Software Design for Pluggable Real Time Physics Middleware

Total Page:16

File Type:pdf, Size:1020Kb

Software Design for Pluggable Real Time Physics Middleware 2005:270 CIV MASTER'S THESIS AgentPhysics Software Design for Pluggable Real Time Physics Middleware Johan Göransson Luleå University of Technology MSc Programmes in Engineering Department of Computer Science and Electrical Engineering Division of Computer Science 2005:270 CIV - ISSN: 1402-1617 - ISRN: LTU-EX--05/270--SE AgentPhysics Software Design for Pluggable Real Time Physics Middleware Johan GÄoransson Department of Computer Science and Electrical Engineering, LuleºaUniversity of Technology, [email protected] October 27, 2005 Abstract This master's thesis proposes a software design for a real time physics appli- cation programming interface with support for pluggable physics middleware. Pluggable means that the actual implementation of the simulation is indepen- dent and interchangeable, separated from the user interface of the API. This is done by dividing the API in three layers: wrapper, peer, and implementation. An evaluation of Open Dynamics Engine as a viable middleware for simulating rigid body physics is also given based on a number of test applications. The method used in this thesis consists of an iterative software design based on a literature study of rigid body physics, simulation and software design, as well as reviewing related work. The conclusion is that although the goals set for the design were ful¯lled, it is unlikely that AgentPhysics will be used other than as a higher level API on top of ODE, and only ODE. This is due to a number of reasons such as middleware speci¯c tools and code containers are di±cult to support, clash- ing programming paradigms produces an error prone implementation layer and middleware developers are reluctant to port their engines to Java. The evalu- ation of ODE shows that ODE has decent features, performance and stability, and that ODE is good enough for small scale game development. Preface This thesis is the ¯nal requisite for my master degree in computer sience from LuleºaUniversity of Technology. It was carried out in the spring of 2005 at Agency9 in Luleºa. I would like to thank Tomas and Khashayar at Agency9 for their help and support as well as making these months a fun time in general. I would also like to thank my examiner Mikael Drugge for guidance in writing this thesis. 2 Table of Contents 1 Introduction 5 1.1 Background . 5 1.1.1 Middleware . 5 1.2 Purpose . 7 1.3 Goals . 7 1.3.1 Intuitive, Flexible and Extendable . 7 1.3.2 Switchable Middleware Layer . 7 1.3.3 Evaluate ODE . 7 1.4 Demarcations . 7 1.5 Methodology . 8 2 Theory 9 2.1 Rigid Body Physics . 9 2.1.1 Constant Properties . 9 2.1.2 Degree of Freedom . 9 2.1.3 Kinematics . 10 2.1.4 Dynamics . 10 2.2 Design Aspects of a Physics API . 11 2.2.1 Position . 11 2.2.2 Orientation . 11 2.2.3 Constraints . 12 2.2.4 Collisions . 12 2.2.5 Friction . 13 2.2.6 Ordinary Di®erential Equation Solvers . 13 2.3 Architecture of Open Dynamics Engine . 14 2.3.1 Rigid Body Simulation . 14 2.3.2 Collision Detection . 14 2.3.3 Joint Constraints . 15 2.3.4 Friction . 15 2.4 Related Work . 15 2.4.1 Collada . 15 2.4.2 Open Dynamics Framework . 15 2.4.3 Open Physics Abstraction Layer . 16 3 Design Speci¯cation 17 3.1 Design Patterns . 17 3.1.1 Creational Patterns . 17 3.1.2 Structural Patterns . 18 3 3.2 Design Outline . 18 3.2.1 Peer Layer . 19 3.2.2 Implementation Layer . 19 3.2.3 Wrapper Layer . 19 3.3 Packages . 20 3.3.1 Peer . 21 3.3.2 Listeners . 23 3.3.3 Volume . 25 3.3.4 Physics . 25 3.3.5 Graphics . 25 3.3.6 Containers . 26 3.3.7 ODE Peer Implementation . 27 4 Discussion 30 4.1 AgentPhysics . 30 4.1.1 Usability . 30 4.1.2 Issues . 31 4.2 Evaluation of ODE . 32 4.2.1 Features . 32 4.2.2 Issues . 33 4.2.3 Result . 34 4.3 Conclusions . 34 4.4 Further Work . 35 A Demo Applications 38 A.1 Multiple Collision Volumes . 38 A.2 Multiple Materials . 38 A.3 Joints . 38 A.4 Simultaneous Simulations . 38 A.5 Dynamics . 39 A.6 Simple Ragdoll . 39 A.7 Ragdoll Drop . 39 A.8 Animated Ragdolls . 39 A.9 Vehicle Simulation . 39 B Class Diagrams 40 B.1 Typical Application . 40 B.2 A9WorldPeer . 40 B.3 A9StaticBodyPeer . 40 B.4 A9Joint and Extending Interfaces . 40 B.5 Listerners . 40 B.6 Material . 40 B.7 Graphics . 40 B.8 Container . 40 4 Chapter 1 Introduction 1.1 Background In the past couple of years, real time physics has become the new buzzword in game development. Hardware accelerated 3D-graphics, which now is com- monplace, has freed the processor from processing costly graphics algorithms, making real time physics calculations possible instead. Usage of realtime physics in games has up until now been sparse, apart from vehicle simulation. In today's games, physics has evolved to the point where almost every object in the game world can be manipulated by the player, and react in a realistic way according to force applied, surface friction and elasticity. Vehicles have become more ad- vanced than ever, and character death animations have become obsolete with the usage of ragdolls, which means characters a®ected by physics, interacting with the surroundings in a realistic manner. Animation and physics can be used in combination as well, creating realistic e®ects when the character is hit by a bullet or recoil e®ects when the character ¯res his weapon. Even water and cloth is simulated in a realistic fashion, allowing the game developers to create a more life-like and intuitive game. Gameplay is evolving from where the player is trying to ¯nd a trigger to overcome some obstacle, to the player stacking objects or combining objects to build something to overcome the obstacle. With life-like physics, the player can use his real world experience to solve problems, since the game behaves as expected in the real world. The bestselling title Half-Life 2 is renowned because of the clever usage of real time physics, which allows the player to solve problems in a very intuitive way. Game physics is simpli¯ed by utilizing the concept of Rigid bodies, which is an idealized representation of an object, and Articulated Rigid bodies, which are constrained rigid bodies. 1.1.1 Middleware Middleware is the term for an application programming interface (API) devel- oped for one purpose only. For instance, the API could be intended only for graphics or only for physics. A developer can develop the modules needed for the game from scratch or use middleware for any number of modules. The bene- ¯t of using middleware is of course cutting development time, but also allowing the developers to focus on game content instead of technical issues with the 5 graphics module for instance. The drawbacks can include di±culties in ¯nding middleware well suited for a particular game and licensing cost. High standard middleware is usually expensive to license, but development time costs as well. Havok Physics and Animation Havok is perhaps the most well known middleware physics API. It is available for current and next generation game platforms. Havok physics in combination with Havok Animation enables the developer to mix physics simulation with an- imations. Havok also ships with a framework for developing vehicle simulations. Currently, over 120 titles including Half-Life 2 and Halo 2, are using Havok. Novodex/Ageia PhysX Engine Novodex is a multithreaded object oriented physics API, with an ANSI C++ programming interface, available for Windows and consoles. Novodex is the ¯rst physics engine supporting the new Physics Processor Unit (PPU) from AGEIA, which allows hardware accelerated calculations. Little is known about the PPU at this time of writing, but the PPU is believed to have the same impact on games and gameplay as the ¯rst 3D-accelerated graphics cards had on graphics. Epic Games are using Novodex for Unreal 3 and their next generation games, as well as other major developers such as Sega and Ubisoft. Novodex was acquired by Ageia and is now known as Ageia PhysX Engine. Meqon Game Dynamics Meqon Game Dynamics is also multi platform, with a C++ interface. It features both rigid body physics as well as vehicle dynamics, liquid surfaces and particle systems. Duke Nukem Forever, which is a highly anticipated game, is among the users of Meqon Game Dynamics. Meqon also has a product suited for industrial physics simulations, where accuracy and stability is crucial. Meqon was however acquired by Ageia in September 2005, and the future of Meqon Game Dynamics is unknown. Open Dynamics Engine Open dynamics engine (ODE) is a non commercial open source physics engine written by Russell Smith. It has a native C interface as well as a C++ interface. An open source Java bind using the Java Native Interface (JNI) to communicate to the native code base is also available, with a one-to-one interface to the native C. ODE has most of the same features as the commercial ones, but it is not as stable and easy to use as the commercial ones, and lacks support other than its quite small web community. A more exhaustive description of ODE follows in chapter 2. AgentFX Agency9 is a middleware developer with AgentFX as their main product. AgentFX is a high performance 3D-graphics engine developed entirely in Java, suitable for any real-time 3D application.
Recommended publications
  • Master's Thesis
    MASTER'S THESIS Online Model Predictive Control of a Robotic System by Combining Simulation and Optimization Mohammad Rokonuzzaman Pappu 2015 Master of Science (120 credits) Space Engineering - Space Master Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Mohammad Rokonuzzaman Pappu Online Model Predictive Control of a Robotic System by Combining Simulation and Optimization School of Electrical Engineering Department of Electrical Engineering and Automation Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Espoo, August 18, 2015 Instructor: Professor Perttu Hämäläinen Aalto University School of Arts, Design and Architecture Supervisors: Professor Ville Kyrki Professor Reza Emami Aalto University Luleå University of Technology School of Electrical Engineering Preface First of all, I would like to express my sincere gratitude to my supervisor Pro- fessor Ville Kyrki for his generous and patient support during the work of this thesis. He was always available for questions and it would not have been possi- ble to finish the work in time without his excellent guidance. I would also like to thank my instructor Perttu H¨am¨al¨ainen for his support which was invaluable for this thesis. My sincere thanks to all the members of Intelligent Robotics group who were nothing but helpful throughout this work. Finally, a special thanks to my colleagues of SpaceMaster program in Helsinki for their constant support and encouragement. Espoo, August 18,
    [Show full text]
  • Agx Multiphysics Download
    Agx multiphysics download click here to download A patch release of AgX Dynamics is now available for download for all of our licensed customers. This version include some minor. AGX Dynamics is a professional multi-purpose physics engine for simulators, Virtual parallel high performance hybrid equation solvers and novel multi- physics models. Why choose AGX Dynamics? Download AGX product brochure. This video shows a simulation of a wheel loader interacting with a dynamic tree model. High fidelity. AGX Multiphysics is a proprietary real-time physics engine developed by Algoryx Simulation AB Create a book · Download as PDF · Printable version. AgX Multiphysics Toolkit · Age Of Empires III The Asian Dynasties Expansion. Convert trail version Free Download, product key, keygen, Activator com extended. free full download agx multiphysics toolkit from AYS search www.doorway.ru have many downloads related to agx multiphysics toolkit which are hosted on sites like. With AGXUnity, it is possible to incorporate a real physics engine into a well Download from the prebuilt-packages sub-directory in the repository www.doorway.rug: multiphysics. A www.doorway.ru app that runs a physics engine and lets clients download physics data in real Clone or download AgX Multiphysics compiled with Lua support. Agx multiphysics toolkit. Developed physics the was made dynamics multiphysics simulation. Runtime library for AgX MultiPhysics Library. How to repair file. Original file to replace broken file www.doorway.ru Download. Current version: Some short videos that may help starting with AGX-III. Example 1: Finding a possible Pareto front for the Balaban Index in the Missing: multiphysics.
    [Show full text]
  • An Optimal Solution for Implementing a Specific 3D Web Application
    IT 16 060 Examensarbete 30 hp Augusti 2016 An optimal solution for implementing a specific 3D web application Mathias Nordin Institutionen för informationsteknologi Department of Information Technology Abstract An optimal solution for implementing a specific 3D web application Mathias Nordin Teknisk- naturvetenskaplig fakultet UTH-enheten WebGL equips web browsers with the ability to access graphic cards for extra processing Besöksadress: power. WebGL uses GLSL ES to communicate with graphics cards, which uses Ångströmlaboratoriet Lägerhyddsvägen 1 different Hus 4, Plan 0 instructions compared with common web development languages. In order to simplify the development process there are JavaScript libraries handles the Postadress: Box 536 751 21 Uppsala communication with WebGL. On the Khronos website there is a listing of 35 different Telefon: JavaScript libraries that access WebGL. 018 – 471 30 03 It is time consuming for developers to compare the benefits and disadvantages of all Telefax: these 018 – 471 30 00 libraries to find the best WebGL library for their need. This thesis sets up requirements of a Hemsida: specific WebGL application and investigates which libraries that are best for http://www.teknat.uu.se/student implmeneting its requirements. The procedure is done in different steps. Firstly is the requirements for the 3D web application defined. Then are all the libraries analyzed and mapped against these requirements. The two libraries that best fulfilled the requirments is Three.js with Physi.js and Babylon.js. The libraries is used in two seperate implementations of the intitial game. Three.js with Physi.js is the best libraries for implementig the requirements of the game.
    [Show full text]
  • Procedural Destruction of Objects for Computer Games
    Procedural Destruction of Objects for Computer Games PUBLIC VERSION THESIS submitted in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in MEDIA AND KNOWLEDGE ENGINEERING by Joris van Gestel born in Zevenhuizen, the Netherlands Computer Graphics and CAD/CAM Group Cannibal Game Studios Department of Mediamatics Molengraaffsingel 12-14 Faculty of EEMCS, Delft University of Technology 2629 JD Delft Delft, the Netherlands The Netherlands www.ewi.tudelft.nl www.cannibalgamestudios.com Author: Joris van Gestel Student id: 1099825 Email: [email protected] Date: May 10, 2011 © 2011 Cannibal Game Studios. All Rights Reserved i Summary Traditional content creation for computer games is a costly process. In particular, current techniques for authoring destructible behaviour are labour intensive and often limited to a single object basis. We aim to create an intuitive approach which allows designers to visually define destructible behaviour for objects in a reusable manner, which can then be applied in real-time. First we present a short introduction into the way that destruction has been done in games for many years. To better understand the physical processes that are being replicated, we present some information on how destruction works in the real world, and the high level approaches that have developed to simulate these processes. Using criteria gathered from industry professionals, we survey previous research work and determine their usability in a game development context. The approach which suits these criteria best is then selected as the basis for the approach presented in this work. By examining commercial solutions the shortcomings of existing technologies are determined to establish a solution direction.
    [Show full text]
  • FREE STEM Apps for Common Core Daniel E
    Georgia Southern University Digital Commons@Georgia Southern Interdisciplinary STEM Teaching & Learning Conference Mar 6th, 2:45 PM - 3:30 PM FREE STEM Apps for Common Core Daniel E. Rivera Mr. Georgia Southern University, [email protected] Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem Recommended Citation Rivera, Daniel E. Mr., "FREE STEM Apps for Common Core" (2015). Interdisciplinary STEM Teaching & Learning Conference. 38. https://digitalcommons.georgiasouthern.edu/stem/2015/2015/38 This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. STEM Apps for Common Core Access/Edit this doc online: h​ttp://goo.gl/bLkaXx Science is one of the most amazing fields of study. It explains our universe. It enables us to do the impossible. It makes sense of mystery. What many once believed were supernatural or magical events, we now explain, understand, and can apply to our everyday lives. Every modern marvel we have - from medicine, to technology, to agriculture- we owe to the scientific study of those before us. We stand on the shoulders of giants. It is therefore tremendously disappointing that so many regard science as simply a nerdy pursuit, or with contempt, or with boredom. In many ways w​ e stopped dreaming.​ Yet science is the alchemy and magic of yesterday, harnessed for humanity's benefit today. Perhaps no other subject has been so thoroughly embraced by the Internet and modern computing.
    [Show full text]
  • Physics Engine Development
    Hello! My name is Sergiy Migdalskiy and I work at Valve with Dirk Gregorius. I helped port, develop and optimize our in-house physics engine, Rubikon. Also, I have implemented a physics engine for Uncharted: Drake's Fortune on PS/3. 1 While this talk is about physics development, I'd like to emphacise that tools and techniques I'm describing are general purpose. They are probably applicable to any complex system written in C++. 2 Run Playing_with_Physics.mov This is what I do the whole day long. I play with physics, throw ragdolls into sandboxes, and such silliness. (wait) Here I'm piling up some ragdolls, it's looking good, until.. I notice one of the ragdolls, the very first, doesn't seem to collide with anything. I'm testing some more. I make sure the other ragdolls work fine. Then I notice something. Here it is – the collision flags on the very first ragdoll are set to not collide with anything. Now the mystery is solved, and I go on to other tests. 3 We started working with Dirk by porting his rigid body engine to Valve's framework. I knew Qt and I like playing with stuff I'm working on, for fun and to make it easier. So I implemented a little IDE for our physics project. It was incremental. Every time something took more than 30 seconds seconds to look up in the debugger, I made a widget that makes it a split-second. We had physics running in an isolated tool with buttons, sliders and 3D window with shadows, the one you've just seen, which was pretty cool.
    [Show full text]
  • Physics Simulation Game Engine Benchmark Student: Marek Papinčák Supervisor: Doc
    ASSIGNMENT OF BACHELOR’S THESIS Title: Physics Simulation Game Engine Benchmark Student: Marek Papinčák Supervisor: doc. Ing. Jiří Bittner, Ph.D. Study Programme: Informatics Study Branch: Web and Software Engineering Department: Department of Software Engineering Validity: Until the end of summer semester 2018/19 Instructions Review the existing tools and methods used for physics simulation in contemporary game engines. In the review, cover also the existing benchmarks created for evaluation of physics simulation performance. Identify parts of physics simulation with the highest computational overhead. Design at least three test scenarios that will allow to evaluate the dependence of the simulation on carefully selected parameters (e.g. number of colliding objects, number of simulated projectiles). Implement the designed simulation scenarios within Unity game engine and conduct a series of measurements that will analyze the behavior of the physics simulation. Finally, create a simple game that will make use of the tested scenarios. References [1] Jason Gregory. Game Engine Architecture, 2nd edition. CRC Press, 2014. [2] Ian Millington. Game Physics Engine Development, 2nd edition. CRC Press, 2010. [3] Unity User Manual. Unity Technologies, 2017. Available at https://docs.unity3d.com/Manual/index.html [4] Antonín Šmíd. Comparison of the Unity and Unreal Engines. Bachelor Thesis, CTU FEE, 2017. Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague February 8, 2018 Bachelor’s thesis Physics Simulation Game Engine Benchmark Marek Papinˇc´ak Department of Software Engineering Supervisor: doc. Ing. Jiˇr´ıBittner, Ph.D. May 15, 2018 Acknowledgements I am thankful to Jiri Bittner, an associate professor at the Department of Computer Graphics and Interaction, for sharing his expertise and helping me with this thesis.
    [Show full text]
  • Physics Engine Design and Implementation Physics Engine • a Component of the Game Engine
    Physics engine design and implementation Physics Engine • A component of the game engine. • Separates reusable features and specific game logic. • basically software components (physics, graphics, input, network, etc.) • Handles the simulation of the world • physical behavior, collisions, terrain changes, ragdoll and active characters, explosions, object breaking and destruction, liquids and soft bodies, ... Game Physics 2 Physics engine • Example SDKs: – Open Source • Bullet, Open Dynamics Engine (ODE), Tokamak, Newton Game Dynamics, PhysBam, Box2D – Closed source • Havok Physics • Nvidia PhysX PhysX (Mafia II) ODE (Call of Juarez) Havok (Diablo 3) Game Physics 3 Case study: Bullet • Bullet Physics Library is an open source game physics engine. • http://bulletphysics.org • open source under ZLib license. • Provides collision detection, soft body and rigid body solvers. • Used by many movie and game companies in AAA titles on PC, consoles and mobile devices. • A modular extendible C++ design. • Used for the practical assignment. • User manual and numerous demos (e.g. CCD Physics, Collision and SoftBody Demo). Game Physics 4 Features • Bullet Collision Detection can be used on its own as a separate SDK without Bullet Dynamics • Discrete and continuous collision detection. • Swept collision queries. • Generic convex support (using GJK), capsule, cylinder, cone, sphere, box and non-convex triangle meshes. • Support for dynamic deformation of nonconvex triangle meshes. • Multi-physics Library includes: • Rigid-body dynamics including constraint solvers. • Support for constraint limits and motors. • Soft-body support including cloth and rope. Game Physics 5 Design • The main components are organized as follows Soft Body Dynamics Bullet Multi Threaded Extras: Maya Plugin, Rigid Body Dynamics etc. Collision Detection Linear Math, Memory, Containers Game Physics 6 Overview • High level simulation manager: btDiscreteDynamicsWorld or btSoftRigidDynamicsWorld.
    [Show full text]
  • Program and Book of Abstracts
    20th International Conference on Multimedia in Physics Teaching and Learning Program and Book of Abstracts MPTL 2015 International Conference September 9–11, 2015 at LMU Munich Wed, 9 Sep Thu, 10 Sep Fri, 11 Sep Opening Ceremony Plenary Lecture Plenary Lecture 09:00 - 10:00 Michael Dubson Wouter van Joolingen Plenary Lecture Plenary Lecture Plenary Lecture 10:00 - 11:00 Jochen Schieck Christian Hackenberger David Lowe 11:00 - 11:30 Coffee Break Coffee Break Coffee Break 1A Invited Symposium REP 3A Parallel Session QP 6A Parallel Session SIM/VID 11:30 - 13:00 1B Invited Symposium IWB 3B Parallel Session VRL/MAP 6B Invited Symposium ASS 3C Workshop CAM 6C Workshop MAP Lunch Lunch Closing Ceremony 13:00 - 14:00 2A Invited Symposium VRL 4A Invited Symposium iMP Lunch 2B Invited Symposium ILA 4B Invited Symposum GBL 14:00 - 16:00 4C Parallel Session MM 16:00 - 16:30 Coffee Break Coffee Break Poster Session 5A Invited Symposium QP & 5B Parallel Session ILA 16:30 - 18:30 Welcome Party 5C Workshop VRL Guided Tour Conference Dinner 18:30 - 20:30 20:30 - 23:00 Program and Book of Abstracts European Physical Society 20th International Conference on Multimedia in Physics Teaching and Learning Program and Book of Abstracts MPTL 2015 International Conference September 9–11, 2015 at LMU Munich, Germany Organized by: Multimedia in Physics Teaching and Learning (MPTL) Chair of Physics Education, Faculty of Physics, LMU Munich With the support of: German Research Foundation (DFG) European Physical Society (EPS) – Physics Education Division German Physical
    [Show full text]
  • Dynamic Simulation of Manipulation & Assembly Actions
    Syddansk Universitet Dynamic Simulation of Manipulation & Assembly Actions Thulesen, Thomas Nicky Publication date: 2016 Document version Peer reviewed version Document license Unspecified Citation for pulished version (APA): Thulesen, T. N. (2016). Dynamic Simulation of Manipulation & Assembly Actions. Syddansk Universitet. Det Tekniske Fakultet. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Sep. 2018 Dynamic Simulation of Manipulation & Assembly Actions Thomas Nicky Thulesen The Maersk Mc-Kinney Moller Institute Faculty of Engineering University of Southern Denmark PhD Dissertation Odense, November 2015 c Copyright 2015 by Thomas Nicky Thulesen All rights reserved. The Maersk Mc-Kinney Moller Institute Faculty of Engineering University of Southern Denmark Campusvej 55 5230 Odense M, Denmark Phone +45 6550 3541 www.mmmi.sdu.dk Abstract To grasp and assemble objects is something that is known as a difficult task to do reliably in a robot system.
    [Show full text]
  • Chapter 9 Animation System
    Chapter 10 Collision and Rigid Body Dynamics asyrani.com 10.1 Do You Want Physics in Your Game? Things You Can Do with a Physics System A LOT Is Physics Fun? Simulations (Sims) Gran Turismo Flight Simulator Need For Speed Physics Puzzle Games Bridge Builder Fantastic Contraption Crayon Physics The Incredible Machine Sandbox Games LittleBigPlanet GTA 5 Spore Goal-Based and Story-Driven Games A goal-based game has rules and specific objectives that the player must accomplish in order to progress; in a story-driven game , telling a story is of paramount importance. Integrating a physics system into these kinds of games can be tricky. We generally give away control in exchange for a realistic simulation, and this loss of control can inhibit the player’s ability to accomplish goals or the game’s ability to tell the story. Impact of Physics on a Game Predictability Tuning and control Emergent behaviors Engineering Impacts Collision Tools pipeline User interface detection Animation Rag doll AI and character physics motion Networking Record and Graphics and playback multiplayer Art Impacts Additional tool More-complex and workflow content complexity Loss of control Other Impacts Interdisciplinary impacts. The introduction of a dynamics simulation into your game requires close cooperation between engineering, art, and design. Production impacts. Physics can add to a project’s development costs, technical and organizational complexity, and risk. 10.2 Collision/Physics Middleware I-Collide SWIFT V-Collide RAPID ODE ODE stands for “Open Dynamics Engine ” (http://www.ode.org). As its name implies, ODE is an open-source collision and rigid body dynamics SDK.
    [Show full text]
  • Basic Physics
    Basic Game Physics Technical Game Development II Professor Charles Rich Computer Science Department [email protected] [some material provided by Mark Claypool] IMGD 4000 (D 11) 1 Introduction . What is game physics? • computing motion of objects in virtual scene – including player avatars, NPC’s, inanimate objects • computing mechanical interactions of objects – interaction usually involves contact (collision) • simulation must be real-time (versus high- precision simulation for CAD/CAM, etc.) • simulation may be very realistic, approximate, or intentionally distorted (for effect) IMGD 4000 (D 11) 2 1 Introduction (cont’d) . And why is it important? • can improve immersion • can support new gameplay elements • becoming increasingly prominent (expected) part of high-end games • like AI and graphics, facilitated by hardware developments (multi-core, GPU) • maturation of physics engine market IMGD 4000 (D 11) 3 Physics Engines . Similar buy vs. build analysis as game engines • Buy: – complete solution from day one – proven, robust code base (hopefully) – feature sets are pre-defined – costs range from free to expensive • Build: – choose exactly features you want – opportunity for more game-specification optimizations – greater opportunity to innovate – cost guaranteed to be expensive (unless features extremely minimal) IMGD 4000 (D 11) 4 2 Physics Engines . Open source • Box2D, Bullet, Chipmunk, JigLib, ODE, OPAL, OpenTissue, PAL, Tokamak, Farseer, Physics2d, Glaze . Closed source (limited free distribution) • Newton Game Dynamics, Simple Physics Engine, True Axis, PhysX . Commercial • Havok, nV Physics, Vortex . Relation to Game Engines • integrated/native, e.g,. C4 • integrated, e.g., Unity+PhysX • pluggable, e.g., C4+PhysX, jME+ODE (via jME Physics) IMGD 4000 (D 11) 5 Basic Game Physics Concepts .
    [Show full text]