for Aging 2012–2016, Fiscal Year 2013–14 Update is the first update of the current four-year planning cycle. It presents strategies that will be carried out by the AAA, to effectively address and respond to the needs of a rapidly aging community in Marin. The planning process undertaken to develop the Area Plan identified critical priority areas for the AAA and the Marin County Commission on Aging (COA), its advisory council. Key areas of concern included: health promotion and prevention services; services to isolated elders; nutrition and food security; activities for older adults; volunteer and civic engagement; special needs of the LGBT older adult population; improvements in accessing information and resources; and the need for an expanded and well-coordinated service delivery system. New local data reflecting health indicators and cultural/language needs are presented in this update. Improvements in the service system achieved through collaboration with community partners and continued integration of the Division of Aging and Adult Services are also described. Information presented in this update will inform funders, service providers, and members of the community about the needs and opportunities to improve the quality of life, and sustain the independence, of older persons in Marin County. PLANNING PROCESS/ ESTABLISHING PRIORITIES Each year, the AAA works with the Commission’s Planning Committee to develop an Annual Area Plan Update. Analysis of any new local data related to older adults is completed, a review of the previous year’s objectives is undertaken, and strategic objectives for the coming year are developed. NEW DEMOGRAPHIC DATA Marin County has seen a significant growth in the number of older adults, between 2000 and 2010 the number of persons over 60 increased by 38%, from 44,647 to 61,454. In 2010, people over the age of 60 made up almost 25% of the Marin population, and that number is expected to grow.1 According to the American Community Survey (ACS), approximately 5% of all Marin residents over the age of 65 (2,046 residents) were at 100% of the Federal Poverty Level in 20112, a mere $10,890 for a single person that year. Perhaps a better indicator of economic insecurity is the “elder economic index.” The Elder Economic Planning Act of 2011, mandated AAAs to use the “Elder Economic Security Standard Index” in planning efforts, a measure of costs to older adults that takes into account local variations between California’s counties. In Marin, about 7,000 older adults have incomes above the federal poverty level, but below the elder economic index ($27,334 a year in Marin3); taken together, about a quarter of Marin’s seniors are considered ‘poor.’ In 2012, the Healthy Marin Partnership issued, “Pathways to Progress 2013: Assessing the Health care Needs of Marin County,” an extensive local survey, looking at a variety of indicators to assess community health, wellness, and equity. This report frames priorities for the County and community partners. For instance, while heart disease, cancer and stroke are the leading causes of death in Marin, Marin has higher death rates due to Alzheimer’s disease than California or the nation, and Marin’s binge drinking rates are also higher than the rest of the state. The report also highlighted the issue of falls for Marin’s older adults, discussed below. Falls Fall incidents and associated costs are increasing as the older population in America increases. The CDC estimates that the associated costs for falls was $19 billion in 2000 and this number will grow to $55 1 U.S. Census Bureau. (2010). State & County Quickfacts: Marin County, CA. Retrieved from http://quickfacts.census.gov/qfd/states/06/06041.html. 2 U.S. Census Bureau, 2007-2011 American Community Survey. 3 UCLA Center for Health Policy Research and the Insight Center for Community Economic Development, http://www.insightcced.org/uploads/eesi/2010%20county%20pages/Marin/marin_es.pdf 5 billion in 2020.4 Healthy Marin Partnership analyzed Emergency Medical Services (EMS) calls across the county, revealing that falls were the primary reason for all calls. EMS calls are a way to measure acute and traumatic injuries. Fall rates averaged over three years, from 2009 to 2011, showed that countywide, the overall fall rate for all ages was 7.1 per 1,000. For those over age 65, it was 25.8 falls per 1,000. Novato has one of the highest percentages of older adults in Marin County and subsequently one of the highest numbers of falls.5 In Fiscal Year 12/13, the Fall Prevention Task Force examined intrinsic and extrinsic factors leading to falls in the senior community, focusing on Novato. The Task Force is also looking at how to develop follow-up protocols for seniors who are assisted by EMS after a fall, but do not go to the hospital. Dominican University staff and study consultants are analyzing coded narrative responses from Patient Care Reports as well as conducting focus groups and follow-up surveys regarding depression and other mitigating factors, such as poly-pharmaceutical use and dementia, and how these might affect fall rates. This report will be completed by the close of 12/13 and will inform interventions and best practices in the future. Alzheimer’s and Dementia Alzheimer’s is the fifth leading cause of death in California, claiming the lives over 10,000 people in 2010. Approximately one third of all seniors who die each year have Alzheimer’s or another dementia. In America today, over 5 million people are living with Alzheimer’s and that number is expected to triple by 2050. According to the Alzheimer’s Association, the cost of caring for those with Alzheimer’s and other dementia in the United States is estimated to total $203 billion in 2013 and to climb to $1.2 trillion by 2050. Caregivers are providing even more unpaid care and there will be higher costs associated in the next 20 years.6 In Marin, Alzheimer’s is the third leading cause of death, accounting for 35 deaths per year, higher than the state or national rate.7 Marin is ranked 46 out of 58 counties, with a death rate of 34.6 compared to California at 30.5.8 Applying national prevalence rates for Alzheimer’s disease to the population of Marin results in an estimate of almost 2,000 cases, of which 1,100 would be moderate or severe. The total number of cases is expected to double by 2030. It is a disease with significant costs and extensive 9 effects on families and the community. 4 Centers for Disease Control. Costs of Falls Among Older Adults. Retrieved from: http://www.cdc.gov/HomeandRecreationalSafety/Falls/fallcost.html 5 Healthy Marin Partnership, Pathways to Progress 2013, Assessing the Health Care Needs of Marin County. 6 Alzheimer’s Association. “California Alzheimer’s Statistics.” Retrieved from : http://www.alz.org/alzheimers_disease_facts_and_figures.asp#quickFacts 7 County of Marin, Vital Statistics. 8 Health Status Profiles on Alzheimer’s. 9 Strategic Plan Data Focus Report, Marin County Division of Aging and Adult Services, 2007. 6 CalFresh Data from the 2012 California Food Policy Advocates Report10 revealed that only 14% of households with elderly adults that are eligible for CalFresh are utilizing benefits.
Recommended publications
  • TETRA ,Shaahin Bahman85
    شاهين ارتباط تهران شركت مهندسين مشاور شاهين ارتباط تهران 1 شاهين ارتباط تهران اختراع تلفن و شکل گيری شبکه تلفن • 1876 هيﻻدی : هعرفی تلفن توسط گراهام بل • • 2 شاهين ارتباط تهران ظهور هراكس سوئيچ • هيﻻدی : • اختراع سيستن سوئيچينگ هکانيکی توسط براون استراگر 3 شاهين ارتباط تهران اختراع بی سين هوبايل )سيار( چرا سيستن های بی سين –در هر هكانی –در هر زهانی –توام سرويس های هورد نظر در اختيار هشترك قرار گيرد. 4 Mobile شاهين ارتباط تهران بايد به صورتی باشد كه: 5 شاهين ارتباط تهران نسل های سيستن های سيار (NMT , AMPS , TACS) • (GSM900 , DCS1900 , PDC) • TETRA (GPRS, EDGE 2.5 • (UMTS , IMT2000) • Wi-MAX , WLAN , • Board Band GSM 6 شاهين ارتباط تهران PMR • PMR is the oldest form of mobile communications – it has been in use for over 70 years. It is used by many taxi and courier firms, security guards and utility companies. Many rural businesses choose the PMR option, because they find that they simply do not have mobile phone coverage, or they are in an area where the network frequently goes down. 7 First generation شاهين ارتباط تهران هشكﻻت نسل اول • • • • • • • (Roaming) 8 شاهين ارتباط تهران نسل اول ) PMR ( • جهت بهبود در سيستم PMR يا Conventional سيستم ترانك ارائه گرديد. سيستم PMR به دو حالت بودند: • بيسيم های معمولی يا Conventional • بيسيم های ترانك يا سلولی هر دو آنالوگ بودند 9 شبکه های سلولی شاهين ارتباط تهران Cellular System • During the early 1980s – MPT1327 Analog cellular telephone systems were experiencing rapid growth in Europe (in Scandinavia, UK, France and Germany) • In 1983 – American (Advanced) Mobile Phone System (AMPS) developed in USA • In 1985 – Total Access Communication System (TACS) developed in UK • In 1986 – Nordic Mobile Telephony (NMT) 900 developed 10 مزیت شبکه های سلولی شاهين ارتباط تهران cellular network benefit • Group call • Roaming • Supports both semi-duplex and full duplex calls • Average call duration is much shorter • Calls can have multiple levels of priority • Support data applications like AVL 11 2 شاهين ارتباط تهران LIST of Analogue Cellular NMT900 Nordic Mobile Telephones/900.
    [Show full text]
  • An Analysis of Emerging Security Threats in 3G/4G Cellular Network Deployment in Pakistan
    International Journal of Computer and Information Technology (ISSN: 2279 – 0764) Volume 04 – Issue 02, March 2015 An Analysis of Emerging Security Threats in 3G/4G Cellular Network Deployment in Pakistan Muhammad Ahmad*, Munam Ali Shah, Manzoor Ilahi Tamimy Department of Computer Science COMSATS Institute of Information Technology Islamabad, Pakistan *Email: mahmad.comsats [AT] gmail.com Abstract—The advancements in wireless communication are where different wireless technologies are merged to form an increasing tremendously. The transition from legacy cellular IP based core network. This technology also provides networks to 3rd Generation (3G) cellular networks and 4th continuous services to their consumer with improved quality Generation (4G) cellular networks has globally taken of service (QoS) fast Internet and mobile TV [4][5]. Other place.The Government of Pakistan has announced the applications of 3G/4G technology are video conferencing, deployment of 3G/4G technology in the country. In this paper, online examination and consultancy by a doctor, and banking we investigate the emerging security threats to 3G/4G cellular industry [6]. Online tutoring, online lecture and quickly network in Pakistan. Our contribution is twofold. Firstly, we tracking student and teachers performance are some of the highlight modern security attacks that can hinder the smooth other exciting features of 3G/4G networks[7][8]. In addition delivery of mobile phone services and secondly, we conduct a to the technical reasons, the service providers must make survey questionnaire about the emerging security threats to mobile users in Pakistan. The results obtained from the survey sure that their infrastructure and services are resilient against reveals some interesting facts which will help the stake holders all kinds of security threats and vulnerabilities.
    [Show full text]
  • Michael Steer
    Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary.
    [Show full text]
  • Tuning Dynamic Power Management for Mobile Devices
    UNIVERSITY OF SOUTHAMPTON Tuning Dynamic Power Management for Mobile Devices by James R.B. Bantock Thesis for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences School of Electronics and Computer Science January 2021 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING AND PHYSICAL SCIENCES SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE Doctor of Philosophy by James R.B. Bantock Mobile devices have rapidly reached almost ubiquitous adoption amongst the global population. Smartphones have been the catalyst for introduction of high-performance System-on-Chips to mobile devices bringing with them the capability to execute ever more demanding applications but also widespread power management challenges. Tra- ditionally, the foremost power management challenge was extension of battery lifetime. The emergence of sustained performance applications including mobile gaming, Virtual and Augmented Reality has presented a new challenge in constraining performance to within a sustainable thermal envelope. Cooling techniques, limited to passive technolo- gies in mobile devices, have proved insufficient to maintain device skin temperatures below thresholds the human skin can tolerate. Dynamic Power Management policies have been developed to reduce mobile device power consumption to meet both energy and thermal constraints. This thesis proposes and then explores a new area of research in systematic tuning of Dynamic Power Management policies for mobile devices. Static and dynamic configuration of Dynamic Power Management policy parameters are compared to quantify the potential energy and performance improvements. Experi- mental results from a modern mobile device across four applications suggest up to 10% reduction in dropped frames and a 25% reduction in CPU energy consumption.
    [Show full text]
  • Analysis and Survey on Past, Present and Future Generation in Mobile Communication
    IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727 PP 30-36 www.iosrjournals.org Analysis and Survey on Past, Present and Future Generation in Mobile communication Shrikant R Tripathi1 and Sushil Khaparde2 1G.H.Raisoni Institute of Technology Nagpur (M.S.) India 2Bhavbhuti Mahavidyalaya Amgaon Gondia, Dist-Gondia (M.S.) India Abstract: From past year wireless technology makes enormous growth. Evolution of wireless technology is reached at 7.5G. Wireless technology FG (Future generation) mobile communications will have higher data transmission rates in 6G and. 7G. Wireless technology is continuously one of the hottest areas that are developing at a high speed, with advanced techniques emerging in all the fields of mobile and wireless communications. Current times are just the beginning for deploying 5G mobile communication systems. At present we have many technologies each capable of performing functions like supporting voice traffic using voice over IP (VoIP), broadband data access in mobile environment etc., but there is a great need of deploying such technologies that can integrate all these systems into a single unified system. 8G presents a solution of this problem as it is all about seamlessly integrating the terminals, networks and applications. Our aim is to empower the community with world class broadband capabilities, establishing a future-proof groundwork for new ideas and opportunities to build on. The Communications Revolution starts here. Keywords-OFDMA,WiMAX,SDR,MIMO,STBC,0G,1G, 2G, 3G, 4G,5G,6G,7G,CDMA,TDMA,FDMA,GSM I. INTRODUCTION The mobile communication systems and the wireless communication technologies have been proving very fast day by day.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.420.475 B2 Parron Et Al
    USOO9420475B2 (12) United States Patent (10) Patent No.: US 9.420.475 B2 Parron et al. (45) Date of Patent: Aug. 16, 2016 (54) RADIO COMMUNICATION DEVICES AND 6,735,192 B1* 5/2004 Fried ................. HO4L 29,06027 METHODS FOR CONTROLLING ARADO 370,352 6,862.298 B1* 3/2005 Smith et al. ................... 370,516 COMMUNICATION DEVICE 7,103,063 B2 * 9/2006 Fang ........... 370/452 (71) Applicant: Intel Mobile Communications GmbH, 7.961,755 B2* 6/2011 Harel et al. ... 370/466 8,503,414 B2 * 8/2013 Ho et al. ....................... 370,338 Neubiberg (DE) 8,750,849 B1* 6/2014 Adib ....................... HO4L 47.10 (72) Inventors: Jerome Parron, Fuerth (DE); Peter 455,412.2 9,154,569 B1 * 10/2015 Dropps ................... HO4L 67/28 Kroon, Green Brook, NJ (US) 2004/0047331 A1 3/2004 Jang (73) Assignee: INTEL DEUTSCHLAND GMBH, 2004/0170186 A1* 9, 2004 Shao ................... HO4L 12,5693 Neubiberg (DE) 370,412 2005. O152280 A1* 7, 2005 Pollin ..................... HO4L 41.00 (*) Notice: Subject to any disclaimer, the term of this 370,252 patent is extended or adjusted under 35 2006, OO77994 A1 4/2006 Spindola et al. 2006/0251130 A1* 11/2006 Greer ...................... G1 OL 21/04 U.S.C. 154(b) by 0 days. 370,508 (21) Appl. No.: 13/762,408 (Continued) (22) Filed: Feb. 8, 2013 FOREIGN PATENT DOCUMENTS (65) Prior Publication Data CN 1496.157 A 5, 2004 US 2014/022656O A1 Aug. 14, 2014 OTHER PUBLICATIONS (51) Int. Cl. 3GPP TS 26.114 V12.0.0 (Dec. 2012); Technical Specification H0474/00 (2009.01) Group Services and System Aspects; IP Multimedia Subsystem H04/24/02 (2009.01) (IMS); Multimedia Telephony; Media handling and interaction H04L L/20 (2006.01) (Release 12); pp.
    [Show full text]
  • Handbook Land Mobile — Volume 5 Deployment of Broadband Wireless Access Systems
    Land Mobile (including Wireless Access) – Volume 5 Edition 2011 Handbook Land Mobile — Volume 5 Deployment of Broadband Wireless Access Systems *36541* English Edition 2011 Printed in Switzerland Radiocommunication Bureau Geneva, 2011 ISBN 92-61-13691-5 Deployment of Broadband Wireless Access Systems THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Fax: +41 22 730 5194 E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ¤ ITU 2011 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. HHaannddbbooookk Land Mobile – Volume 5 Deployment of Broadband Wireless Access Systems English Edition 2011 Radicommunication Bureau - i - DISCLAIMERS, COPYRIGHTS AND TRADEMARKS Disclaimers The information included in this Handbook, such as common names of technical specifications, figures, diagrams, charts, texts, logos or pictures (collectively, “materials”), was compiled by the ITU from a variety of sources.
    [Show full text]
  • 4G Technology
    International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 67-73 © International Research Publication House http://www.irphouse.com 4G Technology Komal Roll No. 211208, M.tech (ECE) E-mail: nit kurukshetra Abstract The ever increasing growth of user demand, the limitations of the third generation of wireless mobile communication systems and the emergence of new mobile broadband technologies on the market have brought researchers and industries to a thorough reflection on the fourth generation. A pragmatic definition of 4G derived from a new user-centric methodology that considers the user as the “cornerstone” of the design. In this way, the fundamental user scenarios that implicitly reveal the key features of 4G, which are then expressed explicitly in a new framework—the “user-centric” system that describes the various level of interdependency among them. This approach consequently contributes to the identification of the real technical step-up of 4G with respect to 3G. It is supposed to provide its customers with better speed and all IP based multimedia services. 4G is all about an integrated, global network that will be able to provide a comprehensive IP solution where voice, data and streamed multimedia can be given to users on an "Anytime, Anywhere" basis. Introduction With the deployment of 3G (3rd generation mobile communication systems) in process, the interest of many research bodies shifts towards future systems beyond 3G. Depending on the time such new systems are planned to be introduced and on the characteristic of improving or replacing existing systems they are called B3G (beyond 3G) or 4G (4th generation mobile communication system).
    [Show full text]
  • Commonwealth of Virginia Enterprise Technical Architecture (ETA)
    Commonwealth of Virginia Enterprise Technical Architecture (ETA) Networking and Telecommunications Domain Report Version 3.0, October 1, 2008 Prepared by: Virginia Information Technologies Agency (VITA) ETA Networking and Telecommunications Domain Team Networking and Telecommunications Domain Report Version 3.0 10-1-2008 (This Page Intentionally Left Blank) Page 2 of 8 Networking and Telecommunications Domain Report Version 3.0 10-1-2008 2006-08 Networking and Telecommunications Domain Team Members Ric Anderson ........................................................................................ Northrop Grumman Henry Coalter.....................................................................Department of General Services Tim Deely ..........................................................................Department of General Services Leslie Fuentes ............................................................................................City of Hampton Paul Hoppes ................................................................................................................ VITA John Sharp............................................................................................. Northrop Grumman Frank Stott............................................................................................. Northrop Grumman David Williams ........................................................................................................... VITA Mark Willis ................................................................. Virginia
    [Show full text]
  • Moxa Industrial Wireless Guidebook
    Copyright © 2007 by Moxa Technologies Co., Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission from Moxa Technologies Co., Ltd. Trademark Credits The Moxa Technologies logo is a registered trademark of Moxa Technologies Co., Ltd. All other trademarks mentioned in this document are the property of their respective owners. 1st Printing November 2007 Preface The latest development in industrial device networking is the adoption of wireless technology for industrial applications. This is a very exciting development with potentially enormous benefits for system integrators and end users. However, many users may have questions about the different technologies that are available and how best to adapt them to specific applications. Other users may wish to gain a basic understanding of wireless technologies and applications but not know where to begin. The Industrial Wireless Guidebook was conceived as a helpful introduction to the wireless technologies now being used for industrial applications. Readers can learn basic terminology, the strengths and weaknesses of various wireless technologies, and how to decide on a wireless solution for a specific application. Detailed examples are provided to show how wireless technology is being used in different industries, and can serve as a starting point in developing your own project. Having been in the business for over twenty years, Moxa has been both a witness and participant to many developments in device networking technology. As new standards, interfaces, and protocols appear, we have kept pace and developed products that help integrate different technologies into one system.
    [Show full text]
  • 0G (Zero Generation) Basically, 0G Known As a Mobile Radio
    0G (Zero Generation) Basically, 0G known as a mobile radio transmission that allows two way communications using analog signal. This technologies was been develop in year 1945 where when it been introduce, Mobile Telephone Service were not officially categorized as mobile phones yet, since they did not support the automatic change of channel frequency during calls, which allows the user to move from one cell to another cell, a feature called "handover". These early mobile telephone systems can be distinguished from earlier closed radiotelephone systems in that they were available as a commercial service that was part of the public switched telephone network, with their own telephone numbers, rather than part of a closed network such as a police radio or taxi dispatch system. These mobile telephones were usually mounted in cars or trucks, though briefcase models were also made. Typically, the transceiver (transmitter-receiver) was mounted in the vehicle trunk and attached to the "head" (dial, display, and handset) mounted near the driver seat. They were sold through WCCs known as Wire line Common Carriers, or telephone companies, RCCs known as Radio Common Carriers and two-way radio dealers. There are some examples for these technologies such as: - For what that Motorola and Bell System used to operate the first commercial mobile telephone service MTS in United State of America as the service of the wireline telephone company - A-Netz has launched in 1952 in West Germany as their first public commercial mobile phone network - First automatic system from Bell System͛s IMTS that was available in 1962. 1G (First Generation) Also know as first-generation of wireless telephone technology is base on analog signal which is a radio signal that transmit data with wave-like form.
    [Show full text]
  • 1Xev-DO Revision a System to Realize Wireless Broadband Communications
    Hitachi Review Vol. 56 (Dec. 2007) 145 1xEV-DO Revision A System to Realize Wireless Broadband Communications Yoshitaka Iida OVERVIEW: 1xEV-DO Revision A is a cell phone system that achieves high- Kiyoshi Kawamoto speed data transmission of up to 3.1 Mbit/s on the downlink, and up to 1.8 Mbit/s on the uplink using the same frequency band as existing 1xEV-DO Yusuke Takemichi (1.25 MHz). It is worthy of being called a pioneering wireless broadband Katsuhiko Tsunehara technology. To realize advanced services such as the video telephony, the Toshiyuki Saito Hitachi Group has applied that technology to build a commercial system. To cope with diversification in wireless broadband services, standardization organizations have been studying various next-generation wireless access systems, and Hitachi, too, is harnessing the strength of the Group to aggressively take up the challenge of mobile communication development. INTRODUCTION communication delay control. Since December 2006, AS the use of cell phones spreads, there is a rising call KDDI has been deploying EV-DO Rev. A as the for the use of cellular mobile terminals for services infrastructure of a broadband mobile network that can such as mail, Internet access, music and video provide all-IP services such as video telephony that distribution from anywhere within an area. In response uses VoIP (Voice over IP, a technology for sending to that demand, the 3GPP2 (3rd Generation Partnership and receiving voice data over the Internet or other IP Project 2) international specification organization has network). set the standard called 1xEV-DO (1x evolution-data Here, we describe Hitachi’s configuration of the only) Release 0 (referred to as EV-DO Rel.
    [Show full text]