Sarker, Swapan Kumar (2017) Spatial and Temporal Patterns of Mangrove Abundance, Diversity and Functions in the Sundarbans

Total Page:16

File Type:pdf, Size:1020Kb

Sarker, Swapan Kumar (2017) Spatial and Temporal Patterns of Mangrove Abundance, Diversity and Functions in the Sundarbans Sarker, Swapan Kumar (2017) Spatial and temporal patterns of mangrove abundance, diversity and functions in the Sundarbans. PhD thesis. http://theses.gla.ac.uk/8499/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] SPATIAL AND TEMPORAL PATTERNS OF MANGROVE ABUNDANCE, DIVERSITY AND FUNCTIONS IN THE SUNDARBANS Swapan Kumar Sarker A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Supervisors: Professor Jason Matthiopoulos & Dr Richard Reeve Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow September 2017 Abstract Mangroves are a group of woody plants that occur in the dynamic tropical and subtropical intertidal zones. Mangrove forests offer numerous ecosystem services (e.g. nutrient cycling, coastal protection and fisheries production) and support costal livelihoods worldwide. Rapid environmental changes and historical anthropogenic pressures have turned mangrove forests into one of the most threatened and rapidly vanishing habitats on Earth. Yet, we have a restricted understanding of how these pressures have influenced mangrove abundance, composition and functions, mostly due to limited availability of mangrove field data. Such knowledge gaps have obstructed mangrove conservation programs across the tropics. This thesis focuses on the plants of Earth’s largest continuous mangrove forest — the Sundarbans — which is under serious threat from historical and future habitat degradation, human exploitation and sea level rise. Using species, environmental, and functional trait data that I collected from a network of 110 permanent sample plots (PSPs), this thesis aims to understand habitat preferences of threatened mangroves, to explore spatial and temporal dynamics and the key drivers of mangrove diversity and composition, and to develop an integrated approach for predicting functional trait responses of plants under current and potential future environmental scenarios. I found serious detrimental effects of increasing soil salinity and historical tree harvesting on the abundance of the climax species Heritiera fomes. All species showed clear habitat preferences along the downstream-upstream gradient. The magnitude of species abundance responses to nutrients, elevation, and stem density varied between species. Species-specific density maps suggest that the existing protected area network (PAN) does not cover the density hotspots of any of the threatened mangrove species. Using tree data collected from different salinity zones in the Sundarbans (hypo-, meso-, and hypersaline) at four historical time points: 1986, 1994, 1999 and 2014, I found that the hyposaline mangrove communities were the most diverse and heterogeneous in species composition in all historical time points while the 2 hypersaline communities were the least diverse and most homogeneous. I detected a clear trend of declining compositional heterogeneity in all ecological zones since 1986, suggesting ecosystem-wide biotic homogenization. Over the 28 years, the hypersaline communities have experienced radical shifts in species composition due to population increase and range expansion of the disturbance specialist Ceriops decandra and local extinction or range contraction of many endemics including the globally endangered H. fomes. Applying habitat-based biodiversity modelling approach, I found historical tree harvesting, siltation, disease and soil alkalinity as the key stressors that negatively influenced the diversity and distinctness of the mangrove communities. In contrast, species diversity increased along the downstream – upstream, and riverbank — forest interior gradients, suggesting late successional upstream and forest interior communities were more diverse than the early successional downstream and riverbank communities. Like the species density hotspots, the existing PAN does not cover the remaining biodiversity hotspots. Using a novel integrated Bayesian modelling approach, I was able to generate trait-based predictions through simultaneously modelling trait-environment correlations (for multiple traits such as tree canopy height, specific leaf area, wood density and leaf succulence for multiple species, and multiple environmental drivers) and trait-trait trade-offs at organismal, community and ecosystem levels, thus proposing a resolution to the ‘fourth-corner problem’ in community ecology. Applying this approach to the Sundarbans, I found substantial intraspecific trade-offs among the functional traits in many tree species, detrimental effects of increasing salinity, siltation and soil alkalinity on growth related traits and parallel plastic enhancement of traits related to stress tolerance. My model predicts an ecosystem-wide drop in total biomass productivity under all anticipated stress scenarios while the worst stress scenario (a 50% rise in salinity and siltation) is predicted to push the ecosystem to lose 30% of its current total productivity by 2050. Finally, I present an overview of the key results across the work, the study’s limitations and proposals for future work. 3 Table of Contents Abstract ...................................................................................... 2 Table of Contents .......................................................................... 4 List of Tables ................................................................................ 6 List of Figures ............................................................................... 7 Acknowledgements ........................................................................ 10 Author’s Declaration ...................................................................... 13 Abbreviations .............................................................................. 15 Chapter 1. General Introduction 1.1 What are mangroves? .............................................................. 17 1.2 Mangroves are threatened world-wide .......................................... 18 1.3 Modelling mangrove abundance .................................................. 19 1.4 Modelling mangrove biodiversity ................................................. 21 1.5 Quantifying trait-environment relationships ................................... 24 1.6 Study site: the Sundarbans ....................................................... 26 1.7 Aims of the thesis .................................................................. 27 Chapter 2. The spatial distribution and habitat preferences of threatened mangroves in the Sundarbans: Implications for conservation 2.1 Abstract ............................................................................. 30 2.2 Introduction ......................................................................... 30 2.3 Methods .............................................................................. 32 2.4 Results ............................................................................... 39 2.5 Discussion ........................................................................... 48 2.6 Conclusions .......................................................................... 54 Chapter 3. Spatio-temporal patterns in mangrove biodiversity in the Sundarbans 3.1 Abstract ............................................................................. 55 3.2 Introduction ......................................................................... 56 3.3 Methods .............................................................................. 58 3.4 Results ............................................................................... 65 3.5 Discussion ........................................................................... 73 3.6 Conclusions .......................................................................... 76 Chapter 4. Uncovering the drivers of mangrove biodiversity in the Sundarbans 4.1 Abstract ............................................................................. 77 4.2 Introduction ......................................................................... 78 4.3 Methods .............................................................................. 80 4.4 Results ............................................................................... 85 4 4.5 Discussion ........................................................................... 92 4.6 Conclusions .......................................................................... 99 Chapter 5. Solving the fourth-corner problem: Forecasts of functional traits and ecosystem productivity from spatial, multispecies, trait-based models 5.1 Abstract ............................................................................ 100 5.2 Introduction ........................................................................ 101 5.3 Methods ............................................................................. 104 5.4 Results .............................................................................
Recommended publications
  • Fire and Nonnative Invasive Plants September 2008 Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L
    United States Department of Agriculture Wildland Fire in Forest Service Rocky Mountain Research Station Ecosystems General Technical Report RMRS-GTR-42- volume 6 Fire and Nonnative Invasive Plants September 2008 Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L. 2008. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 355 p. Abstract—This state-of-knowledge review of information on relationships between wildland fire and nonnative invasive plants can assist fire managers and other land managers concerned with prevention, detection, and eradi- cation or control of nonnative invasive plants. The 16 chapters in this volume synthesize ecological and botanical principles regarding relationships between wildland fire and nonnative invasive plants, identify the nonnative invasive species currently of greatest concern in major bioregions of the United States, and describe emerging fire-invasive issues in each bioregion and throughout the nation. This volume can help increase understanding of plant invasions and fire and can be used in fire management and ecosystem-based management planning. The volume’s first part summarizes fundamental concepts regarding fire effects on invasions by nonnative plants, effects of plant invasions on fuels and fire regimes, and use of fire to control plant invasions. The second part identifies the nonnative invasive species of greatest concern and synthesizes information on the three topics covered in part one for nonnative inva- sives in seven major bioregions of the United States: Northeast, Southeast, Central, Interior West, Southwest Coastal, Northwest Coastal (including Alaska), and Hawaiian Islands.
    [Show full text]
  • Potential Vegetation, Disturbance, Plant Succession, and Other Aspects of Forest Ecology
    United States Department of Agriculture Forest Service Potential Vegetation, Disturbance, Pacific Northwest Plant Succession, and Other Aspects of Region Umatilla National Forest Ecology Forest F14-SO-TP-09-00 May 2000 David C. Powell The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and man- agement of the national forests and national grasslands, it strives – as directed by Congress – to provide increasingly greater service to a growing nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orienta- tion, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabili- ties who require alternative means for communication of program information (Braille, large print, audio- tape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720- 5964 (voice or TDD). USDA is an equal opportunity provider and employer. ii Potential Vegetation, Disturbance, Plant Succession, and Other Aspects of Forest Ecology David C. Powell U.S. Department of Agriculture, Forest Service Pacific Northwest Region Umatilla National Forest 2517 SW Hailey Avenue Pendleton, OR 97801 Technical Publication F14-SO-TP-09-00 May 2000 iii AUTHOR DAVID C.
    [Show full text]
  • Bangladesh Journal of Forest Science Bangladesh Journal of Forest Science Bangladesh Journal of Forest Science Volume 35, Nos
    ISSN 1021-3279 Volume 35, Nos. 1 & 2 January - December, 2019 Volume 35, Nos. (1 & 2), January - December, 2019 Bangladesh Journal of Forest Science Bangladesh Journal of Forest Science Bangladesh Journal of Forest Science Volume 35, Nos. 1 & 2 January - December, 2019 35, Nos. 1 & 2 January - December, Volume BANGLADESH FOREST RESEARCH INSTITUTE Printed & Published by The Director, Bangladesh Forest Research Institute Chittagong, Bangladesh from the- The Rimini International, Motijheel, Dhaka. CHITTAGONG, BANGLADESH ISSN 1021-3279 Bangladesh Journal of Forest Science Volume 35, Nos. (1 & 2) January - December, 2019 BANGLADESH FOREST RESEARCH INSTITUTE CHATTOGRAM, BANGLADESH ISSN 1021-3279 Bangladesh Journal of Forest Science Volume 35, Number 1 & 2 January - December, 2019 EDITORIAL BOARD Chairman Dr. Khurshid Akhter Director Bangladesh Forest Research Institute Chattogram, Bangladesh Member Dr. Rafiqul Haider Dr. Hasina Mariam Dr. Daisy Biswas Md. Jahangir Alam Dr. Md. Ahsanur Rahman Honorary Members Prof. Dr. Mohammad Mozaffar Hossain Prof. Dr. Mohammad Kamal Hossain Prof. Dr. Mohammad Ismail Miah Prof. Dr. AZM Manzoor Rashid Prof. Dr. M Mahmud Hossain Dr. Md. Saifur Rahman BOARD OF MANAGEMENT Chairman Members Editor Associate Editors Assistant Editors Editor Dr. M. Masudur Rahman Associate Editors Dr. Md. Mahbubur Rahman Dr. Mohammad Jakir Hossain Assistant Editors Nusrat Sultana Eakub Ali * Published in July, 2019 ISSN 1021-3279 C O N T E N T S New Approach to Select Top-dying Resistant Sundari (Heritiera fomes) Trees from the Sundarban of Bangladesh 01-15 Md. Masudur Rahman, ASM Helal Siddiqui and Sk. Md. Mehedi Hasan Optimization of In vitro Shoot Production and Mass Propagation of Gynura procumbens from Shoot Tip Culture 16-26 Md.
    [Show full text]
  • Stand Structure and Species Diversity Regulate Biomass Carbon Stock Under Major Central Himalayan Forest Types of India Siddhartha Kaushal and Ratul Baishya*
    Kaushal and Baishya Ecological Processes (2021) 10:14 https://doi.org/10.1186/s13717-021-00283-8 RESEARCH Open Access Stand structure and species diversity regulate biomass carbon stock under major Central Himalayan forest types of India Siddhartha Kaushal and Ratul Baishya* Abstract Background: Data on the impact of species diversity on biomass in the Central Himalayas, along with stand structural attributes is sparse and inconsistent. Moreover, few studies in the region have related population structure and the influence of large trees on biomass. Such data is crucial for maintaining Himalayan biodiversity and carbon stock. Therefore, we investigated these relationships in major Central Himalayan forest types using non- destructive methodologies to determine key factors and underlying mechanisms. Results: Tropical Shorea robusta dominant forest has the highest total biomass density (1280.79 Mg ha−1) and total carbon density (577.77 Mg C ha−1) along with the highest total species richness (21 species). The stem density ranged between 153 and 457 trees ha−1 with large trees (> 70 cm diameter) contributing 0–22%. Conifer dominant forest types had higher median diameter and Cedrus deodara forest had the highest growing stock (718.87 m3 ha−1); furthermore, C. deodara contributed maximally toward total carbon density (14.6%) among all the 53 species combined. Quercus semecarpifolia–Rhododendron arboreum association forest had the highest total basal area (94.75 m2 ha−1). We found large trees to contribute up to 65% of the growing stock. Nine percent of the species contributed more than 50% of the carbon stock. Species dominance regulated the growing stock significantly (R2 = 0.707, p < 0.001).
    [Show full text]
  • Is Ecological Succession Predictable?
    Is ecological succession predictable? Commissioned by Prof. dr. P. Opdam; Kennisbasis Thema 1. Project Ecosystem Predictability, Projectnr. 232317. 2 Alterra-Report 1277 Is ecological succession predictable? Theory and applications Koen Kramer Bert Brinkman Loek Kuiters Piet Verdonschot Alterra-Report 1277 Alterra, Wageningen, 2005 ABSTRACT Koen Kramer, Bert Brinkman, Loek Kuiters, Piet Verdonschot, 2005. Is ecological succession predictable? Theory and applications. Wageningen, Alterra, Alterra-Report 1277. 80 blz.; 6 figs.; 0 tables.; 197 refs. A literature study is presented on the predictability of ecological succession. Both equilibrium and nonequilibrium theories are discussed in relation to competition between, and co-existence of species. The consequences for conservation management are outlined and a research agenda is proposed focusing on a nonequilibrium view of ecosystem functioning. Applications are presented for freshwater-; marine-; dune- and forest ecosystems. Keywords: conservation management; competition; species co-existence; disturbance; ecological succession; equilibrium; nonequilibrium ISSN 1566-7197 This report can be ordered by paying € 15,- to bank account number 36 70 54 612 by name of Alterra Wageningen, IBAN number NL 83 RABO 036 70 54 612, Swift number RABO2u nl. Please refer to Alterra-Report 1277. This amount is including tax (where applicable) and handling costs. © 2005 Alterra P.O. Box 47; 6700 AA Wageningen; The Netherlands Phone: + 31 317 474700; fax: +31 317 419000; e-mail: [email protected] No part of this publication may be reproduced or published in any form or by any means, or stored in a database or retrieval system without the written permission of Alterra. Alterra assumes no liability for any losses resulting from the use of the research results or recommendations in this report.
    [Show full text]
  • 2005 Forest Ecosystem Study Unit
    TABLE OF CONTENTS Forest Ecosystems............................................................................................................... 1 What is an ecosystem?.................................................................................................... 2 Ecosystem Classification ................................................................................................ 2 What is a forest?.............................................................................................................. 5 What are the different kinds of forests?.......................................................................... 5 Why do we need forests? ................................................................................................ 6 What are the layers of a forest?....................................................................................... 8 Ecological Succession......................................................................................................... 9 How Forest Ecosystems Change..................................................................................... 9 Stages of Succession..................................................................................................... 10 How Succession Affects Energy Flow ......................................................................... 12 Species Characteristic of Georgia’s Ecosystems .......................................................... 13 Tree Identification........................................................................................................
    [Show full text]
  • Disturbance and Mosquito Diversity in the Lowland Tropical Rainforest of Central Panama Received: 28 October 2016 Jose R
    www.nature.com/scientificreports OPEN Disturbance and mosquito diversity in the lowland tropical rainforest of central Panama Received: 28 October 2016 Jose R. Loaiza1,2,3, Larissa C. Dutari1, Jose R. Rovira1,2, Oris I. Sanjur2, Gabriel Z. Laporta 4,5, Accepted: 28 June 2017 James Pecor6, Desmond H. Foley6, Gillian Eastwood7, Laura D. Kramer7, Meghan Radtke8 & Published: xx xx xxxx Montira Pongsiri8 The Intermediate Disturbance Hypothesis (IDH) is well-known in ecology providing an explanation for the role of disturbance in the coexistence of climax and colonist species. Here, we used the IDH as a framework to describe the role of forest disturbance in shaping the mosquito community structure, and to identify the ecological processes that increase the emergence of vector-borne disease. Mosquitoes were collected in central Panama at immature stages along linear transects in colonising, mixed and climax forest habitats, representing diferent levels of disturbance. Species were identifed taxonomically and classifed into functional categories (i.e., colonist, climax, disturbance-generalist, and rare). Using the Huisman-Olf-Fresco multi-model selection approach, IDH testing was done. We did not detect a unimodal relationship between species diversity and forest disturbance expected under the IDH; instead diversity peaked in old-growth forests. Habitat complexity and constraints are two mechanisms proposed to explain this alternative postulate. Moreover, colonist mosquito species were more likely to be involved in or capable of pathogen transmission than climax species. Vector species occurrence decreased notably in undisturbed forest settings. Old-growth forest conservation in tropical rainforests is therefore a highly-recommended solution for preventing new outbreaks of arboviral and parasitic diseases in anthropic environments.
    [Show full text]
  • Tree Diversity As Affected by Salinity in the Sundarban Mangrove Forests, Bangladesh
    Bangladesh J. Bot. 40(2): 197-202, 2011 (December) - Short communication TREE DIVERSITY AS AFFECTED BY SALINITY IN THE SUNDARBAN MANGROVE FORESTS, BANGLADESH * ASHFAQUE AHMED , ABDUL AZIZ, AZM NOWSHER ALI KHAN, MOHAMMAD NURUL 1 1,2,3 3 ISLAM, KAZI FARHED IQUBAL , NAZMA AND MD SHAFIQUL ISLAM Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh Key words: Tree zonation, Salinity, Remote Sensing, GIS, Heritera fomes, Ceriops decandra Abstract A botanical expedition to the Sundarban Mangrove Forests (SMF) in March, 2010 was made to study the tree diversity and their abundance as affected by salinity gradient. In six quadrats of 25m × 25m each, distributed in all four Ranges, a total of eight tree species were recorded. A maximum number of five species occurred in relatively low saline sites. Tree zonation dynamics of the forests along salinity gradient revealed an increase in the number of Ceriops decandra (goran), a salt tolerant plant in the north-eastern parts of the SMF which was dominated by Heritiera fomes (sundri), a freshwater loving plant in 1960’s. Highest importance value index (IVI) was recorded for C. decandra, which was present in all sites, except Moroghodra, a freshwater zone in Nalianala (Khulna) Range. Comparison of the Landsat images of Nalianala and Chandpai Ranges during 1989, 2000 and 2010 revealed a decreased tendency of dominance of H. fomes in the two Ranges but increased tendency of Bruguiera sexangula (kankra), Excoecaria agallocha (gewa) and Sonneratia apetala (keora). Total tree cover in 2010 decreased by about 3% from that of 1989. The changes in the tree composition have been attributed to increased salinity.
    [Show full text]
  • Contribution of Environmental Factors on in Vitro Culture of an Endangered and Endemic Mangroves Heritiera Fomes Buch.-Ham
    ISSN (E): 2349 – 1183 ISSN (P): 2349 – 9265 2(3): 192 –203, 2015 Research article Contribution of environmental factors on in vitro culture of an endangered and endemic mangroves Heritiera fomes Buch.-Ham. and Bruguiera gymnorhiza (L.) Lam. Abdul Kader1, Sankar Narayan Sinha2, Parthadeb Ghosh1* 1Cytogenetics & Plant Biotechnology Research Unit, Department of Botany, University of Kalyani, West Bengal, India 2Environmental Microbiology Research Laboratory, Department of Botany, University of Kalyani, West Bengal, India *Corresponding Author: [email protected] [Accepted: 19 October 2015] Abstract: Importance and destruction of mangroves have appeared in some recent surveys. So their restoration through tissue culture study is urgently required because in vivo propagation is plagued with unforeseen obstacles. This study describes for the first time in vitro approach for threatened species Heritiera fomes and Bruguiera gymnorhiza through callus. For initiation of callus modified MS medium was formulated for each species which correlated with soil conditions of Sundarban mangrove forest. For both species the auxin NAA, nodal or shoot tip explants and rainy season were found to be most suitable for callusing. NaCl at the concentration of 20 mM and 60 mM promoted growth for H. fomes and B. gymnorhiza callus respectively which was found to be comparative for their growth in vivo as in Sundarban. Histological study indicated morphogenicity of callus. Previous in vitro studies on mangroves were mostly based on the effect of variety of hormones and different sea salts. However this present study clearly indicates that the in vitro studies of mangroves not only depend on these factors but greatly influence by soil condition of their habitual environment, seasonal condition etc.
    [Show full text]
  • Old Growth Forest & Hetzel Nature Trail Guide
    Old Growth Forest & Hetzel Nature Trail Rare. Distinctive. Diverse. 25 Acres of forest evolved over 10,000 years 59 63 47 51 56 34 46 26 1 2 17 Scenic. Historic. Dynamic. North Trail (1.4 miles) South Trail (.9 mile) Centerville Creek Trail Entrances Please respect LTC’s Old Growth Forest • Stay on the hiking trail. • No pets or bikes. • Clean the soles of your shoes to avoid introducing seeds of exotic (non-native) species. • Collecting is not allowed. • Leave no trace. Lakeshore Technical College has a unique ecological asset in its 25-acre forest – a wooded area containing old-growth trees. This is a unique biological feature that has evolved for more than 10,000 years without any recent significant intervention. This rare and distinctive treasure located on LTC’s campus will serve as the base for an educational trail. The preservation of the forest, construction of the trail, and this trail guide are the result of a volunteer partnership of concerned community members, with officials from Woodland Dunes Nature Center, UW-Manitowoc, UW-Sheboygan and LTC. LTC lies just northeast of the “Tension Zone” that separated Wisconsin’s two distinct floristic provinces at the time of European exploration: the southern hardwood forest, oak savanna, and prairie province to the south, and the conifer and northern hardwood forest to the north. The tension zone boasts an intermingling of species from both provinces. This forest is close enough to the tension zone to be considered a part of it since it has both the northern and southern components. See page 11.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
    Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir.
    [Show full text]
  • A Holistic Assessment Pertains to Bio-Physical Indicators and Ecosystem Values Manish Mathur1,2* and S
    Mathur and Sundaramoorthy Ecological Processes (2018) 7:41 https://doi.org/10.1186/s13717-018-0148-2 RESEARCH Open Access Appraisal of arid land status: a holistic assessment pertains to bio-physical indicators and ecosystem values Manish Mathur1,2* and S. Sundaramoorthy1 Abstract Background: Appraisal of arid land status is very crucial one to know the extent and factors associated with their degradation. Previous studies from arid regions are mostly qualitative in nature (indicator assessment like good, moderate, severe, and very severe) and generally overlooked the significance of temporal fluctuation. Methods: In this study, the temporal status of 12 Indian arid lands was accessed by using a new integrated approach that includes attributes like relative converge score (RCS), herbaceous component score (HCS), soil quality indexModified (SQI), ecosystem monitoring value (EMV), and a modified bare patch index. From each land, data were collected during three seasonal events (pulse, inter-pulse, and non-pulse), and thus, status was evaluated with 36 observations. Data were analyzed by using frequency distribution, principal component analysis (PCA), student t test, and regression technique. Results: RCS and HCS were recorded minimum (0.005, 0.65) during non-pulse event and maximum (0.36, 1.79) during pulse event respectively. With this approach, multi-directional temporal status of lands identified that were grouped into lower (7), moderate (14), high (12), and very high (3) quality lands. Conclusion: This integrated study suggested that in arid regions, although rainfall triggers plant community composition, however, sole utilization of this parameter is unable to portray the true status of lands, and other physical (soil) and biotic (livestock and other anthropogenic) parameters are equally important and influential during other events.
    [Show full text]