water Article Omnivorous Carp (Carassius gibelio) Increase Eutrophication in Part by Preventing Development of Large-Bodied Zooplankton and Submerged Macrophytes Vladimir Razlutskij 1,*, Xueying Mei 2,†, Natallia Maisak 1 , Elena Sysova 1, Dzmitry Lukashanets 1, Andrei Makaranka 1, Erik Jeppesen 3,4,5,6 and Xiufeng Zhang 7 1 State Scientific and Production Amalgamation Scientific-Practical Center of the National Academy of Sciences of Belarus for Biological Resources, 220072 Minsk, Belarus;
[email protected] (N.M.);
[email protected] (E.S.);
[email protected] (D.L.);
[email protected] (A.M.) 2 College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China;
[email protected] 3 Department of Bioscience and WATEC, Aarhus University, 8600 Silkeborg, Denmark;
[email protected] 4 Sino-Danish Centre for Education and Research (SDC), Beijing 100049, China 5 Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey 6 Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey 7 Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China;
[email protected] * Correspondence:
[email protected] † The author contributed equally to this work. Citation: Razlutskij, V.; Mei, X.; Abstract: Fish, being an important consumer in aquatic ecosystems, plays a significant role by Maisak, N.; Sysova, E.; Lukashanets, affecting the key processes of aquatic ecosystems. Omnivorous fish consume a variety of food both D.; Makaranka, A.; Jeppesen, E.; from pelagic and benthic habitats and may directly or indirectly affect the plankton community as Zhang, X. Omnivorous Carp well as the lake trophic state.