The Old World Species of <I>Boehmeria</I>

Total Page:16

File Type:pdf, Size:1020Kb

The Old World Species of <I>Boehmeria</I> The Old World species of Boehmeria (Urticaceae, tribus Boehmerieae) a taxonomic revision Wilmot-Dear, Christine Melanie; Friis, Ib Published in: Blumea DOI: 10.3767/000651913X674116 Publication date: 2013 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Wilmot-Dear, C. M., & Friis, I. (2013). The Old World species of Boehmeria (Urticaceae, tribus Boehmerieae): a taxonomic revision. Blumea, 58(2), 85-216. https://doi.org/10.3767/000651913X674116 Download date: 08. Apr. 2020 Blumea 58, 2013: 85–216 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651913X674116 The Old World species of Boehmeria (Urticaceae, tribus Boehmerieae). A taxonomic revision C.M. Wilmot-Dear1, I. Friis2 Key words Abstract This is the second part of a world-wide revision of the genus Boehmeria, the previously-published part having dealt with the New World species. The Old World species are widely distributed in the tropics and subtropics Boehmeria from West Africa to islands in the Pacific Ocean and from Japan and China to Southern Africa, Madagascar and conservation assessment Australia, with the highest species richness in the Himalayas and their extension into China and Indochina. No descriptions indi genous species is common to both the Old and New World. The species represent taxonomic units of very dif- distribution ferent complexity: most species exhibit little infraspecific variation; in several others formal taxonomic infraspecific ecology units can be recognised; however, in two, B. virgata and B. japonica, a highly complex variation is seen, fitting keys with difficulty into the normal hierarchy of taxonomic classification. With the conclusions reached here, 33 species, Old World including 31 varieties, are recognised and over one hundred previously established names are placed in synonymy. taxon richness Four new taxa are described: B. pilosiuscula var. suffruticosa, B. virgata subsp. macrophylla var. minuticymosa, taxonomic revision B. virgata subsp. virgata var. velutina and B. virgata subsp. virgata var. maxima. The following new combinations are Urticaceae made: B. densiflora var. boninensis, B. heterophylla var. blumei, B. japonica var. silvestrii, B. japonica var. tenera, B. sieboldiana var. fuzhouensis, B. ternifolia var. kamley, B. virgata subsp. macrophylla, B. virgata subsp. macrophylla var. canescens, B. virgata subsp. macrophylla var. densiglomerata, B. virgata subsp. macrophylla var. longissima, B. virgata subsp. macrophylla var. macrostachya, B. virgata subsp. macrophylla var. molliuscula, B. virgata subsp. macrophylla var. rotundifolia, B. virgata subsp. macrophylla var. scabrella, B. virgata subsp. macrophylla var. strigosa, B. virgata subsp. macrophylla var. sumatrana, B. virgata subsp. macrophylla var. tomentosa and B. virgata subsp. virgata var. austroqueenslandica. Published on 27 September 2013 INTRODUCTION analysing the anatomy of the fruiting perianth and the achene wall (Wilmot-Dear et al. 2009). New species of Boehmeria Friis (1993: 623–624) concluded that the two genera Boeh­ also appeared in Wilmot-Dear et al. (2010) and new species meria and Pouzolzia were in great need of revision and that the of Pouzolzia and new extensions of distributions of New World delimitation between them had to be clarified. In many herbaria Boehmeria in Wilmot-Dear & Friis (2011). large quantities of material of these two genera remained un- The present paper completes our world-wide revision of Boeh­ identified, the incorporated material was often misidentified and meria and Pouzolzia. It considers all published names and is the nomenclature used was confusing. A revision of the New based on an examination of the extensive herbarium collections World species of Boehmeria and Pouzolzia (Wilmot-Dear & Friis of 38 major herbaria. 1996) recognised 14 species of Boehmeria and 14 species of Pouzolzia, of which a considerable number of new taxa were described and named and a large number of new synonyms and Materials AND METHODS transfers between genera were established. Subsequently, a The methods have been those of classical herbarium taxonomy, number of shorter papers were published which established the with special attention to small morphological details, as in taxonomic importance of anatomical characters in the fruiting previous parts of the project, particularly in the large revisions perianth and the fruit wall in a range of species of Boehmeria by Wilmot-Dear & Friis (1996, 2006). Frequently, we have not and Pouzolzia (Kravtsova et al. 2000, 2003). A supplement chosen a lectotype from amongst a group of syntypes because to Boehmeria in the New World with additional discussion of where it was not necessary for taxonomic reasons we consid- the distinction between Boehmeria and Pouzolzia was pub- ered it desirable to retain useful information concerning material lished by Wilmot-Dear et al. (2003). Then followed a revision seen by the original author. Lectotypes have been selected only of Pouzolzia in the Old World (Wilmot-Dear & Friis 2006), in in cases where not to do so would cause confusion or loss of which 24 species and 13 infraspecific taxa were recognised, taxonomic precision, for example, where collections represent- 5 new taxa and names were proposed and Boehmeria australis ing several taxa have been included among the syntypes, where Endl. was transferred to Pouzolzia. The distinction between there is rather wide morphological variation between syntypes/ Boehmeria and Pouzolzia was further elucidated in connection isotypes or where there is doubt which material was seen by the with a transfer of a species of Boehmeria, B. rugulosa Wedd., author. As previously, it has been necessary to consult material to Pouzolzia, as P. rugulosa (Wedd.) Acharya & Kravtsova, from a large number of herbaria in order to be reasonably sure that the entire range of variation was seen and that rare taxa 1 The Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, England, were reasonably covered. Unidentified material, especial from UK; corresponding author e-mail: [email protected]. 2 The Herbarium, Natural History Museum of Denmark, Sølvgade 83, Opgang G, K and L, has been looked through for specimens not previ- S, DK-1307 Copenhagen K, Denmark; e-mail: [email protected]. ously identified as Boehmeria, and in K and L we have looked © 2013 Naturalis Biodiversity Center You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. 86 Blumea – Volume 58 / 2, 2013 through the other genera in the tribe Boehmerieae to extract after the early-caducous stigma has fallen. Cypholophus differs misidentified material. Herbaria from which we have borrowed mainly in the minute tightly curled stigma and fleshy fruiting or studied material: A, AAU, ABD, B, BISH, BKF, BM, BO, BR, perianth. The morphological relationships between these three C, CAL, E, F, G, HK, IBSC, K, L, LE, M, MO, MSC, NAS, NEB, genera are dealt with in key form in Friis (1993: 618-619) and P, PE, PNH, S, TAI, TCD, TI, U, UC, UPS, US, W, WU, Z. A discussed in more detail in Wilmot-Dear (2009). total of about 10 000 specimens, representing c. 4 000 collec- tions have been seen for this revision. We have listed circa THE HISTORY OF DISCOVERY OF THE 3 000 collections, leaving out some material of common and GENUS BOeh­meria IN THE OLD WORLD widespread taxa. Specimens without collection numbers or other unique data and therefore of which duplicates are unlikely The earliest established taxa dealt with in this revision are Lin- to be identifiable with certainty have also been omitted from naean and were placed in the genus Urtica (Urtica nivea L., our listing in this paper. The collecting localities of a selection Urtica japonica L.f.). Subsequent early taxa were also placed in of the specimens which could be reasonably georeferenced Urtica, e.g. by Blume (1825), but already Thunberg (1794a, b) were plotted in ArcView, v. 3.3. The map showing species and began transferring taxa to the genus Boehmeria, which had taxon richness was produced from the same dataset with the been established by Jaquin (1760). The genus was named after use of the ‘Analysis/Point to Grid’ function in Diva-GIS, v. 7.5. Georg Rudolph Böhmer (1723–1803), German botanist and phy- The parameters defined by IUCN (2001) ‘extent of occurrence’ sician at the University of Wittenberg. (EOO) and ‘area of occupancy’ (AOO) have been calculated Monographic treatments of Boehmeria have been produced by using ArcView and the CATS extension developed at the Royal Weddell (1856, 1869), who based his taxonomic conclusions Botanic Gardens, Kew (Moat 2007). on the collections held at K, P and G and G-DC, while Blume When referring to a geographical distribution, the following ter- (1857), basing his work mainly on the collections at L, published minology is used. For New Guinea, any reference to ‘New Gui- a considerable number of new Old World taxa in the genus. In nea’ or ‘the island of New Guinea’ includes both regions, Indo- the last revision by Weddell (1869) a total of 47 species and nesian Papua and Papua New Guinea. ‘China’ without further 48 varieties were recognised. detail refers only to mainland China and where a distribution In the 19th century, when the largest number of Boehmeria- includes the islands of Taiwan and/or Hong Kong this detail species was described, a certain number of different taxa were is added.
Recommended publications
  • An Annotated Checklist of the Angiospermic Flora of Rajkandi Reserve Forest of Moulvibazar, Bangladesh
    Bangladesh J. Plant Taxon. 25(2): 187-207, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF THE ANGIOSPERMIC FLORA OF RAJKANDI RESERVE FOREST OF MOULVIBAZAR, BANGLADESH 1 2 A.K.M. KAMRUL HAQUE , SALEH AHAMMAD KHAN, SARDER NASIR UDDIN AND SHAYLA SHARMIN SHETU Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh Keywords: Checklist; Angiosperms; Rajkandi Reserve Forest; Moulvibazar. Abstract This study was carried out to provide the baseline data on the composition and distribution of the angiosperms and to assess their current status in Rajkandi Reserve Forest of Moulvibazar, Bangladesh. The study reports a total of 549 angiosperm species belonging to 123 families, 98 (79.67%) of which consisting of 418 species under 316 genera belong to Magnoliopsida (dicotyledons), and the remaining 25 (20.33%) comprising 132 species of 96 genera to Liliopsida (monocotyledons). Rubiaceae with 30 species is recognized as the largest family in Magnoliopsida followed by Euphorbiaceae with 24 and Fabaceae with 22 species; whereas, in Lilliopsida Poaceae with 32 species is found to be the largest family followed by Cyperaceae and Araceae with 17 and 15 species, respectively. Ficus is found to be the largest genus with 12 species followed by Ipomoea, Cyperus and Dioscorea with five species each. Rajkandi Reserve Forest is dominated by the herbs (284 species) followed by trees (130 species), shrubs (125 species), and lianas (10 species). Woodlands are found to be the most common habitat of angiosperms. A total of 387 species growing in this area are found to be economically useful. 25 species listed in Red Data Book of Bangladesh under different threatened categories are found under Lower Risk (LR) category in this study area.
    [Show full text]
  • Urera Kaalae
    Plants Opuhe Urera kaalae SPECIES STATUS: Federally Listed as Endangered Genetic Safety Net Species J.K.Obata©Smithsonian Inst., 2005 IUCN Red List Ranking – Critically Endangered (CR D) Hawai‘i Natural Heritage Ranking ‐ Critically Imperiled (G1) Endemism – O‘ahu Critical Habitat ‐ Designated SPECIES INFORMATION: Urera kaalae, a long‐lived perennial member of the nettle family (Urticaceae), is a small tree or shrub 3 to 7 m (10 to 23 ft) tall. This species can be distinguished from the other Hawaiian species of the genus by its heart‐shaped leaves. DISTRIBUTION: Found in the central to southern parts of the Wai‘anae Mountains on O‘ahu. ABUNDANCE: The nine remaining subpopulations comprise approximately 40 plants. LOCATION AND CONDITION OF KEY HABITAT: Urera kaalae typically grows on slopes and in gulches in diverse mesic forest at elevations of 439 to 1,074 m (1,440 to 3,523 ft). The last 12 known occurrences are found on both state and privately owned land. Associated native species include Alyxia oliviformis, Antidesma platyphyllum, Asplenium kaulfusii, Athyrium sp., Canavalia sp., Charpentiera sp., Chamaesyce sp., Claoxylon sandwicense, Diospyros hillebrandii, Doryopteris sp., Freycinetia arborea, Hedyotis acuminata, Hibiscus sp., Nestegis sandwicensis, Pipturus albidus, Pleomele sp., Pouteria sandwicensis, Psychotria sp., Senna gaudichaudii (kolomona), Streblus pendulinus, Urera glabra, and Xylosma hawaiiense. THREATS: Habitat degradation by feral pigs; Competition from alien plant species; Stochastic extinction; Reduced reproductive vigor due to the small number of remaining individuals. CONSERVATION ACTIONS: The goals of conservation actions are not only to protect current populations, but also to establish new populations to reduce the risk of extinction.
    [Show full text]
  • Testing Darwin's Transoceanic Dispersal Hypothesis for the Inland
    Aberystwyth University Testing Darwin’s transoceanic dispersal hypothesis for the inland nettle family (Urticaceae) Wu, ZengYuan; Liu, Jie; Provan, James; Wang, Hong; Chen, Chia-Jui; Cadotte, Marc; Luo, Ya-Huang; Amorim, Bruno; Li, De-Zhu; Milne, Richard Published in: Ecology Letters DOI: 10.1111/ele.13132 Publication date: 2018 Citation for published version (APA): Wu, Z., Liu, J., Provan, J., Wang, H., Chen, C-J., Cadotte, M., Luo, Y-H., Amorim, B., Li, D-Z., & Milne, R. (2018). Testing Darwin’s transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecology Letters, 21(10), 1515-1529. https://doi.org/10.1111/ele.13132 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 27. Sep. 2021 Testing Darwin’s transoceanic dispersal hypothesis for the inland nettle family (Urticaceae) Zeng-Yuan Wu1, Jie Liu2, Jim Provan3, Hong Wang2, Chia-Jui Chen5, Marc W.
    [Show full text]
  • Mamaki Rust Pucciniastrum Boehmeriae (Dietel) Syd
    State of Hawaii New Pest Advisory DEPARTMENT OF AGRICULTURE No. 16-01 May 2016 Mamaki Rust Pucciniastrum boehmeriae (Dietel) Syd. & P. Syd (Pucciniastraceae) Background In August 2013, a diagnostician at the University of Hawaii (UH) Agricultural Diagnostic Service Center, Komohana Research Station incidentally detected an unfamiliar rust on a mamaki (Pipturus albidus) leaf sample from a Hawaiian Acres, Kurtistown residential grower on the Big Island. Consequently, the rust sample was sent to the United States Department of Agriculture, Agricultural Research Service, Systematic Mycology and Microbiology Laboratory (SMML), where it was promptly identified via morphological and molecular means as Pucciniastrum boehmeriae (Dietel) Syd. & P. Syd., a new record in both Hawaii and the U.S. A subsequent visit by the UH diagnostician and Hawaii Department of Agriculture (HDOA) staff to the initial detection site yielded only two more slightly rust infected leaves. Additional surveys at mostly nurseries and botanical gardens throughout the main Hawaiian Islands failed to detect the P. boehmeriae rust. In November 2015, leaf lesions were spotted on wild Boehmeria grandis (akolea) plants in the Southern Koolau Mountains on Oahu by HDOA staff. SMML confirmed the presence of P. boehmeriae on the Oahu akolea leaf samples in February 2016, thus increasing both the known local distribution and susceptible endemic host plant species in the Figure 1. Top view of akolea leaf infected with Pucciniastrum boehmeriae; inset: close - Urticaceae plant family. up. Importance of the Urticaceae in Hawaii Mamaki, akolea, and other related Hawaiian species in the Urticaceae (nettle) family have long been important food sources for various native species of Hawaiian fauna.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Amanda Leitão Gindri
    UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS Amanda Leitão Gindri ANÁLISE DAS ATIVIDADES FARMACOLÓGICAS E TOXICIDADE DE Urera baccifera GAUDICH Santa Maria, RS 2016 Amanda Leitão Gindri ANÁLISE DAS ATIVIDADES FARMACOLÓGICAS E TOXICIDADE DE Urera baccifera GAUDICH Tese apresentada ao curso de Doutorado do Programa de Pós-Graduação em Ciências Farmacêuticas, Área de Concentração em Farmacognosia, Fitoquímica e Farmacologia de Produtos Naturais e Bioativos, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para a obtenção do título de Doutora em Ciências Farmacêuticas. Orientador: Prof. Dr. Sydney Hartz Alves Santa Maria, RS 2016 ©2016 Todos os direitos autorais reservados a Amanda Leitão Gindri. A reprodução de partes ou do todo deste trabalho só poderá ser feita mediante a citação da fonte. Endereço: Rua Ipiranga, n°370, Centro, São Francisco de Assis. CEP: 97.610-000. Fone: (0XX) 55 9653-7163. E-mail: [email protected] DEDICATÓRIA À professora Doutora Margareth Linde Athayde, querida mestre, minha eterna orientadora! AGRADECIMENTOS Agradeço inicialmente à professora Margareth Linde Athayde, que me acolheu gentilmente em meu mestrado e doutorado, acreditando e confiando em mim. Querida professora Marga, jamais esquecerei de seus conselhos, amizade, parceria e sorrisos. Muito obrigada por tudo! Ao professor Sydney, que carinhosamente “me adotou” depois do momento difícil que todos passamos. Muito obrigada por todo apoio, palavras de incentivo e amizade! Certamente este trabalho não teria sido finalizado sem sua ajuda e apoio. Aos amigos do PPGCF, professores, técnicos do departamento de Farmácia Industrial e colegas do Labfito, muito obrigada pelo conhecimento compartilhado e amizade.
    [Show full text]
  • Cytotoxic, Anti-Oxidant and Thrombolytic Activity of Stem Extract of Boehmeria Malabarica Wedd
    Cytotoxic, Anti-oxidant and Thrombolytic Activity of Stem Extract of Boehmeria malabarica Wedd. Submitted in partial fulfillment of the requirements for the degree of Bachelor of Pharmacy (B. Pharm) Submitted by MD. Anwar Hossain ID: 151-29-713 Department of Pharmacy Daffodil International University Submission Date: 13 May 2019 ©Daffodil International University APPROVAL This project, “Cytotoxic, Antioxidant and Thrombolytic activity of Stem Extract of Boehmeria malabarica Wedd submitted to the Department of Pharmacy, Daffodil International University, has been accepted as satisfactory for the partial fulfillment of the requirements for the degree of Bachelor of Pharmacy and approved as to it style and contents. Board of Examiners Dr. Sharif Mohammad Shaheen Chairman Professor and Head Department of Pharmacy Daffodil International University Nazneen Ahmeda Sultana Project Supervisor Lecturer Department of Pharmacy Daffodil International University Internal examiner-1 Internal examiner-2 External examiner ©Daffodil International University i ACKNOWLEDGEMENT At the very beginning, I would like to express my sincere gratitude to Almighty, who has given me the chance to complete my project report in very comfortable manner. I would like to express my thanks and gratitude to the Department Of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University for providing me the laboratory facilities for the completion of the project. I have to thank my research supervisor, Nazneen Ahmeda Sultana, Lecturer, Department of Pharmacy, Daffodil international university. Without her assistance and dedicated involvement in every step throughout the process, this paper would have never been accomplished. I would like to thank her very much for her support and obliged to all those who have given me their valuable time and energy from their hectic work schedule to express their full experience about the instrumental terms, conditions and working procedures.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Dietary Neurotransmitters: a Narrative Review on Current Knowledge
    nutrients Review Dietary Neurotransmitters: A Narrative Review on Current Knowledge Matteo Briguglio 1,* ID , Bernardo Dell’Osso 2,3, Giancarlo Panzica 4 ID , Antonio Malgaroli 5, Giuseppe Banfi 6, Carlotta Zanaboni Dina 1, Roberta Galentino 1 and Mauro Porta 1 1 Tourette’s Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; [email protected] (C.Z.D.); [email protected] (R.G.); [email protected] (M.P.) 2 Department of Pathophysiology and Transplantation, I.R.C.C.S. Ca’ Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] 3 Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA 4 Department of Neuroscience, Rita Levi Montalcini, University of Turin, 10126 Turin, Italy; [email protected] 5 Neurobiology of Learning Unit, Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy; [email protected] 6 Scientific Direction, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; banfi[email protected] * Correspondence: [email protected]; Tel.: +39-338-608-7042 Received: 13 April 2018; Accepted: 8 May 2018; Published: 13 May 2018 Abstract: Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs) acetylcholine (ACh), the modified amino acids glutamate and γ-aminobutyric acid (GABA), and the biogenic amines dopamine, serotonin (5-HT), and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs.
    [Show full text]
  • As an Aqueous Plant-Based Extract Fertilizer in Green Bean (Phaseolus Vulgaris L.) Sustainable Agriculture
    sustainability Article Stinging Nettle (Urtica dioica L.) as an Aqueous Plant-Based Extract Fertilizer in Green Bean (Phaseolus vulgaris L.) Sustainable Agriculture Branka Mariˇci´c 1,*, Sanja Radman 2, Marija Romi´c 2, Josipa Perkovi´c 3 , Nikola Major 3 , Branimir Urli´c 4, Igor Palˇci´c 3,* , Dean Ban 3, Zoran Zori´c 5 and Smiljana Goreta Ban 3 1 Department of Ecology, Agronomy and Aquaculture, University of Zadar, 23000 Zadar, Croatia 2 Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; [email protected] (S.R.); [email protected] (M.R.) 3 Institute of Agriculture and Tourism, Department of Agriculture and Nutrition, 52440 Poreˇc,Croatia; [email protected] (J.P.); [email protected] (N.M.); [email protected] (D.B.); [email protected] (S.G.B.) 4 Institute for Adriatic Crops and Karst Reclamation, Department of Plant Sciences, 21000 Split, Croatia; [email protected] 5 Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected] (B.M.); [email protected] (I.P.); Tel.: +385-98-981-7375 (B.M.); +385-408-312 (I.P.) Abstract: Plant-based fertilizers, such as liquid plant extracts, contribute to the cultivation of veg- etables, particularly in organic production. The objective of this study was to determine if aqueous nettle extract could be successfully used as a fertilizer, applied on the soil and foliarly, in green bean Citation: Mariˇci´c,B.; Radman, S.; production under field conditions. The hypothesis was that it could successfully replace mineral Romi´c,M.; Perkovi´c,J.; Major, N.; fertilizers and be integrated into sustainable and organic agriculture.
    [Show full text]
  • Antimicrobial Activity of Extracts Obtained from Urera Baccifera (L.) Gaudich
    Advances in Life Sciences 2012, 2(5): 139-143 DOI: 10.5923/j.als.20120205.03 Antimicrobial Activity of Extracts Obtained from Urera baccifera (L.) Gaudich Sideney Becker Onofre *, Patricia Fe rnanda He rke rt UNIPAR , Unit of Francisco Beltrão , PR. Av. Julio Assis Cavalheiro, 2000, Bairro Industrial , 85601-000 , Francisco Beltrão , Paraná , Brazil Abstract The purpose of this work was to assess the antimicrobial activity of extracts from Urera baccifera. Aqueous, ethanol and methanol extracts made from the leaves, bark and roots of U. baccifera were tested, at different concentrations using the disk diffusion method, against the bacteria Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). Inoculated plates were incubated at 35º C ± 1 C for 24 hours and the inhibition halos were assessed and interpreted. The methanol extracts from the leaves (ML) and roots (MR) had greatest antimicrobial activity against the three bacteria tested. The MICs of the ML and MR extracts against E. coli were 6.25 and 0.19 mg/L, respectively, and against P. aeruginosa and S. aureus they were 3.12 and 0.19 mg/L (for both species). The results show that the methanol extracts of the leaves and roots of U. baccifera are antimicrobially active against E. coli, P. aeruginosa and S . aureus. Ke ywo rds Antimicrobial, Natural Products, Medicinal Plants, Secondary Metabolites medications. Considering the high biodiversity in Brazil, the 1. Introduction popular know-how about the properties of medicinal plants and the unknown chemical characteristics of most species, Since antiquity medicinal plants have been used in the the scientific assessment of the therapeutic value of plants treatment of several illnesses that afflict humans.
    [Show full text]
  • Medicine Plants of Folk Medicine Used for Treatment of Gastro-Intestinal Problems in Fergana Valley
    국내․외 기술정보 Medicine plants of folk medicine used for treatment of gastro-intestinal problems in Fergana valley Valeriy V. Pak 식품기능연구본부 This article presents a review of indigenous medicinal plants used in folk medicine in Fergana valley (Uzbekistan) for treatment of gastro-intestinal problems. The 29 different plantsbelong to 18 different plant spices are presented. The methods of preparation of remedies and utilized parts of plants are described. Ⅰ. Introduction The purpose of this article is to review the remedies of the folk medicine for treatment of Plant products – as part of foods or botanical gastro-intestinal problems used in Fergana portions and powder – have been used with valley presenting the most densely populated varying success to cure and prevent diseases part of Uzbekistan. throughout history. Several diverse line of evidence indicates that medicinal plants represent the oldest and most widespread form of Ⅱ. Geographic characteristic medication. Until recently, plants were an of Fergana valley important source for the discovery of novel pharmacologically active compounds, with many Fergana valley occupiesa territory about 22.000 blockbuster drugs being derived directly or sq km and divided among Uzbekistan, Tajikistan indirectly from plants [1,2]. As it is estimated and Kyrgystan (Fig. 1). The Fergana Range by World Health Organization (WHO) that 25 % rises in the northeast and the Pamir in the of the active compounds in currently prescribed south. The Gissar and Alay ranges stand across synthetic drugs were first identified in plant the Fergana valley, which lies south of the sources [3]. Thus, to collect information about western Tian-Shan. The Xinjiang region of medicine plant used in folk medicine is valuable China borders the valley in the southeast.
    [Show full text]