An Illustrated Key to the Saxifragaceae of Alberta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Heuchera/X Heucherella/Tiarella
Heuchera/x Heucherella/Tiarella Mark Begick The family Saxifragaceae comprises chiefly north temperate plants and includes many alpine and arctic species of xerophytic habit. This makes them adaptable and able to survive under different conditions, which is the reason why saxifrages, in particular) are so often used for dry rockery plantings. The Saxifragaceae is a large family and includes many easily recognizable genera (e.g., Astilbe, Bergenia, Heuchera, Heucherella, Rogersia, Saxifraga, and Tiarella, just to name a few). Species and cultivars of Bergenia and Heuchera are tough and persistent, so make good border plants for cool climates. Heuchera – The Coral Bells The genus Heuchera is named after Johann Heinrich von Heucher, who was a German professor of medicine. Fifty to seventy species are native to North America but only H. sanguinea, coral bells, and hybrids have gained popularity in North American gardens. These plants are either evergreen or semi- evergreen. Most of the improved cultivars are hybrids between H. sanguinea, H. americana, and H. micrantha. Many of these hybridized plants are ornamentally chosen for their colorful foliage. A few do have ornamental flowers of white, pink, or red . Heucheras do best in rich, moist well-drained soils in partial shade. They are better adapted to cooler climates, and sometimes this can enhance leaf color, especially in fall. x Heucherella – The Foamy Bells Many examples of hybrids between species of a genus occur but there are a few between genera. x Heucherella (the x denotes an intergeneric cross but is not sounded) was produced in 1912 at Nancy in France between a Heuchera hybrid and Tiarella cordifolia. -
45Th Anniversary Year
VOLUME 45, NO. 1 Spring 2021 Journal of the Douglasia WASHINGTON NATIVE PLANT SOCIETY th To promote the appreciation and 45 conservation of Washington’s native plants Anniversary and their habitats through study, education, Year and advocacy. Spring 2021 • DOUGLASIA Douglasia VOLUME 45, NO. 1 SPRING 2021 journal of the washington native plant society WNPS Arthur R. Kruckberg Fellows* Clay Antieau Lou Messmer** President’s Message: William Barker** Joe Miller** Nelsa Buckingham** Margaret Miller** The View from Here Pamela Camp Mae Morey** Tom Corrigan** Brian O. Mulligan** by Keyna Bugner Melinda Denton** Ruth Peck Ownbey** Lee Ellis Sarah Reichard** Dear WNPS Members, Betty Jo Fitzgerald** Jim Riley** Mary Fries** Gary Smith For those that don’t Amy Jean Gilmartin** Ron Taylor** know me I would like Al Hanners** Richard Tinsley Lynn Hendrix** Ann Weinmann to introduce myself. I Karen Hinman** Fred Weinmann grew up in a small town Marie Hitchman * The WNPS Arthur R. Kruckeberg Fellow Catherine Hovanic in eastern Kansas where is the highest honor given to a member most of my time was Art Kermoade** by our society. This title is given to Don Knoke** those who have made outstanding spent outside explor- Terri Knoke** contributions to the understanding and/ ing tall grass prairie and Arthur R. Kruckeberg** or preservation of Washington’s flora, or woodlands. While I Mike Marsh to the success of WNPS. Joy Mastrogiuseppe ** Deceased love the Midwest, I was ready to venture west Douglasia Staff WNPS Staff for college. I earned Business Manager a Bachelor of Science Acting Editor Walter Fertig Denise Mahnke degree in Wildlife Biol- [email protected] 206-527-3319 [email protected] ogy from Colorado State Layout Editor University, where I really Mark Turner Office and Volunteer Coordinator [email protected] Elizabeth Gage got interested in native [email protected] plants. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Prepared For: Prepared By
PDF Page 1 of 29 APPENDIX F TERA Vegetation Survey Results Summary PDF Page 2 of 29 VEGETATION SUMMARY REPORT FOR THE PROPOSED NOVA GAS TRANSMISSION LTD. NORTH MONTNEY MAINLINE (AITKEN CREEK SECTION) March 2013 8860 Prepared for: Prepared by: NOVA Gas transmission Ltd. A Wholly Owned Subsidiary of TransCanada PipeLines Limited TERA Environmental Consultants Calgary, Alberta Suite 1100, 815 - 8th Avenue S.W. Calgary, Alberta T2P 3P2 Ph: 403-265-2885 PDF Page 3 of 29 NOVA Gas Transmission Ltd. Vegetation Summary Report North Montney Mainline (Aitken Creek Section) March 2013/8860 TABLE OF CONTENTS Page 1.0 INTRODUCTION .............................................................................................................................. 1 1.1 Project Details ..................................................................................................................... 1 1.2 Ecosystem Classification .................................................................................................... 3 2.0 METHODS ....................................................................................................................................... 4 2.1 Study Area Boundaries ....................................................................................................... 4 2.2 Desktop Review .................................................................................................................. 4 2.3 Field Data Collection .......................................................................................................... -
Fall 2013 NARGS
Rock Garden uar terly � Fall 2013 NARGS to ADVERtISE IN thE QuARtERly CoNtACt [email protected] Let me know what yo think A recent issue of a chapter newsletter had an item entitled “News from NARGS”. There were comments on various issues related to the new NARGS website, not all complimentary, and then it turned to the Quarterly online and raised some points about which I would be very pleased to have your views. “The good news is that all the Quarterlies are online and can easily be dowloaded. The older issues are easy to read except for some rather pale type but this may be the result of scanning. There is amazing information in these older issues. The last three years of the Quarterly are also online but you must be a member to read them. These last issues are on Allen Press’s BrightCopy and I find them harder to read than a pdf file. Also the last issue of the Quarterly has 60 extra pages only available online. Personally I find this objectionable as I prefer all my content in a printed bulletin.” This raises two points: Readability of BrightCopy issues versus PDF issues Do you find the BrightCopy issues as good as the PDF issues? Inclusion of extra material in online editions only. Do you object to having extra material in the online edition which can not be included in the printed edition? Please take a moment to email me with your views Malcolm McGregor <[email protected]> CONTRIBUTORS All illustrations are by the authors of articles unless otherwise stated. -
UNIVERSITY of CALIFORNIA SANTA CRUZ Refining Species
UNIVERSITY OF CALIFORNIA SANTA CRUZ Refining species distribution models for coevolving plant and insects using species interactions and phylogeography A thesis submitted in partial satisfaction of the requirements for the degree of MASTER OF ARTS in ECOLOGY AND EVOLUTIONARY BIOLOGY by Christopher Schwind December 2016 The Thesis of Christopher Schwind is approved: Professor John N. Thompson Professor Kristy Kroeker Professor Erika Zavaleta ________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Table of Contents Abstract........................................................................................................................iv Acknowledgements......................................................................................................v Introduction..................................................................................................................1 Methods........................................................................................................................5 Results..........................................................................................................................12 Discussion....................................................................................................................21 Supplemental Information...........................................................................................28 References....................................................................................................................30 -
Saxifragaceae Saxifrage Family
Saxifragaceae Page | 921 saxifrage family About 700 species in 40 genera comprise this family of herbs and shrubs. Nova Scotia has several representative species, ranging from the highland saxifrages to deciduous forest mitreworts. Calyx and corolla are 4-5-merous. Sepals appear to be lobes of the hypanthium. Petals are variable in size and dissection. Stamens are equal in number or double the number of sepals and petals. Pistils number one or three; carpels 2–5, united basally to form a compound ovary, which may be deeply lobed. Fruit is dehiscent. Leaves are alternate with or without stipules, basal or cauline. Several genera are cultivated, but not persisting outside of cultivation. Key to genera A. Leaves opposite, cauline; plant sprawling; flowers 4-merous; petals absent. Chrysosplenium aa. Leaves mostly in a basal rosette, or very small and alternate; plants erect; B flowers 5-merous; petals present. B. Flowers solitary; stamens equal in number to the petals. Parnassia bb. Flowers several to numerous; stamens double the number of petals. C C. Leaves small, crowded, sessile or nearly so. Saxifraga cc. Leaves mostly basal, on long petioles. D D. Leaves serrate; petals entire; capsule beak Tiarella acute. dd. Leaves crenate; petals finely cleft; capsule beak Mitella obtuse. Chrysosplenium L. Plants of cool regions, all 40 species have minute flowers. Petals are absent; calyx is four-merous. Flowers are perfect and perigynous. Hypanthium has eight lobes in its centre, with 4–8 stamens attached. Perennial creeping herbs, they are freely branched, their leaves simple. 3-81 Saxifragaceae Page | 922 Chrysosplenium americanum Schwein. Golden saxifrage; dorine d'Amérique A smooth, nearly succulent plant, it has many trailing branches, forming thick mats. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Intraspecific Polyploidy Correlates with Colonization by Arbuscular Mycorrhizal Fungi in Heuchera Cylindrica
RESEARCH ARTICLE BRIEF COMMUNICATION Intraspecific polyploidy correlates with colonization by arbuscular mycorrhizal fungi in Heuchera cylindrica Thomas J. Anneberg1,3 and Kari A. Segraves1,2 Manuscript received 2 January 2019; revision accepted 26 March PREMISE: Polyploidy is known to cause physiological changes in plants which, in turn, 2019. can affect species interactions. One major physiological change predicted in polyploid 1 Department of Biology, Syracuse University, Syracuse, NY 13244, plants is a heightened demand for growth- limiting nutrients. Consequently, we expect USA polyploidy to cause an increased reliance on the belowground mutualists that supply 2 Archbold Biological Station, Venus, FL 33960, USA these growth- limiting nutrients. An important first step in investigating how polyploidy 3 Author of correspondence (e-mail: [email protected]) affects nutritional mutualisms in plants, then, is to characterize differences in the rate at Citation: Anneberg, T. J. and K. A. Segraves. 2019. Intraspecific poly- which diploids and polyploids interact with belowground mutualists. ploidy correlates with colonization by arbuscular mycorrhizal fungi in Heuchera cylindrica. American Journal of Botany 106(6): 1–7. METHODS: We used Heuchera cylindrica (Saxifragaceae) to test how polyploidy influences doi:10.1002/ajb2.1294 interactions with arbuscular mycorrhizal fungi (AMF). Here we first confirmed the presence of AMF in H. cylindrica, and then we used field- collected specimens to quantify and compare the presence of AMF structures while controlling for site- specific variation. RESULTS: Tetraploids had higher colonization rates as measured by total, hyphal, and nutritional- exchange structures; however, we found that diploids and tetraploids did not differ in vesicle colonization rates. CONCLUSIONS: The results suggest that polyploidy may alter belowground nutritional mutualisms with plants. -
Amorpha Canescens Pursh Leadplant
leadplant, Page 1 Amorpha canescens Pursh leadplant State Distribution Best Survey Period Photo by Susan R. Crispin Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State special concern the Mississippi valley through Arkansas to Texas and in the western Great Plains from Montana south Global and state rank: G5/S3 through Wyoming and Colorado to New Mexico. It is considered rare in Arkansas and Wyoming and is known Other common names: lead-plant, downy indigobush only from historical records in Montana and Ontario (NatureServe 2006). Family: Fabaceae (pea family); also known as the Leguminosae. State distribution: Of Michigan’s more than 50 occurrences of this prairie species, the vast majority of Synonym: Amorpha brachycarpa E.J. Palmer sites are concentrated in southwest Lower Michigan, with Kalamazoo, St. Joseph, and Cass counties alone Taxonomy: The Fabaceae is divided into three well accounting for more than 40 of these records. Single known and distinct subfamilies, the Mimosoideae, outlying occurrences have been documented in the Caesalpinioideae, and Papilionoideae, which are last two decades from prairie remnants in Oakland and frequently recognized at the rank of family (the Livingston counties in southeast Michigan. Mimosaceae, Caesalpiniaceae, and Papilionaceae or Fabaceae, respectively). Of the three subfamilies, Recognition: Leadplant is an erect, simple to sparsely Amorpha is placed within the Papilionoideae (Voss branching shrub ranging up to ca. 1 m in height, 1985). Sparsely hairy plants of leadplant with greener characterized by its pale to grayish color derived from leaves have been segregated variously as A. canescens a close pubescence of whitish hairs that cover the plant var. -
Floerkea Proserpinacoides Willdenow False Mermaid-Weed
New England Plant Conservation Program Floerkea proserpinacoides Willdenow False Mermaid-weed Conservation and Research Plan for New England Prepared by: William H. Moorhead III Consulting Botanist Litchfield, Connecticut and Elizabeth J. Farnsworth Senior Research Ecologist New England Wild Flower Society Framingham, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, December 2003 1 SUMMARY Floerkea proserpinacoides Willdenow, false mermaid-weed, is an herbaceous annual and the only member of the Limnanthaceae in New England. The species has a disjunct but widespread range throughout North America, with eastern and western segregates separated by the Great Plains. In the east, it ranges from Nova Scotia south to Louisiana and west to Minnesota and Missouri. In the west, it ranges from British Columbia to California, east to Utah and Colorado. Although regarded as Globally Secure (G5), national ranks of N? in Canada and the United States indicate some uncertainly about its true conservation status in North America. It is listed as rare (S1 or S2) in 20% of the states and provinces in which it occurs. Floerkea is known from only 11 sites total in New England: three historic sites in Vermont (where it is ranked SH), one historic population in Massachusetts (where it is ranked SX), and four extant and three historic localities in Connecticut (where it is ranked S1, Endangered). The Flora Conservanda: New England ranks it as a Division 2 (Regionally Rare) taxon. Floerkea inhabits open or forested floodplains, riverside seeps, and limestone cliffs in New England, and more generally moist alluvial soils, mesic forests, springy woods, and streamside meadows throughout its range.