Barker Aug 0 1 Libraries

Total Page:16

File Type:pdf, Size:1020Kb

Barker Aug 0 1 Libraries Software Defined Radio: A System Engineering View of Platform Architecture and Market Diffusion by Moise N. Solomon Masters of Science in Electrical Engineering Northeastern University, 1992 Bachelor of Science in Electrical Engineering University of Massachusetts - Amherst, 1988 Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management at the Massachusetts Institute of Technology January 2002 2002 Moise N. Solomon. All Rights Reserved The author hereby grant to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author. ......................................................... System Design and Management Program, January 2002 Certified B y.......... ....................... James M. Utterback David J. McGrath Jr. Professor of Management and Innovation Thesis Supervisor A ccepted B y.......................................... Prof. Steven D. Eppinger, LFM/SDM Co-Director General Motors Leaders for Manufacturing or of Management Science and Engineering Systems Accepted By....................... ................... ........... Paul A. I(a e, LFMSDM Co-Director Professor of Aeronautics & Astronautics and Engineering Systems MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1 BARKER AUG 0 1 LIBRARIES Software Defined Radio: A System Engineering View of Platform Architecture and Market Diffusion By Moise N. Solomon Submitted to the System Design and Management Program on January XX, 2002 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management ABSTRACT As complexity and ambiguity in products and customer needs increase, existing companies are being forced toward new organizational models. New products require integrating knowledge across technologies, architectures, and functions in new ways, building product platforms that can adapt to changes in markets and product design throughout the product development process. In particular, the wireless telecommunications industry is plagued by multiple incompatible dominant second-generation standards, with each with separate migration paths to future third generation functionality. The high initial investments in spectrum and infrastructure, and corresponding switching costs, call out for a technological solution that can both evolve with the rapid advances in technology and potentially operates seamlessly across multiple incompatible networks to unify a highly fragmented system. In a system engineering context, this thesis investigates the use of software define radio technology (SDR) as a potential replacement for hardware solutions to the multiple air interface standard problem. This thesis investigates the role of product platform architectures in product market diffusion by studying the selection of appropriate system and product architectures, product market diffusion, and the formation of a system dominant design. Using software defined radio (SDR) technology in the wireless telecommunications industry as a case study, the emergence of SDR as a potential replacement for multiple mobile phone standards is investigated. Compared with interim compatibility solutions that combine multiple air interfaces through hardware. SDRs are an emerging technology that promises to combine multiple air-interfaces into a single wireless phone platform though software configuration. Market and organizational disruptions are determined, and how platform architecture concepts can be used to mitigate these disruptions. The history of the wireless telecommunications industry is presented to highlight the determinants of product and standards success in the wireless industry. The transition between first-generation (iG) wireless, second-generation (2G) wireless, and the interim high data rate second-generation (2.5 G) system currently being rolled out is discussed. Geographical differences in standards acceptance and the role of government policies are discussed. The strong network effects in the industry are illustrated by the late success of GSM technology in the United States market. The mode of technological standard interaction or competition is determined through the use of the Lotka-Volterra model of technological interaction and lessons learned applied to third generation systems. Plans for third generation (3G) wireless are presented, and the various transition paths from 2G to 3G are discussed. The challenges of transitioning between technologies (technological discontinuities) are highlighted through a discussion of the installed base of legacy '3 III equipment. Software defined radio (SDR) technology is presented, and a platform architecture is developed in the context of 3G market penetration. The use of appropriate flexible SDR system architectures in light of rapidly changing technological and market innovations is discussed. Thesis Advisor: James M. Utterback Title: David J. McGrath Jr. Professor of Management and Innovation 4 TABLE OF CONTENTS ABSTRACT ................................................................................................. ................................................. 3 TABLE OF CO NTENTS ............................................................................................................................... 5 LIST OF FIGURESS........................................................................................................................................ 7 LIST OFTABLES ......................................................................................................................................... 9 A CKNOW LEDGEM ENTS .......................................................................................................................... 11 SECTION 1: INTRODUCTION.................................................................................................................. 13 SECTION 2: THEORE TICAL FRAMEW ORK ..................................................................................... 17 Introduction............................................................................................................................................... 17 Dominant D esign Overview ..................................................................................................................... 17 Diffusion of Innovations.......................................................................................................................... 19 Product Platform s ..................................................................................................................................... 27 Increasing Returns, Path Dependence, Network Effects, and Gateway Innovations..................28 SECTION 3: W IRELESS INDUSTRY OVERVIEW ................................................................................. 31 Introduction ............................................................................................................................................ 31 History of W ireless Comm unications System s..................................................................................... 33 The Internet and Packet Radio.................................................................................................................. 36 Overview of W ireless Cellular Com m unications .................................................................................... 37 Overview of IG - Analog......................................................................................................................... 40 A M P S ................................................................................................................................................... 4 1 C -4 5 0 .................................................................................................................................................... 4 1 C o m v ik ................................................................................................................................................. 45 N M T -45 0 .............................................................................................................................................. 4 5 N M T -9 0 0 .............................................................................................................................................. 4 5 N TT ...................................................................................................................................................... 4 9 RC -20 0 0 ............................................................................................................................................... 51 T A CS .................................................................................................................................................... 5 1 Overview of Second-Generation (2G) Technology .............................................................................. 57 IS-95 - Code Division Multiple Access (CDMA - now referred to as cdmaOne)..................59 Global System for M obile Com munications (GSM ) ........................................................................... 63 Time Division Multiple Access (TDMA): IS-54/IS-136 in North America......................63 Personal D igital Cellular (PDC) in Japan.......................................................................................... 65 2G M obile D- ata Services 23 ......................................................................................................................
Recommended publications
  • When Is a Microprocessor Not a Microprocessor? the Industrial Construction of Semiconductor Innovation I
    Ross Bassett When is a Microprocessor not a Microprocessor? The Industrial Construction of Semiconductor Innovation I In the early 1990s an integrated circuit first made in 1969 and thus ante­ dating by two years the chip typically seen as the first microprocessor (Intel's 4004), became a microprocessor for the first time. The stimulus for this piece ofindustrial alchemy was a patent fight. A microprocessor patent had been issued to Texas Instruments, and companies faced with patent infringement lawsuits were looking for prior art with which to challenge it. 2 This old integrated circuit, but new microprocessor, was the ALl, designed by Lee Boysel and used in computers built by his start-up, Four-Phase Systems, established in 1968. In its 1990s reincarnation a demonstration system was built showing that the ALI could have oper­ ated according to the classic microprocessor model, with ROM (Read Only Memory), RAM (Random Access Memory), and I/O (Input/ Output) forming a basic computer. The operative words here are could have, for it was never used in that configuration during its normal life­ time. Instead it was used as one-third of a 24-bit CPU (Central Processing Unit) for a series ofcomputers built by Four-Phase.3 Examining the ALl through the lenses of the history of technology and business history puts Intel's microprocessor work into a different per­ spective. The differences between Four-Phase's and Intel's work were industrially constructed; they owed much to the different industries each saw itselfin.4 While putting a substantial part ofa central processing unit on a chip was not a discrete invention for Four-Phase or the computer industry, it was in the semiconductor industry.
    [Show full text]
  • Outline ECE473 Computer Architecture and Organization • Technology Trends • Introduction to Computer Technology Trends Architecture
    Outline ECE473 Computer Architecture and Organization • Technology Trends • Introduction to Computer Technology Trends Architecture Lecturer: Prof. Yifeng Zhu Fall, 2009 Portions of these slides are derived from: ECE473 Lec 1.1 ECE473 Lec 1.2 Dave Patterson © UCB Birth of the Revolution -- What If Your Salary? The Intel 4004 • Parameters – $16 base First Microprocessor in 1971 – 59% growth/year – 40 years • Intel 4004 • 2300 transistors • Initially $16 Æ buy book • Barely a processor • 3rd year’s $64 Æ buy computer game • Could access 300 bytes • 16th year’s $27 ,000 Æ buy cacar of memory • 22nd year’s $430,000 Æ buy house th @intel • 40 year’s > billion dollars Æ buy a lot Introduced November 15, 1971 You have to find fundamental new ways to spend money! 108 KHz, 50 KIPs, 2300 10μ transistors ECE473 Lec 1.3 ECE473 Lec 1.4 2002 - Intel Itanium 2 Processor for Servers 2002 – Pentium® 4 Processor • 64-bit processors Branch Unit Floating Point Unit • .18μm bulk, 6 layer Al process IA32 Pipeline Control November 14, 2002 L1I • 8 stage, fully stalled in- cache ALAT Integer Multi- Int order pipeline L1D Medi Datapath RF @3.06 GHz, 533 MT/s bus cache a • Symmetric six integer- CLK unit issue design HPW DTLB 1099 SPECint_base2000* • IA32 execution engine 1077 SPECfp_base2000* integrated 21.6 mm L2D Array and Control L3 Tag • 3 levels of cache on-die totaling 3.3MB 55 Million 130 nm process • 221 Million transistors Bus Logic • 130W @1GHz, 1.5V • 421 mm2 die @intel • 142 mm2 CPU core L3 Cache ECE473 Lec 1.5 ECE473 19.5mm Lec 1.6 Source: http://www.specbench.org/cpu2000/results/ @intel 2006 - Intel Core Duo Processors for Desktop 2008 - Intel Core i7 64-bit x86-64 PERFORMANCE • Successor to the Intel Core 2 family 40% • Max CPU clock: 2.66 GHz to 3.33 GHz • Cores :4(: 4 (physical)8(), 8 (logical) • 45 nm CMOS process • Adding GPU into the processor POWER 40% …relative to Intel® Pentium® D 960 When compared to the Intel® Pentium® D processor 960.
    [Show full text]
  • 1. Definition of Computers Technically, a Computer Is a Programmable Machine
    1. Definition of computers Technically, a computer is a programmable machine. This means it can execute a programmed list of instructions and respond to new instructions that it is given. 2. What are the advantages and disadvantages of using computer? Advantages are : communication is improved, pay bill's online, people have access to things they would not have had before (for instance old people who cannot leave the house they can buy groceries online) Computers make life easier. The disadvantages are: scams, fraud, people not going out as much, we do not yet know the effects of computers and pregnancy or the emissions that computers make,. bad posture from sitting too long at a desk, repetitive strain injuries and the fact that most organizations expect everyone to own a computer. Year 1901 The first radio message is sent across the Atlantic Ocean in Morse code. 1902 3M is founded. 1906 The IEC is founded in London England. 1906 Grace Hopper is born December 9, 1906. 1911 Company now known as IBM on is incorporated June 15, 1911 in the state of New York as the Computing - Tabulating - Recording Company (C-T-R), a consolidation of the Computing Scale Company, and The International Time Recording Company. 1912 Alan Turing is born June 23, 1912. 1912 G. N. Lewis begins work on the lithium battery. 1915 The first telephone call is made across the continent. 1919 Olympus is established on October 12, 1919 by Takeshi Yamashita. 1920 First radio broadcasting begins in United States, Pittsburgh, PA. 1921 Czech playwright Karel Capek coins the term "robot" in the 1921 play RUR (Rossum's Universal Robots).
    [Show full text]
  • Class-Action Lawsuit
    Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: slarson@stollberne.com Jennifer S. Wagner, OSB No. 024470 Email: jwagner@stollberne.com STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys.
    [Show full text]
  • Intel Presentation Template Overview
    Intel 2016 Corporate Overview Updated September 2016 Intel is evolving. To a company that powers the data center and billions of smart, connected devices Intel’s Vision: If it’s smart and connected, it’s best with Intel. 2 Intel’s foundation: MOORE’S LAW History of Intel • 1968: Intel is founded by Robert Noyce and Gordon Moore • 1971: World’s first microprocessor • Now: Innovation that expands the reach and promise of computing 4 Executing to Moore’s Law Enabling new devices with higher functionality and complexity while controlling power, cost, and size Strained Silicon Hi-K Metal Gate 3D Transistors 90 nm 65 nm 45 nm 32 nm 22 nm 14 nm 10 nm 7 nm 5 Intel’s IDM Advantage Process Technology Intel Architecture Product Design Co-Optimized Process & Product Common Co-Optimized Architecture & Software Common Best Performance, Power, Security TOOLS Rapid Product Ramp GOALS Software Manufacturing Packaging 6 Intel is evolving Virtuous Cycle of Growth: our technology drives experiences 8 Intel delivers end to end solutions New Memory Client IOT Data Center Security Programmable Technologies Solutions Solutions 9 intel software: extensive Value Things Network Cloud/Data Center Wind River® Intel® Developer Zone Platform Security Simics Intel® Context Sensing Intel® CoFluent™ Technology Enabling Ecosystem Ecosystem Brillo OS …among others… Enabling 10 Intel is changing the world Corporate Responsibility at Intel Environmental Sustainability Supply Chain Responsibility Diversity & Inclusion Social Impact www.intel.com/responsibility www.intel.com/diversity 12 Barron’s. World’s Most Respected Companies Corporate Knights. Global 100 Most Sustainable Corporations Corporate Responsibility Magazine. 100 Best Corporate Citizens (17th year) Diversity MBA magazine.
    [Show full text]
  • TETRA ,Shaahin Bahman85
    شاهين ارتباط تهران شركت مهندسين مشاور شاهين ارتباط تهران 1 شاهين ارتباط تهران اختراع تلفن و شکل گيری شبکه تلفن • 1876 هيﻻدی : هعرفی تلفن توسط گراهام بل • • 2 شاهين ارتباط تهران ظهور هراكس سوئيچ • هيﻻدی : • اختراع سيستن سوئيچينگ هکانيکی توسط براون استراگر 3 شاهين ارتباط تهران اختراع بی سين هوبايل )سيار( چرا سيستن های بی سين –در هر هكانی –در هر زهانی –توام سرويس های هورد نظر در اختيار هشترك قرار گيرد. 4 Mobile شاهين ارتباط تهران بايد به صورتی باشد كه: 5 شاهين ارتباط تهران نسل های سيستن های سيار (NMT , AMPS , TACS) • (GSM900 , DCS1900 , PDC) • TETRA (GPRS, EDGE 2.5 • (UMTS , IMT2000) • Wi-MAX , WLAN , • Board Band GSM 6 شاهين ارتباط تهران PMR • PMR is the oldest form of mobile communications – it has been in use for over 70 years. It is used by many taxi and courier firms, security guards and utility companies. Many rural businesses choose the PMR option, because they find that they simply do not have mobile phone coverage, or they are in an area where the network frequently goes down. 7 First generation شاهين ارتباط تهران هشكﻻت نسل اول • • • • • • • (Roaming) 8 شاهين ارتباط تهران نسل اول ) PMR ( • جهت بهبود در سيستم PMR يا Conventional سيستم ترانك ارائه گرديد. سيستم PMR به دو حالت بودند: • بيسيم های معمولی يا Conventional • بيسيم های ترانك يا سلولی هر دو آنالوگ بودند 9 شبکه های سلولی شاهين ارتباط تهران Cellular System • During the early 1980s – MPT1327 Analog cellular telephone systems were experiencing rapid growth in Europe (in Scandinavia, UK, France and Germany) • In 1983 – American (Advanced) Mobile Phone System (AMPS) developed in USA • In 1985 – Total Access Communication System (TACS) developed in UK • In 1986 – Nordic Mobile Telephony (NMT) 900 developed 10 مزیت شبکه های سلولی شاهين ارتباط تهران cellular network benefit • Group call • Roaming • Supports both semi-duplex and full duplex calls • Average call duration is much shorter • Calls can have multiple levels of priority • Support data applications like AVL 11 2 شاهين ارتباط تهران LIST of Analogue Cellular NMT900 Nordic Mobile Telephones/900.
    [Show full text]
  • An Analysis of Emerging Security Threats in 3G/4G Cellular Network Deployment in Pakistan
    International Journal of Computer and Information Technology (ISSN: 2279 – 0764) Volume 04 – Issue 02, March 2015 An Analysis of Emerging Security Threats in 3G/4G Cellular Network Deployment in Pakistan Muhammad Ahmad*, Munam Ali Shah, Manzoor Ilahi Tamimy Department of Computer Science COMSATS Institute of Information Technology Islamabad, Pakistan *Email: mahmad.comsats [AT] gmail.com Abstract—The advancements in wireless communication are where different wireless technologies are merged to form an increasing tremendously. The transition from legacy cellular IP based core network. This technology also provides networks to 3rd Generation (3G) cellular networks and 4th continuous services to their consumer with improved quality Generation (4G) cellular networks has globally taken of service (QoS) fast Internet and mobile TV [4][5]. Other place.The Government of Pakistan has announced the applications of 3G/4G technology are video conferencing, deployment of 3G/4G technology in the country. In this paper, online examination and consultancy by a doctor, and banking we investigate the emerging security threats to 3G/4G cellular industry [6]. Online tutoring, online lecture and quickly network in Pakistan. Our contribution is twofold. Firstly, we tracking student and teachers performance are some of the highlight modern security attacks that can hinder the smooth other exciting features of 3G/4G networks[7][8]. In addition delivery of mobile phone services and secondly, we conduct a to the technical reasons, the service providers must make survey questionnaire about the emerging security threats to mobile users in Pakistan. The results obtained from the survey sure that their infrastructure and services are resilient against reveals some interesting facts which will help the stake holders all kinds of security threats and vulnerabilities.
    [Show full text]
  • Microprocessors in the 1970'S
    Part II 1970's -- The Altair/Apple Era. 3/1 3/2 Part II 1970’s -- The Altair/Apple era Figure 3.1: A graphical history of personal computers in the 1970’s, the MITS Altair and Apple Computer era. Microprocessors in the 1970’s 3/3 Figure 3.2: Andrew S. Grove, Robert N. Noyce and Gordon E. Moore. Figure 3.3: Marcian E. “Ted” Hoff. Photographs are courtesy of Intel Corporation. 3/4 Part II 1970’s -- The Altair/Apple era Figure 3.4: The Intel MCS-4 (Micro Computer System 4) basic system. Figure 3.5: A photomicrograph of the Intel 4004 microprocessor. Photographs are courtesy of Intel Corporation. Chapter 3 Microprocessors in the 1970's The creation of the transistor in 1947 and the development of the integrated circuit in 1958/59, is the technology that formed the basis for the microprocessor. Initially the technology only enabled a restricted number of components on a single chip. However this changed significantly in the following years. The technology evolved from Small Scale Integration (SSI) in the early 1960's to Medium Scale Integration (MSI) with a few hundred components in the mid 1960's. By the late 1960's LSI (Large Scale Integration) chips with thousands of components had occurred. This rapid increase in the number of components in an integrated circuit led to what became known as Moore’s Law. The concept of this law was described by Gordon Moore in an article entitled “Cramming More Components Onto Integrated Circuits” in the April 1965 issue of Electronics magazine [338].
    [Show full text]
  • Demystifying Internet of Things Security Successful Iot Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M
    Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment — Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Ned Smith David M. Wheeler Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment Sunil Cheruvu Anil Kumar Chandler, AZ, USA Chandler, AZ, USA Ned Smith David M. Wheeler Beaverton, OR, USA Gilbert, AZ, USA ISBN-13 (pbk): 978-1-4842-2895-1 ISBN-13 (electronic): 978-1-4842-2896-8 https://doi.org/10.1007/978-1-4842-2896-8 Copyright © 2020 by The Editor(s) (if applicable) and The Author(s) This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material.
    [Show full text]
  • Moore's Law Motivation
    Motivation: Moore’s Law • Every two years: – Double the number of transistors CprE 488 – Embedded Systems Design – Build higher performance general-purpose processors Lecture 8 – Hardware Acceleration • Make the transistors available to the masses • Increase performance (1.8×↑) Joseph Zambreno • Lower the cost of computing (1.8×↓) Electrical and Computer Engineering Iowa State University • Sounds great, what’s the catch? www.ece.iastate.edu/~zambreno rcl.ece.iastate.edu Gordon Moore First, solve the problem. Then, write the code. – John Johnson Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.2 Motivation: Moore’s Law (cont.) Motivation: Dennard Scaling • The “catch” – powering the transistors without • As transistors get smaller their power density stays melting the chip! constant 10,000,000,000 2,200,000,000 Transistor: 2D Voltage-Controlled Switch 1,000,000,000 Chip Transistor Dimensions 100,000,000 Count Voltage 10,000,000 ×0.7 1,000,000 Doping Concentrations 100,000 Robert Dennard 10,000 2300 Area 0.5×↓ 1,000 130W 100 Capacitance 0.7×↓ 10 0.5W 1 Frequency 1.4×↑ 0 Power = Capacitance × Frequency × Voltage2 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Power 0.5×↓ Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.3 Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.4 Motivation Dennard Scaling (cont.) Motivation: Dark Silicon • In mid 2000s, Dennard scaling “broke” • Dark silicon – the fraction of transistors that need to be powered off at all times (due to power + thermal
    [Show full text]
  • Energy Behaviour of NUCA Caches in Cmps
    Energy behaviour of NUCA caches in CMPs Alessandro Bardine, Pierfrancesco Foglia, Julio Sahuquillo Francesco Panicucci, Marco Solinas Departmento de Ingeniería de Sistemas y Computadores Dipartimento di Ingegneria dell’Informazione Universidad Politécnica de Valencia Università di Pisa Valencia, Spain Pisa, Italy jsahuqui@disca.upv.es {a.bardine, foglia, f.panicucci, marco.solinas}@iet.unipi.it Abstract—Advances in technology of semiconductor make into many independent banks usually interconnected by a nowadays possible to design Chip Multiprocessor Systems equipped switched network. In this model the access latency is with huge on-chip Last Level Caches. Due to the wire delay proportional to the physical distance of the banks from the problem, the use of traditional cache memories with a uniform requesting element (typically one core or a single cache access time would result in unacceptable response latencies. NUCA controller). The mapping between cache lines and banks can be (Non Uniform Cache Access) architecture has been proposed as a performed either in a static or dynamic way (namely S-NUCA viable solution to hide the adverse impact of wires delay on and D-NUCA); in the former, each line can exclusively reside in performance. Many previous studies have focused on the a single predetermined bank, while in the latter a line can effectiveness of NUCA architectures, but the study of the energy dynamically migrate from one bank to another. When adopting and power aspects of NUCA caches is still limited. the dynamic approach, blocks are mapped to a set of banks, In this work, we present an energy model specifically suited for NUCA-based CMP systems, together with a methodology to employ called bankset, and they are able to migrate among the banks the model to evaluate the NUCA energy consumption.
    [Show full text]
  • Michael Steer
    Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary.
    [Show full text]