Handbook Land Mobile — Volume 5 Deployment of Broadband Wireless Access Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ETSI Technical Committee BRAN (Broadband Radio Access Networks) and Some Applications
ITU-B D T R e g io n a l S e m in a r o n M o b ile a n d F ix e d W ire le s s A c c e s s fo r B ro a d b a n d A p p lic a tio n s fo r th e A ra b R e g io n A lg ie rs (A lg e ria ), 1 9 - 2 2 J u n e 2 0 0 6 ETSI Technical Committee BRAN (Broadband Radio Access Networks) and some applications Bernd Friedrichs – Ericsson (BRAN Chair) Mariana Goldhamer – Alvarion (BRAN Vice-Chair) 1 TC BRAN - Main Areas (1 of 3) Interoperable Systems Interoperable systems for Broadband Wireless Access (BWA) HiperAccess (for cellular and hotspot backhauling) HiperMAN (fixed/nomadic wireless-DSL like system, also appropriate for rural and remote areas) Base specifications (PHY layer, DLC layer, management) Test specifications (radio and protocol conformance) International cooperation Harmonization with IEEE 802.16 Co-operation with WiMAX Forum First publications in 2002 (HA) and 2004 (HM) Definition of „Interoperability“: to ensure communication between devices (base stations, terminals) from different vendors 2 1 TC BRAN - Main Areas (2 of 3) Regulatory Activities Regulatory competence working group (RCWG) Established in 2004, as „horizontal“ group Coordination of all spectrum related and regulatory issues Assistance to regulatory bodies to define spectrum requirements and radio conformance specifications for new broadband radio networks Deliverables Development of Harmonised Standards covering essential requirements under article 3.2 of the R&TTE directive (HEN) System Reference Documents (SRDoc) 3 TC BRAN - Main Areas (3 of 3) Testing -
TETRA ,Shaahin Bahman85
شاهين ارتباط تهران شركت مهندسين مشاور شاهين ارتباط تهران 1 شاهين ارتباط تهران اختراع تلفن و شکل گيری شبکه تلفن • 1876 هيﻻدی : هعرفی تلفن توسط گراهام بل • • 2 شاهين ارتباط تهران ظهور هراكس سوئيچ • هيﻻدی : • اختراع سيستن سوئيچينگ هکانيکی توسط براون استراگر 3 شاهين ارتباط تهران اختراع بی سين هوبايل )سيار( چرا سيستن های بی سين –در هر هكانی –در هر زهانی –توام سرويس های هورد نظر در اختيار هشترك قرار گيرد. 4 Mobile شاهين ارتباط تهران بايد به صورتی باشد كه: 5 شاهين ارتباط تهران نسل های سيستن های سيار (NMT , AMPS , TACS) • (GSM900 , DCS1900 , PDC) • TETRA (GPRS, EDGE 2.5 • (UMTS , IMT2000) • Wi-MAX , WLAN , • Board Band GSM 6 شاهين ارتباط تهران PMR • PMR is the oldest form of mobile communications – it has been in use for over 70 years. It is used by many taxi and courier firms, security guards and utility companies. Many rural businesses choose the PMR option, because they find that they simply do not have mobile phone coverage, or they are in an area where the network frequently goes down. 7 First generation شاهين ارتباط تهران هشكﻻت نسل اول • • • • • • • (Roaming) 8 شاهين ارتباط تهران نسل اول ) PMR ( • جهت بهبود در سيستم PMR يا Conventional سيستم ترانك ارائه گرديد. سيستم PMR به دو حالت بودند: • بيسيم های معمولی يا Conventional • بيسيم های ترانك يا سلولی هر دو آنالوگ بودند 9 شبکه های سلولی شاهين ارتباط تهران Cellular System • During the early 1980s – MPT1327 Analog cellular telephone systems were experiencing rapid growth in Europe (in Scandinavia, UK, France and Germany) • In 1983 – American (Advanced) Mobile Phone System (AMPS) developed in USA • In 1985 – Total Access Communication System (TACS) developed in UK • In 1986 – Nordic Mobile Telephony (NMT) 900 developed 10 مزیت شبکه های سلولی شاهين ارتباط تهران cellular network benefit • Group call • Roaming • Supports both semi-duplex and full duplex calls • Average call duration is much shorter • Calls can have multiple levels of priority • Support data applications like AVL 11 2 شاهين ارتباط تهران LIST of Analogue Cellular NMT900 Nordic Mobile Telephones/900. -
An Analysis of Emerging Security Threats in 3G/4G Cellular Network Deployment in Pakistan
International Journal of Computer and Information Technology (ISSN: 2279 – 0764) Volume 04 – Issue 02, March 2015 An Analysis of Emerging Security Threats in 3G/4G Cellular Network Deployment in Pakistan Muhammad Ahmad*, Munam Ali Shah, Manzoor Ilahi Tamimy Department of Computer Science COMSATS Institute of Information Technology Islamabad, Pakistan *Email: mahmad.comsats [AT] gmail.com Abstract—The advancements in wireless communication are where different wireless technologies are merged to form an increasing tremendously. The transition from legacy cellular IP based core network. This technology also provides networks to 3rd Generation (3G) cellular networks and 4th continuous services to their consumer with improved quality Generation (4G) cellular networks has globally taken of service (QoS) fast Internet and mobile TV [4][5]. Other place.The Government of Pakistan has announced the applications of 3G/4G technology are video conferencing, deployment of 3G/4G technology in the country. In this paper, online examination and consultancy by a doctor, and banking we investigate the emerging security threats to 3G/4G cellular industry [6]. Online tutoring, online lecture and quickly network in Pakistan. Our contribution is twofold. Firstly, we tracking student and teachers performance are some of the highlight modern security attacks that can hinder the smooth other exciting features of 3G/4G networks[7][8]. In addition delivery of mobile phone services and secondly, we conduct a to the technical reasons, the service providers must make survey questionnaire about the emerging security threats to mobile users in Pakistan. The results obtained from the survey sure that their infrastructure and services are resilient against reveals some interesting facts which will help the stake holders all kinds of security threats and vulnerabilities. -
TS 102 624-1 V1.2.1 (2009-11) Technical Specification
ETSI TS 102 624-1 V1.2.1 (2009-11) Technical Specification Broadband Radio Access Networks (BRAN); HiperMAN; Conformance Testing for the Network layer of HiperMAN/WiMAX terminal devices; Part 1: Protocol Implementation Conformance Statement (PICS) proforma 2 ETSI TS 102 624-1 V1.2.1 (2009-11) Reference RTS/BRAN-004T010-1 Keywords HiperMAN, layer 3, PICS, terminal, testing ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
3GPP Release 8 IMS Implementation, Deployment & Testing
WORKSHOP on 3GPP release 8 IMS Implementation, Deployment & Testing Speakers’ Biographies 24 - 25 November 2010 Agora Einstein Sophia Antipolis Antonio Ascolese, TILAB Antonio Ascolese actually works for TILAB, the Innovation Centre of Telecom Italia. From 2002 to 2010 he deals with Core Network (GPRS, UMTS ed IMS) and Policy issues (PCC). Since August 2007 he attends to the 3GPP CT WG3, which is in charge of defining the interworking aspects between 3GPP PLMNS towards internal or external networks and of developing the Policy and Charging Control requirements and end-to-end QoS mechanisms. In 2007 and 2008 he drove and sponsored (as rapporteur) the definition of 3GPP TS 29.165, known as II-NNI specification. Andrea Bellocchi, Wind Telecommunication S.p.A. Andrea Bellocchi, Network Planning Specialist (Core & IMS), Wind Telecommunication S.p.A. Graduated from University of Rome "La Sapienza" in 1996. Joined the Strategic Planning Department of Telecom Italia Mobile in 1997, where he follows issues regarding technological evolution on Mobile Core Network. He was involved in UMTS standardization, joined the 3GPP SA2 group. In 2000, he joined WIND Telecommunication, where formulated Core Network chapters on bid book and related technical and costs model for the UMTS license winning bid offer proposed to the Italian Government. Since 2001, he is in charge of Network planning and architecture for Mobile CS & IMS Core Network, including dimensioning and costs models for business plan, definition of medium term technical plan, network modernization projects and standard evolution, and collaborate on technical staff training on WIND Core Network technologies. From 2008, he is the IMS/RCS trial project leader, that brings to successfully UNI/NNI activities. -
Michael Steer
Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary. -
Analysis of Wifi and Wimax and Wireless Network Coexistence
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.6, November 2014 ANALYSIS OF WIFI AND WIMAX AND WIRELESS NETWORK COEXISTENCE Shuang Song and Biju Issac School of Computing, Teesside University, Middlesbrough, UK ABSTRACT Wireless networks are very popular nowadays. Wireless Local Area Network (WLAN) that uses the IEEE 802.11 standard and WiMAX (Worldwide Interoperability for Microwave Access) that uses the IEEE 802.16 standard are networks that we want to explore. WiMAX has been developed over 10 years, but it is still unknown to most people. However compared to WLAN, it has many advantages in transmission speed and coverage area. This paper will introduce these two technologies and make comparisons between WiMAX and WiFi. In addition, wireless network coexistence of WLAN and WiMAX will be explored through simulation. Lastly we want to discuss the future of WiMAX in relation to WiFi. KEY WORDS WiMAX, WiFi, wireless network, wireless coexistence, network simulation 1. INTRODUCTION With the development of multimedia communication, people need wireless broadband access with higher speed, larger coverage and mobility. The emergence of WiMAX (Worldwide Interoperability for Microwave Access) technology met the people's demand for wireless Internet to some extent. If wireless LAN technology (WLAN) solves the access problem of the "last one hundred meters", then WiMAX technology is the best access solution of the "last mile". Though WiMAX is an emerging and extremely competitive wireless broadband access technology, the development prospects of its market is still unknown. Hybrid networks as a supplement to cell based or IP packet based services, can fully reflect the characteristics of wide network coverage. -
802.11 Architecture
IEEE 802.16 MAC and PHY Specifications for Broadband WMAN 國立中興大學資工系 曾學文 Tel : (04)22840497 ext. 908 E-mail: [email protected] NCHU CSE WMAN - 1 Resources Part Source : Roger B. Marks, National Institute of Standards and Technology Boulder, Colorado, USA Chair, IEEE 802.16 Working Group http://WirelessMAN.org http://www.intel.com/idf NCHU CSE WMAN - 2 Broadband Access to Buildings • Wireless Metro Ethernet – 802.11 Wireless Ethernet • First/Last mile access – Fast local connection to network » 30%-40% Radio/TV pervasion » 5% internet access – Target Applications (similar as DSL and CableModem) » Data » Voice / Audio » Video distribution » Real-time videoconferencing • High-capacity cable/fiber to every user is expensive – Network operators demand it – Business and residential customers demand it NCHU CSE WMAN - 3 Comparisons of Wireless Standards Bandwidth Assumptions Bandwidth (MHz) 2G/2.5G 1.25 802.20 1xEV-DO, 1xEVDV, 1.25 802.20 Mobile HSDPA 5 (Vehicular) 802.16 <= 20 802.16e Bluetooth 79 x 1 MHz WWAN UWB > 100 2G/2.5G (IMT-2000) Pedestrian ® Cellularcdma2000 1xEV-DO, 802.16a (Nomadic) cdma2000® 1xEV-DV (WiMAX) Mobility WCDMA HSDPA 802.11 (WLAN) Fixed 802.15.1 802.15.3a (Stationary) (Bluetooth) (UWB) 0.1 1.0 3.1 10 100 Peak Data Rate per User (Mbits/second) Commercial Proposed Source: International Telecommunications Union and WiMAX Forum NCHU CSE WMAN - 4 Current Status • More Than 350 Operator Trials and Deployments in 65+ countries! • List of operators – http://en.wikipedia.org/wiki/List_of_Deployed_WiMAX_networks Source: Intel, the WiMAX Forum NCHU CSE WMAN - 5 4G (beyond 3G) / IMT Advanced • 4G, a term used to describe the next complete evolution in wireless communications, – is being developed to accommodate the quality of service (QoS) and rate requirements set by forthcoming applications for "anytime-anywhere". -
Tuning Dynamic Power Management for Mobile Devices
UNIVERSITY OF SOUTHAMPTON Tuning Dynamic Power Management for Mobile Devices by James R.B. Bantock Thesis for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences School of Electronics and Computer Science January 2021 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING AND PHYSICAL SCIENCES SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE Doctor of Philosophy by James R.B. Bantock Mobile devices have rapidly reached almost ubiquitous adoption amongst the global population. Smartphones have been the catalyst for introduction of high-performance System-on-Chips to mobile devices bringing with them the capability to execute ever more demanding applications but also widespread power management challenges. Tra- ditionally, the foremost power management challenge was extension of battery lifetime. The emergence of sustained performance applications including mobile gaming, Virtual and Augmented Reality has presented a new challenge in constraining performance to within a sustainable thermal envelope. Cooling techniques, limited to passive technolo- gies in mobile devices, have proved insufficient to maintain device skin temperatures below thresholds the human skin can tolerate. Dynamic Power Management policies have been developed to reduce mobile device power consumption to meet both energy and thermal constraints. This thesis proposes and then explores a new area of research in systematic tuning of Dynamic Power Management policies for mobile devices. Static and dynamic configuration of Dynamic Power Management policy parameters are compared to quantify the potential energy and performance improvements. Experi- mental results from a modern mobile device across four applications suggest up to 10% reduction in dropped frames and a 25% reduction in CPU energy consumption. -
Class of Stations
CLASS OF STATION FOR FIXED AND MOBILE NOTIFICATION Service code Station Description/Definition Fixed FX Fixed Station Station in the Fixed Service Station in the mobile service not intended to be used while FL Land station Generic Mobile in motion Station in the mobile service intended to be used while in MO Mobile station motion or during halts at unspecified points FB Base station Land station in the land mobile service Land Mobile ML Land mobile station Mobile station in the land mobile service FC Coast station Land station in the maritime mobile service FP Port station Coast station in the port operations service Maritime Mobile MS Ship station Mobile station in the maritime mobile service OE Oceanographic data interrogation station Oceanographic data interrogation station OD Oceanographic data station Oceanographic data station Generic FA Aeronautical station Land station in the aeronautical mobile service Aeronautical mobile MA Aircraft station Mobile station in the aeronautical mobile service Aeronautical mobile Route FD Aeronautical station Land station in the aeronautical mobile (R) service Aeronautical mobile Off FG Aeronautical station Land station in the aeronautical mobile (OR) service Route RN Radionavigation land station Land station in the radionavigation service Generic Radionavigation NR Radionavigation mobile station Mobile station in the radionavigation service NL Maritime radionavigation land station Land station in the maritime radionavigation service Maritime Radionavigation RM Maritime radionavigation mobile station -
Analysis and Survey on Past, Present and Future Generation in Mobile Communication
IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727 PP 30-36 www.iosrjournals.org Analysis and Survey on Past, Present and Future Generation in Mobile communication Shrikant R Tripathi1 and Sushil Khaparde2 1G.H.Raisoni Institute of Technology Nagpur (M.S.) India 2Bhavbhuti Mahavidyalaya Amgaon Gondia, Dist-Gondia (M.S.) India Abstract: From past year wireless technology makes enormous growth. Evolution of wireless technology is reached at 7.5G. Wireless technology FG (Future generation) mobile communications will have higher data transmission rates in 6G and. 7G. Wireless technology is continuously one of the hottest areas that are developing at a high speed, with advanced techniques emerging in all the fields of mobile and wireless communications. Current times are just the beginning for deploying 5G mobile communication systems. At present we have many technologies each capable of performing functions like supporting voice traffic using voice over IP (VoIP), broadband data access in mobile environment etc., but there is a great need of deploying such technologies that can integrate all these systems into a single unified system. 8G presents a solution of this problem as it is all about seamlessly integrating the terminals, networks and applications. Our aim is to empower the community with world class broadband capabilities, establishing a future-proof groundwork for new ideas and opportunities to build on. The Communications Revolution starts here. Keywords-OFDMA,WiMAX,SDR,MIMO,STBC,0G,1G, 2G, 3G, 4G,5G,6G,7G,CDMA,TDMA,FDMA,GSM I. INTRODUCTION The mobile communication systems and the wireless communication technologies have been proving very fast day by day. -
(12) United States Patent (10) Patent No.: US 9.420.475 B2 Parron Et Al
USOO9420475B2 (12) United States Patent (10) Patent No.: US 9.420.475 B2 Parron et al. (45) Date of Patent: Aug. 16, 2016 (54) RADIO COMMUNICATION DEVICES AND 6,735,192 B1* 5/2004 Fried ................. HO4L 29,06027 METHODS FOR CONTROLLING ARADO 370,352 6,862.298 B1* 3/2005 Smith et al. ................... 370,516 COMMUNICATION DEVICE 7,103,063 B2 * 9/2006 Fang ........... 370/452 (71) Applicant: Intel Mobile Communications GmbH, 7.961,755 B2* 6/2011 Harel et al. ... 370/466 8,503,414 B2 * 8/2013 Ho et al. ....................... 370,338 Neubiberg (DE) 8,750,849 B1* 6/2014 Adib ....................... HO4L 47.10 (72) Inventors: Jerome Parron, Fuerth (DE); Peter 455,412.2 9,154,569 B1 * 10/2015 Dropps ................... HO4L 67/28 Kroon, Green Brook, NJ (US) 2004/0047331 A1 3/2004 Jang (73) Assignee: INTEL DEUTSCHLAND GMBH, 2004/0170186 A1* 9, 2004 Shao ................... HO4L 12,5693 Neubiberg (DE) 370,412 2005. O152280 A1* 7, 2005 Pollin ..................... HO4L 41.00 (*) Notice: Subject to any disclaimer, the term of this 370,252 patent is extended or adjusted under 35 2006, OO77994 A1 4/2006 Spindola et al. 2006/0251130 A1* 11/2006 Greer ...................... G1 OL 21/04 U.S.C. 154(b) by 0 days. 370,508 (21) Appl. No.: 13/762,408 (Continued) (22) Filed: Feb. 8, 2013 FOREIGN PATENT DOCUMENTS (65) Prior Publication Data CN 1496.157 A 5, 2004 US 2014/022656O A1 Aug. 14, 2014 OTHER PUBLICATIONS (51) Int. Cl. 3GPP TS 26.114 V12.0.0 (Dec. 2012); Technical Specification H0474/00 (2009.01) Group Services and System Aspects; IP Multimedia Subsystem H04/24/02 (2009.01) (IMS); Multimedia Telephony; Media handling and interaction H04L L/20 (2006.01) (Release 12); pp.