Development of a Physics-Aware Dead Reckoning Mechanism For

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Physics-Aware Dead Reckoning Mechanism For Development of a Physics-Aware Dead Reckoning Mechanism for Distributed Interactive Applications A thesis presented to the National University of Ireland, Maynooth by Patrick Joseph Walsh, B. E. for the degree of Masters of Engineering Science by Research October 2011 Department of Electronic Engineering Faculty of Science and Engineering Supervisor: Dr. Séamus McLoone Co-supervisor: Dr. Tomás Ward Head of Department: Dr. Seán McLoone ABSTRACT Distributed Interactive Applications (DIAs) are a class of software that allow geographically remote users to interact within a shared virtual environment. Many DIAs seek to present a rich and realistic virtual world to users, both on a visual and behavioural level. A relatively recent addition to virtual environments (both distributed and single user) to achieve the latter has been the simulation of realistic physical phenomena between objects in the environment. However, the application of physics simulation to virtual environments in DIAs currently lags that of single user environments. This is primarily due to the unavailability of entity state update mechanisms which can maintain consistency in such physics-rich environments. The difference is particularly evident in applications built on a peer-to-peer architecture, as a lack of a single authority presents additional challenges in synchronising the state of shared objects while also presenting a responsive simulation. This thesis proposes a novel state maintenance mechanism for physics-rich environments in peer-to-peer DIAs composed of two parts: a dynamic authority scheme for shared objects, and a physics-aware dead reckoning model with an adaptive error threshold. The first part is intended to place a bound on the overall inconsistency present in shared objects, while the second is implemented to minimise the instantaneous inconsistency during users’ interactions with shared objects. A testbed application is also described, which is used to validate the performance of the proposed mechanism. The state maintenance mechanism is implemented for a single type of physics- aware application, and demonstrates a marked improvement in consistency for that application. However, several flexible terms are described in its implementation, as well as their potential relevance to alternative applications. Finally, it should be noted that the physics-aware dead reckoning model does not depend on the authority scheme, and can therefore be employed with alternative authority schemes. i ACKNOWLEDGEMENTS Firstly I would like to thank my supervisors, Dr. Séamus McLoone and Dr. Tomás Ward, for their advice, guidance and support in writing this thesis. Thanks also to Dr. Aaron McCoy, Dr. Damien Marshall, and all the other members of the DIA group for the assistance provided over the years. If not for all of you, this would not have been written. Thanks also to the staff in the Electronic Engineering department, as friendly and helpful a group of people as I have ever met. Thank you also to the Irish Research Council for Science, Engineering & Technology, who provided the funding to make this possible. Thanks to all my friends, especially Andrew and Tadhg, who were always there to talk to, and were always willing to help if I asked, and even when I didn’t. I would like to thank my mother for all her support and assistance, I’m not sure she will ever realise how much I appreciate it. I would also like to thank my brother, Donncha, for shouldering so much work at home; it gave me the opportunity focus on this. Finally, thank you, Lorraine. You have always been supportive and patient, despite having your own thesis and just as much (probably more!) of a workload to juggle. Your encouragement has helped me at least get this far. This thesis is dedicated to my parents, Freda Creavin and John Walsh (deceased). ii DECLARATION I hereby declare that this thesis is my own work and has not been submitted in any form for another award at any university or institute of tertiary education. Information derived from published and unpublished work of others has been acknowledged in the text, and a list of references has been provided. Signed: ___________________ Date: ______________ iii CONTENTS Chapter 1 Introduction ........................................................................................... 1 1.1 Background .................................................................................................. 1 1.2 Restrictions in Physics-Aware DIA Development ....................................... 2 1.3 Simulation of Distributed Peer-to-Peer Physics ........................................... 4 1.3.1 Authority ............................................................................................... 4 1.3.2 Responsiveness ..................................................................................... 5 1.3.3 Consistency ........................................................................................... 5 1.4 Aim of Thesis ............................................................................................. 10 1.5 Contributions .............................................................................................. 10 1.6 Layout of Thesis ......................................................................................... 10 Chapter 2 Background.......................................................................................... 12 2.1 DIA History ................................................................................................ 12 2.1.1 Military ................................................................................................ 13 2.1.2 Academic............................................................................................. 14 2.1.3 Industry (Multiplayer games) .............................................................. 16 2.2 Categorising DIAs ...................................................................................... 18 2.2.1 Network Architecture .......................................................................... 18 2.2.2 Time Management .............................................................................. 22 2.3 Physics Simulation in virtual environments ............................................... 23 2.3.1 Causal and Non-causal simulation ...................................................... 25 2.3.2 Determinism in physics simulation ..................................................... 26 2.3.3 Networked Physics Simulation ........................................................... 27 2.4 Immersion in DIAs and Games .................................................................. 30 2.5 Consistency in Distributed Interactive Applications.................................. 31 2.5.1 Metrics of Consistency ........................................................................ 34 2.6 Traffic Reduction techniques and their implications for physics-rich environments .................................................................................................... 36 2.6.1 Compression ........................................................................................ 36 2.6.2 Packet Aggregation ............................................................................. 37 2.6.3 Dead Reckoning .................................................................................. 37 2.7 Summary .................................................................................................... 39 iv Chapter 3 Physics-aware state management in a P2P DIA .................................. 40 3.1 Physics-consistency-cost ............................................................................ 40 3.1.1 Anticipation of Physics-consistency-costs .......................................... 43 3.2 Authority in Physics-aware DIAs .............................................................. 44 3.2.1 Static Authority ................................................................................... 45 3.2.2 Dynamic Authority.............................................................................. 46 3.3 Updating state for physics-aware entities .................................................. 48 3.3.1 Collisions by proxy ............................................................................. 51 3.4 Minimising physics-consistency costs ....................................................... 53 3.5 Adaptive threshold DR with Authority ...................................................... 54 3.6 Testbed Application ................................................................................... 56 3.6.1 Code Development .............................................................................. 56 3.6.2 Tools and Middleware......................................................................... 56 3.6.3 Testbed Structure ................................................................................ 57 3.7 Summary .................................................................................................... 59 Chapter 4 Results and Performance ..................................................................... 60 4.1 Testing and Performance Metrics .............................................................. 60 4.1.1 Physics-aware inconsistency, and physics-consistency-costs ............. 60 4.1.2 Magnitude of Corrections to Physics-aware Entities .......................... 60 4.1.3 Update Rate ......................................................................................... 61 4.2 Motion Data
Recommended publications
  • Agx Multiphysics Download
    Agx multiphysics download click here to download A patch release of AgX Dynamics is now available for download for all of our licensed customers. This version include some minor. AGX Dynamics is a professional multi-purpose physics engine for simulators, Virtual parallel high performance hybrid equation solvers and novel multi- physics models. Why choose AGX Dynamics? Download AGX product brochure. This video shows a simulation of a wheel loader interacting with a dynamic tree model. High fidelity. AGX Multiphysics is a proprietary real-time physics engine developed by Algoryx Simulation AB Create a book · Download as PDF · Printable version. AgX Multiphysics Toolkit · Age Of Empires III The Asian Dynasties Expansion. Convert trail version Free Download, product key, keygen, Activator com extended. free full download agx multiphysics toolkit from AYS search www.doorway.ru have many downloads related to agx multiphysics toolkit which are hosted on sites like. With AGXUnity, it is possible to incorporate a real physics engine into a well Download from the prebuilt-packages sub-directory in the repository www.doorway.rug: multiphysics. A www.doorway.ru app that runs a physics engine and lets clients download physics data in real Clone or download AgX Multiphysics compiled with Lua support. Agx multiphysics toolkit. Developed physics the was made dynamics multiphysics simulation. Runtime library for AgX MultiPhysics Library. How to repair file. Original file to replace broken file www.doorway.ru Download. Current version: Some short videos that may help starting with AGX-III. Example 1: Finding a possible Pareto front for the Balaban Index in the Missing: multiphysics.
    [Show full text]
  • Rifle Hunting
    TABLE OF CONTENTS Hunting and Outdoor Skills Member Manual ACKNOWLEDGEMENTS A. Introduction to Hunting 1. History of Hunting 5 2. Why We Hunt 10 3. Hunting Ethics 12 4. Hunting Laws and Regulations 20 5. Hunter and Landowner Relations 22 6. Wildlife Management and the Hunter 28 7. Careers in Hunting, Shooting Sports and Wildlife Management 35 B. Types of Hunting 1. Hunting with a Rifle 40 2. Hunting with a Shotgun 44 3. Hunting with a Handgun 48 4. Hunting with a Muzzleloading 51 5. Bowhunting 59 6. Hunting with a Camera 67 C. Outdoor and Hunting Equipment 1. Use of Map and Compass 78 2. Using a GPS 83 3. Choosing and Using Binoculars 88 4. Hunting Clothing 92 5. Cutting Tools 99 D. Getting Ready for the Hunt 1. Planning the Hunt 107 2. The Hunting Camp 109 3. Firearm Safety for the Hunter 118 4. Survival in the Outdoors 124 E. Hunting Skills and Techniques 1. Recovering Game 131 2. Field Care and Processing of Game 138 3. Hunting from Stands and Blinds 144 4. Stalking Game Animals 150 5. Hunting with Dogs 154 F. Popular Game Species 1. Hunting Rabbits and Hares 158 2. Hunting Squirrels 164 3. Hunting White-tailed Deer 171 4. Hunting Ring-necked Pheasants 179 5. Hunting Waterfowl 187 6. Hunting Wild Turkeys 193 2 ACKNOWLEDGEMENTS The 4-H Shooting Sports Hunting Materials were first put together about 25 years ago. Since that time there have been periodic updates and additions. Some of the authors are known, some are unknown. Some did a great deal of work; some just shared morsels of their expertise.
    [Show full text]
  • Reinforcement Learning for Manipulation of Collections of Objects Using Physical Force fields
    Bachelor’s thesis Czech Technical University in Prague Faculty of Electrical Engineering F3 Department of Control Engineering Reinforcement learning for manipulation of collections of objects using physical force fields Dominik Hodan Supervisor: doc. Ing. Zdeněk Hurák, Ph.D. Field of study: Cybernetics and Robotics May 2020 ii BACHELOR‘S THESIS ASSIGNMENT I. Personal and study details Student's name: Hodan Dominik Personal ID number: 474587 Faculty / Institute: Faculty of Electrical Engineering Department / Institute: Department of Control Engineering Study program: Cybernetics and Robotics II. Bachelor’s thesis details Bachelor’s thesis title in English: Reinforcement learning for manipulation of collections of objects using physical force fields Bachelor’s thesis title in Czech: Posilované učení pro manipulaci se skupinami objektů pomocí fyzikálních silových polí Guidelines: The goal of the project is to explore the opportunities that the framework of reinforcement learning offers for the task of automatic manipulation of collections of objects using physical force fields. In particular, force fields derived from electric and magnetic fields shaped through planar regular arrays of 'actuators' (microelectrodes, coils) will be considered. At least one of the motion control tasks should be solved: 1. Feedback-controlled distribution shaping. For example, it may be desired that a collection of objects initially concentrated in one part of the work arena is finally distributed uniformly all over the surface. 2. Feedback-controlled mixing, in which collections objects of two or several types (colors) - initially separated - are blended. 3. Feedback-controlled Brownian motion, in which every object in the collection travels (pseudo)randomly all over the surface. Bibliography / sources: [1] D.
    [Show full text]
  • Software Design for Pluggable Real Time Physics Middleware
    2005:270 CIV MASTER'S THESIS AgentPhysics Software Design for Pluggable Real Time Physics Middleware Johan Göransson Luleå University of Technology MSc Programmes in Engineering Department of Computer Science and Electrical Engineering Division of Computer Science 2005:270 CIV - ISSN: 1402-1617 - ISRN: LTU-EX--05/270--SE AgentPhysics Software Design for Pluggable Real Time Physics Middleware Johan GÄoransson Department of Computer Science and Electrical Engineering, LuleºaUniversity of Technology, [email protected] October 27, 2005 Abstract This master's thesis proposes a software design for a real time physics appli- cation programming interface with support for pluggable physics middleware. Pluggable means that the actual implementation of the simulation is indepen- dent and interchangeable, separated from the user interface of the API. This is done by dividing the API in three layers: wrapper, peer, and implementation. An evaluation of Open Dynamics Engine as a viable middleware for simulating rigid body physics is also given based on a number of test applications. The method used in this thesis consists of an iterative software design based on a literature study of rigid body physics, simulation and software design, as well as reviewing related work. The conclusion is that although the goals set for the design were ful¯lled, it is unlikely that AgentPhysics will be used other than as a higher level API on top of ODE, and only ODE. This is due to a number of reasons such as middleware speci¯c tools and code containers are di±cult to support, clash- ing programming paradigms produces an error prone implementation layer and middleware developers are reluctant to port their engines to Java.
    [Show full text]
  • PDF Download Learning Cocos2d
    LEARNING COCOS2D : A HANDS-ON GUIDE TO BUILDING IOS GAMES WITH COCOS2D, BOX2D, AND CHIPMUNK PDF, EPUB, EBOOK Rod Strougo | 640 pages | 28 Jul 2011 | Pearson Education (US) | 9780321735621 | English | New Jersey, United States Learning Cocos2D : A Hands-On Guide to Building iOS Games with Cocos2D, Box2D, and Chipmunk PDF Book FREE U. With the introduction of iOS5, many security issues have come to light. You will then learn to add scenes to the game such as the gameplay scene and options scene and create menus and buttons in these scenes, as well as creating transitions between them. Level design and asset creation is a time consuming portion of game development, and Chipmunk2D can significantly aid in creating your physics shapes. However, they are poor at providing specific, actionable data that help game designers make their games better for several reasons. The book starts off with a detailed look at how to implement sprites and animations into your game to make it livelier. You should have some basic programming experience with Objective-C and Xcode. This book shows you how to use the powerful new cocos2d, version 2 game engine to develop games for iPhone and iPad with tilemaps, virtual joypads, Game Center, and more. The user controls an air balloon with his device as it flies upwards. We will create a game scene, add background image, player and enemy characters. Edward rated it really liked it Aug 13, Marketing Pearson may send or direct marketing communications to users, provided that Pearson will not use personal information collected or processed as a K school service provider for the purpose of directed or targeted advertising.
    [Show full text]
  • Physics Simulation Game Engine Benchmark Student: Marek Papinčák Supervisor: Doc
    ASSIGNMENT OF BACHELOR’S THESIS Title: Physics Simulation Game Engine Benchmark Student: Marek Papinčák Supervisor: doc. Ing. Jiří Bittner, Ph.D. Study Programme: Informatics Study Branch: Web and Software Engineering Department: Department of Software Engineering Validity: Until the end of summer semester 2018/19 Instructions Review the existing tools and methods used for physics simulation in contemporary game engines. In the review, cover also the existing benchmarks created for evaluation of physics simulation performance. Identify parts of physics simulation with the highest computational overhead. Design at least three test scenarios that will allow to evaluate the dependence of the simulation on carefully selected parameters (e.g. number of colliding objects, number of simulated projectiles). Implement the designed simulation scenarios within Unity game engine and conduct a series of measurements that will analyze the behavior of the physics simulation. Finally, create a simple game that will make use of the tested scenarios. References [1] Jason Gregory. Game Engine Architecture, 2nd edition. CRC Press, 2014. [2] Ian Millington. Game Physics Engine Development, 2nd edition. CRC Press, 2010. [3] Unity User Manual. Unity Technologies, 2017. Available at https://docs.unity3d.com/Manual/index.html [4] Antonín Šmíd. Comparison of the Unity and Unreal Engines. Bachelor Thesis, CTU FEE, 2017. Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague February 8, 2018 Bachelor’s thesis Physics Simulation Game Engine Benchmark Marek Papinˇc´ak Department of Software Engineering Supervisor: doc. Ing. Jiˇr´ıBittner, Ph.D. May 15, 2018 Acknowledgements I am thankful to Jiri Bittner, an associate professor at the Department of Computer Graphics and Interaction, for sharing his expertise and helping me with this thesis.
    [Show full text]
  • Spjaldtölvur Í Norðlingaskóla Smáforrit Í Nóvember 2012 – Upplýsingar Um Forritin Skúlína Hlíf Kjartansdóttir – 31.8.2014
    Spjaldtölvur í Norðlingaskóla Smáforrit í nóvember 2012 – upplýsingar um forritin Skúlína Hlíf Kjartansdóttir – 31.8.2014 Lýsingar eru úr iTunes Preview eða af vefsíðum fyrirtækja framleiðnda forritanna. ! Not found on itunes http://ruckygames.com/ 30/30 – Productivity By Binary Hammer https://itunes.apple.com/is/app/30-30/id505863977?mt=8 You have never experienced a task manager like this! Simple. Attractive. Useful. 30/30 helps you get stuff done! 3D Brain – Education / 1 Cold Spring Harbor Lab http://www.g2conline.org/ https://itunes.apple.com/is/app/3d-brain/id331399332?mt=8 Use your touch screen to rotate and zoom around 29 interactive structures. Discover how each brain region functions, what happens when it is injured, and how it is involved in mental illness. Each detailed structure comes with information on functions, disorders, brain damage, case studies, and links to modern research. 3DGlobe2X – Education By Sreeprakash Neelakantan http://schogini.com/ View More by This Developer https://itunes.apple.com/us/app/3d-globe-2x/id430309485?mt=8 2 An amazing way to twirl the world! This 3D globe can be rotated with a swipe of your finger. Spin it to the right or left, and if you want it closer zoom in, or else zoom out. Watch the world revolve at your fingertips! An interesting feature of this 3D globe is that you can type in the name of a place in the given space and it is shown on the 3D globe by affixing a flag to show you the exact location. Also, when you click on the flag, you will get the details about the place on your screen.
    [Show full text]
  • A Position Based Approach to Ragdoll Simulation
    LINKÖPING UNIVERSITY Department of Electrical Engineering Master Thesis A Position Based Approach to Ragdoll Simulation Fiammetta Pascucci LITH-ISY-EX- -07/3966- -SE June 2007 LINKÖPING UNIVERSITY Department of Electrical Engineering Master Thesis A position Based Approach to Ragdoll Simulation Fiammetta Pascucci LITH-ISY-EX- -07/3966- -SE June 2007 Supervisor: Ingemar Ragnemalm Examinator: Ingemar Ragnemalm Abstract Create the realistic motion of a character is a very complicated work. This thesis aims to create interactive animation for characters in three dimen- sions using position based approach. Our character is pictured from ragdoll, which is a structure of system particles where all particles are linked by equidistance con- straints. The goal of this thesis is observed the fall in the space of our ragdoll after creating all constraints, as structure, contact and environment constraints. The structure constraint represents all joint constraints which have one, two or three Degree of Freedom (DOF). The contact constraints are represented by collisions between our ragdoll and other objects in the space. Finally, the environment constraints are represented by means of the wall con- straint. The achieved results allow to have a realist fall of our ragdoll in the space. Keywords: Particle System, Verlet’s Integration, Skeleton Animation, Joint Con- straint, Environment Constraint, Skinning, Collision Detection. Acknowledgments I would to thanks all peoples who aid on making my master thesis work. In particular, thanks a lot to the person that most of all has believed in me. This person has always encouraged to go forward, has always given a lot love and help me in difficult movement.
    [Show full text]
  • Physics Engines
    Physics Engines Jeff Wilson [email protected] Maribeth Gandy [email protected] Clint Doriot [email protected] CS4455 What is a Physics Engine? • Provides physics simulation in a virtual environment • High Precision vs. Real Time • Real Time requires a lot of approximations • Can be used in creative ways http://www.youtube.com/watch?v=2FMtQuFzjAc CS 4455 Real Time Physic Engines • Havok (commercial), Newton (closed source), Open Dynamics Engine (ODE) (open source), Aegia PhysX (accelerator board available) • Unity o PhysX integration § Rigidbodies § Soft Bodies § Joints § Ragdoll Physics § Cloth § Cars http://docs.unity3d.com/ Documentation/Manual/Physics.html CS 4455 Concepts • Forces • Rigid Bodies o Box, sphere, capsule, character mesh etc. • Constraints • Collision Detection o Can be used by itself with no dynamics CS 4455 Bodies • Rigid • Movable (Dynamic) o Kinematic o Unity’s IsKinematic = false § You are not controlling the velocity & position, Unity is doing that • Unmovable (Static) o Infinite mass • Properties o Mass, dynamic/static friction, restitution (bounciness), softness § Anisotropic friction (skateboard) o Mesh shapes with per triangle materials (terrain) CS 4455 Bodies • Position • Orientation • Velocity • Angular Velocity • These values are a result of forces CS 4455 Collisions • Bounding boxes (collision hulls) reduce complexity of collision calculation o Made from the primitives mentioned before § Boxes, capsules etc. • How your model is encapsulated determines accuracy, and computational requirements
    [Show full text]
  • Pymunk Documentation Release 3.0.0
    pymunk Documentation Release 3.0.0 Victor Blomqvist April 27, 2015 Contents 1 Getting Started 3 2 The pymunk Vision 5 3 Contact & Support 7 4 Contents 9 4.1 Readme..................................................9 4.2 News................................................... 10 4.3 Installation................................................ 12 4.4 API Reference.............................................. 14 4.5 Examples................................................. 39 4.6 Tutorials................................................. 56 4.7 Advanced................................................. 67 5 Indices and tables 71 Python Module Index 73 i ii pymunk Documentation, Release 3.0.0 pymunk is a easy-to-use pythonic 2d physics library that can be used whenever you need 2d rigid body physics from Python. Perfect when you need 2d physics in your game, demo or other application! It is built on top of the very nice 2d physics library Chipmunk. Contents 1 pymunk Documentation, Release 3.0.0 2 Contents CHAPTER 1 Getting Started To get started quickly take a look in the Readme, it contains a summary of the most important things and is quick to read. When done its a good idea to take a look at the included Examples, read the Tutorials and take a look in the API Reference. 3 pymunk Documentation, Release 3.0.0 4 Chapter 1. Getting Started CHAPTER 2 The pymunk Vision “Make 2d physics easy to include in your game“ It is (or is striving to be): • Easy to use - It should be easy to use, no complicated stuff should be needed to add physics to your game/program. • “Pythonic” - It should not be visible that a c-library (chipmunk) is in the bottom, it should feel like a python library (no strange naming, OO, no memory handling and more) • Simple to build & install - You shouldn’t need to have a zillion of libraries installed to make it install, or do a lot of command line tricks.
    [Show full text]
  • Systematic Literature Review of Realistic Simulators Applied in Educational Robotics Context
    sensors Systematic Review Systematic Literature Review of Realistic Simulators Applied in Educational Robotics Context Caio Camargo 1, José Gonçalves 1,2,3 , Miguel Á. Conde 4,* , Francisco J. Rodríguez-Sedano 4, Paulo Costa 3,5 and Francisco J. García-Peñalvo 6 1 Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; [email protected] (C.C.); [email protected] (J.G.) 2 CeDRI—Research Centre in Digitalization and Intelligent Robotics, 5300-253 Bragança, Portugal 3 INESC TEC—Institute for Systems and Computer Engineering, 4200-465 Porto, Portugal; [email protected] 4 Robotics Group, Engineering School, University of León, Campus de Vegazana s/n, 24071 León, Spain; [email protected] 5 Universidade do Porto, 4200-465 Porto, Portugal 6 GRIAL Research Group, Computer Science Department, University of Salamanca, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected] Abstract: This paper presents a systematic literature review (SLR) about realistic simulators that can be applied in an educational robotics context. These simulators must include the simulation of actuators and sensors, the ability to simulate robots and their environment. During this systematic review of the literature, 559 articles were extracted from six different databases using the Population, Intervention, Comparison, Outcomes, Context (PICOC) method. After the selection process, 50 selected articles were included in this review. Several simulators were found and their features were also Citation: Camargo, C.; Gonçalves, J.; analyzed. As a result of this process, four realistic simulators were applied in the review’s referred Conde, M.Á.; Rodríguez-Sedano, F.J.; context for two main reasons. The first reason is that these simulators have high fidelity in the robots’ Costa, P.; García-Peñalvo, F.J.
    [Show full text]
  • Physics-Based Simula1on
    Physics-based Simula1on • simple (independent par1cles), or complex (robust colliding, stacking, sliding 3D rigid bodies) • many many simulators! – PhysX (Unity, Unreal), Bullet, Open Dynamics Engine, MuJoCo, Havok, Box2D, Chipmunk, OpenSim, RBDL, Simulink (MATLAB), ADAMS, SD/FAST, DART, Vortex, SOFA, Avatar, Project Chrono, Cannon.js, … – many course projects, theses, abandon-ware Resources • hUps://processing.org/examples/ see “Simulate”; 2D par1cle systems • Non-convex rigid bodies with stacking 3D collision processing and stacking hUp://www.cs.ubc.ca/~rbridson/docs/rigid_bodies.pdf • Physically-based Modeling, course notes, SIGGRAPH 2001, Baraff & Witkin hUp://www.pixar.com/companyinfo/research/pbm2001/ • Doug James CS 5643 course notes hUp://www.cs.cornell.edu/courses/cs5643/2015sp/ • Rigid Body Dynamics, Chris Hecker hUp://chrishecker.com/Rigid_Body_Dynamics • Video game physics tutorial hUps://www.toptal.com/game/video-game-physics-part-i-an-introduc1on-to-rigid-body-dynamics • Box2D javascript live demos hUp://heikobehrens.net/misc/box2d.js/examples/ • Rigid body collisions javascript demo hUps://www.myphysicslab.com/engine2D/collision-en.html • Rigid Body Collision Reponse, Michael Manzke, course slides hUps://www.scss.tcd.ie/Michael.Manzke/CS7057/cs7057-1516-09-CollisionResponse-mm.pdf • Rigid Body Dynamics Algorithms. Roy Featherstone, 2008 • Par1cle-based Fluid Simula1on for Interac1ve Applica1ons, SCA 2003, PDF • Stable Fluids, Jos Stam, SIGGRAPH 1999. interac1ve demo: hUps://29a.ch/2012/12/16/webgl-fluid-simula1on Simula1on
    [Show full text]