Dynamic Simulation of Manipulation & Assembly Actions

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Simulation of Manipulation & Assembly Actions Syddansk Universitet Dynamic Simulation of Manipulation & Assembly Actions Thulesen, Thomas Nicky Publication date: 2016 Document version Peer reviewed version Document license Unspecified Citation for pulished version (APA): Thulesen, T. N. (2016). Dynamic Simulation of Manipulation & Assembly Actions. Syddansk Universitet. Det Tekniske Fakultet. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Sep. 2018 Dynamic Simulation of Manipulation & Assembly Actions Thomas Nicky Thulesen The Maersk Mc-Kinney Moller Institute Faculty of Engineering University of Southern Denmark PhD Dissertation Odense, November 2015 c Copyright 2015 by Thomas Nicky Thulesen All rights reserved. The Maersk Mc-Kinney Moller Institute Faculty of Engineering University of Southern Denmark Campusvej 55 5230 Odense M, Denmark Phone +45 6550 3541 www.mmmi.sdu.dk Abstract To grasp and assemble objects is something that is known as a difficult task to do reliably in a robot system. Yet humans are able to quickly learn how to manipulate and assemble objects based on previous experience. Most learn to do these tasks as infants and the knowledge from previous experience allows solution of new similar, but different, tasks intuitively. In this dissertation dynamic simulation is seen as a necessary tool to allow robots to get the same intuition for solving manipulation and assembly tasks. By virtual modelling of the task, simulation will allow robots to reason about the optimum strategies without complex programming by highly skilled specialists. In this dissertation, a different paradigm is proposed for performing dynamic simulation in the context of tight-fitting assembly. A new physics engine is developed for this purpose. It focuses very much on the geometric aspects of contact generation and temporal coherence between contacts. This allows enhanced possibilities regarding modelling of the interaction between bodies in contact. Regarding development of robust control strategies for assembly, it is important to have a simulated environment that is realistic compared to the real environ- ment. The problem with simulation of tactile sensors is that they lead to redundancy in the mathematical formulation of the dynamical system. In this dissertation, we present a method that includes an objective for distributed force measurements in the case of redundancy, and we show that this objective causes simulated force measurements that are more realistic and more ideal for control strategies. The main purpose of the work performed in this dissertation is to make an engine which is easily extendable, well-documented and also has interfaces that makes it transparent what happens step-by-step during execution. An assembly simulation framework is presented with the purpose to create a unified way of defining assembly actions and results. This also forces the user to write control strategies that are reusable in both simulation and the real world. Different comparisons are performed in order to qualitatively illustrate the benefits from using the newly developed engine for manipulation and assembly. This shows that our ap- proach to dynamic simulation is viable and that, even though it adds some complexity to contact management, it is still very efficient in the tight-fitting assembly use case, while at the same time allowing detailed modelling of the interaction. I II In Danish Resumé Et kendt problem inden for robotteknologi er at gribe og samle objekter på en pålidelig måde. For mennesker er håndtering og samling af objekter en evne, som hurtigt kan tilegnes baseret på forudgående erfaringer. Disse evner tilegnes typisk i børneårene, og på baggrund af vores erfaringer bliver løsning af nye, lignende opgaver intuitiv. I denne afhandling ses dynamisk simulering som et nødvendigt værktøj for at give robotter en lignende intuition for at gribe, håndtere og samle objekter. Ved at opstille en virtuel model vil simulering gøre det muligt for robotten selv at ræsonnere sig frem til den optimale strategi, fremfor at denne skal programmeres eksplicit af højtuddannede specialister. I denne afhandling foreslås et nyt paradigme til dynamisk simulering af samling af objek- ter med lav tolerance. Vi har udviklet en ny fysikmotor med særlig fokus på modellering af kontinuerlig kontakt mellem legemer. Dette giver nye muligheder for at anvende detaljerede modeller for interaktion mellem legemer, der er i kontakt. Udvikling af robuste kontakt- strategier til at samle objekter kræver et simuleringsmiljø, som er realistisk i sammenligning med et fysisk miljø. Simulering af taktile sensorer kan føre til redundans i den matematiske formulering af det fysiske system. Her præsenteres en simuleringsmetode, som involverer dis- tribuerede kræfter som et objektiv i tilfælde af redundans. Det illustreres, hvordan et sådan objektiv giver simulerede kraftmålinger, som er mere realistiske og mere ideelle for udvikling af kontrolstrategier. Hovedformålet med det udførte arbejde er at udvikle en fysikmotor, der kan udvides og er veldokumenteret samt har grænseflader, der gør det transparent, hvad der sker skridt for skridt under simulering. Et simuleringsframework for samling af objekter præsenteres med det formål at udvikle et generelt format for definitionen af samleopgaver og resultater. Målet er, at brugeren tvinges til at skrive kontrolstrategier, som er generiske og kan genbruges både i simulering og i en fysisk opstilling. Forskellige sammenligninger er udført for kvalitativt at illustrere fordelene ved at bruge den nyudviklede fysikmotor til håndtering og samling af objekter. Derved redegøres for, at metoden er en lovende tilgang til dynamisk simulering, samt at fysikmotoren på trods af øget kompleksitet ved detektering af kontakter stadig er effektiv til samling af objekter. Samtidig er det muligt at definere detaljerede modeller for interaktionen mellem objekter. III IV Preface & Acknowledgements For the past four years, I have worked exclusively with dynamic simulation in robotics, focusing on some of the hard fundamental issues in the field. The work performed in my PhD is a continuation of my master’s thesis [1], in which I presented some basic theory about dynamic grasp simulation in the context of grasping of objects. For readers not familiar with advanced rigid body dynamics, the thesis provides a good starting point. It outlines many of the complex issues that are addressed in this dissertation. It is assumed that the reader is familiar with physics, mathematics and robotics at a graduate level. Otherwise, the dissertation will be difficult to follow. The project has been funded by the national projects and Center for Ad- vanced Robotics Manufacturing Engineering (CARMEN). In the former project the context is using service robots in healthcare by assisting patients in their homes after being discharged from hospital. In CARMEN, the task is to perform manipulation actions in an industrial context. Manipulating objects using robots is a fundamental challenge regardless of whether manipulation is being used in service robotics or in industrial applications. I want to thank Professor Henrik Gordon Petersen for supervision and guidance during the years. Much of the work presented in this dissertation are based on a common software framework used in the group, and I want to thank Jimmy Alison Rytz and Lars-Peter Ellekilde for their previous work on the framework. I would like to thank former and present members of the Cognitive and Applied Robotics group at the University of Southern Denmark. People that I have worked with and come to know during the years. This includes Lilita Kiforenko, Leon Bodenhagen, Nadezda Rukavishnikova, Preben Hagh Strunge Holm, Professor Norbert Krüger, Thiusius Rajeeth Savarimuthu, Dirk Kraft, Anders Glent Buch, Jacob Pørksen Buch, Thomas Fridolin Iversen, Thorbjørn Mosekjær Iversen, Troels Bo Jørgensen, Johan Sund Laursen, Simon Mathiesen, Ole Wennerberg Nielsen, Stefan-Daniel Suvei, Lars Carøe Sørensen, Mikkel Tang Thomsen, Zhiyuan Xie, Michael Bejer Andersen, Dorthe Sølvason, Adam Wolniakowski and Severin Fichtl. Finally, I would like to thank my parents, Thule and Jonna, my sister, Michaela Louise Thulesen, and my friends for their patience, understanding and support during the years. Also thanks to Michaela for proofreading. V VI Contents Abstract I Resumé III In Danish Preface & Acknowledgements V Contents VII Figures XI Tables XII Algorithms XIII Listings XIII Notation & Terminology 1 1 Introduction 3 1.1 Kinematic Simulation . 3 1.2 Dynamic Simulation . 4 1.3 Simulation of Manipulation & Assembly . 4 1.4 Physics Engines . 5 1.5 The RobWork Framework . 6 1.6 Contributions . 7 1.7 Overview . 8 2 State of the Art 9 2.1 Overview of High-level Software for Robot Simulation . 9 2.1.1 Abstraction Layers & Data Interchange . 12 2.2 Motion of Rigid Multi-body Systems . 13 2.2.1 Unconstrained Motion of a Rigid Body . 13 2.2.2 Constrained Motion of a Rigid Body . 14 2.2.3 Contacts and Non-penetration Constraints . 15 2.2.4 Friction in a Constraint-based Formulation . 17 2.2.5 Error Correction and Stabilisation . 18 VII VIII Contents 2.3 Rigid Multi-Body Physics Engines in 3D . 18 2.4 Previous Physics Engine Comparisons . 23 2.5 Modelling of Rigid Bodies & Materials . 25 2.5.1 Geometry . 25 2.5.2 Inertial Parameters . 26 2.6 Contact Detection . 26 2.7 Summary . 28 3 A New Engine for Manipulation 29 3.1 The Body-Constraint Graph . 29 3.1.1 Notation . 30 3.1.2 Graph Dynamics .
Recommended publications
  • Master's Thesis
    MASTER'S THESIS Online Model Predictive Control of a Robotic System by Combining Simulation and Optimization Mohammad Rokonuzzaman Pappu 2015 Master of Science (120 credits) Space Engineering - Space Master Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Mohammad Rokonuzzaman Pappu Online Model Predictive Control of a Robotic System by Combining Simulation and Optimization School of Electrical Engineering Department of Electrical Engineering and Automation Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Espoo, August 18, 2015 Instructor: Professor Perttu Hämäläinen Aalto University School of Arts, Design and Architecture Supervisors: Professor Ville Kyrki Professor Reza Emami Aalto University Luleå University of Technology School of Electrical Engineering Preface First of all, I would like to express my sincere gratitude to my supervisor Pro- fessor Ville Kyrki for his generous and patient support during the work of this thesis. He was always available for questions and it would not have been possi- ble to finish the work in time without his excellent guidance. I would also like to thank my instructor Perttu H¨am¨al¨ainen for his support which was invaluable for this thesis. My sincere thanks to all the members of Intelligent Robotics group who were nothing but helpful throughout this work. Finally, a special thanks to my colleagues of SpaceMaster program in Helsinki for their constant support and encouragement. Espoo, August 18,
    [Show full text]
  • Agx Multiphysics Download
    Agx multiphysics download click here to download A patch release of AgX Dynamics is now available for download for all of our licensed customers. This version include some minor. AGX Dynamics is a professional multi-purpose physics engine for simulators, Virtual parallel high performance hybrid equation solvers and novel multi- physics models. Why choose AGX Dynamics? Download AGX product brochure. This video shows a simulation of a wheel loader interacting with a dynamic tree model. High fidelity. AGX Multiphysics is a proprietary real-time physics engine developed by Algoryx Simulation AB Create a book · Download as PDF · Printable version. AgX Multiphysics Toolkit · Age Of Empires III The Asian Dynasties Expansion. Convert trail version Free Download, product key, keygen, Activator com extended. free full download agx multiphysics toolkit from AYS search www.doorway.ru have many downloads related to agx multiphysics toolkit which are hosted on sites like. With AGXUnity, it is possible to incorporate a real physics engine into a well Download from the prebuilt-packages sub-directory in the repository www.doorway.rug: multiphysics. A www.doorway.ru app that runs a physics engine and lets clients download physics data in real Clone or download AgX Multiphysics compiled with Lua support. Agx multiphysics toolkit. Developed physics the was made dynamics multiphysics simulation. Runtime library for AgX MultiPhysics Library. How to repair file. Original file to replace broken file www.doorway.ru Download. Current version: Some short videos that may help starting with AGX-III. Example 1: Finding a possible Pareto front for the Balaban Index in the Missing: multiphysics.
    [Show full text]
  • An Optimal Solution for Implementing a Specific 3D Web Application
    IT 16 060 Examensarbete 30 hp Augusti 2016 An optimal solution for implementing a specific 3D web application Mathias Nordin Institutionen för informationsteknologi Department of Information Technology Abstract An optimal solution for implementing a specific 3D web application Mathias Nordin Teknisk- naturvetenskaplig fakultet UTH-enheten WebGL equips web browsers with the ability to access graphic cards for extra processing Besöksadress: power. WebGL uses GLSL ES to communicate with graphics cards, which uses Ångströmlaboratoriet Lägerhyddsvägen 1 different Hus 4, Plan 0 instructions compared with common web development languages. In order to simplify the development process there are JavaScript libraries handles the Postadress: Box 536 751 21 Uppsala communication with WebGL. On the Khronos website there is a listing of 35 different Telefon: JavaScript libraries that access WebGL. 018 – 471 30 03 It is time consuming for developers to compare the benefits and disadvantages of all Telefax: these 018 – 471 30 00 libraries to find the best WebGL library for their need. This thesis sets up requirements of a Hemsida: specific WebGL application and investigates which libraries that are best for http://www.teknat.uu.se/student implmeneting its requirements. The procedure is done in different steps. Firstly is the requirements for the 3D web application defined. Then are all the libraries analyzed and mapped against these requirements. The two libraries that best fulfilled the requirments is Three.js with Physi.js and Babylon.js. The libraries is used in two seperate implementations of the intitial game. Three.js with Physi.js is the best libraries for implementig the requirements of the game.
    [Show full text]
  • Procedural Destruction of Objects for Computer Games
    Procedural Destruction of Objects for Computer Games PUBLIC VERSION THESIS submitted in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in MEDIA AND KNOWLEDGE ENGINEERING by Joris van Gestel born in Zevenhuizen, the Netherlands Computer Graphics and CAD/CAM Group Cannibal Game Studios Department of Mediamatics Molengraaffsingel 12-14 Faculty of EEMCS, Delft University of Technology 2629 JD Delft Delft, the Netherlands The Netherlands www.ewi.tudelft.nl www.cannibalgamestudios.com Author: Joris van Gestel Student id: 1099825 Email: [email protected] Date: May 10, 2011 © 2011 Cannibal Game Studios. All Rights Reserved i Summary Traditional content creation for computer games is a costly process. In particular, current techniques for authoring destructible behaviour are labour intensive and often limited to a single object basis. We aim to create an intuitive approach which allows designers to visually define destructible behaviour for objects in a reusable manner, which can then be applied in real-time. First we present a short introduction into the way that destruction has been done in games for many years. To better understand the physical processes that are being replicated, we present some information on how destruction works in the real world, and the high level approaches that have developed to simulate these processes. Using criteria gathered from industry professionals, we survey previous research work and determine their usability in a game development context. The approach which suits these criteria best is then selected as the basis for the approach presented in this work. By examining commercial solutions the shortcomings of existing technologies are determined to establish a solution direction.
    [Show full text]
  • FREE STEM Apps for Common Core Daniel E
    Georgia Southern University Digital Commons@Georgia Southern Interdisciplinary STEM Teaching & Learning Conference Mar 6th, 2:45 PM - 3:30 PM FREE STEM Apps for Common Core Daniel E. Rivera Mr. Georgia Southern University, [email protected] Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/stem Recommended Citation Rivera, Daniel E. Mr., "FREE STEM Apps for Common Core" (2015). Interdisciplinary STEM Teaching & Learning Conference. 38. https://digitalcommons.georgiasouthern.edu/stem/2015/2015/38 This event is brought to you for free and open access by the Conferences & Events at Digital Commons@Georgia Southern. It has been accepted for inclusion in Interdisciplinary STEM Teaching & Learning Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. STEM Apps for Common Core Access/Edit this doc online: h​ttp://goo.gl/bLkaXx Science is one of the most amazing fields of study. It explains our universe. It enables us to do the impossible. It makes sense of mystery. What many once believed were supernatural or magical events, we now explain, understand, and can apply to our everyday lives. Every modern marvel we have - from medicine, to technology, to agriculture- we owe to the scientific study of those before us. We stand on the shoulders of giants. It is therefore tremendously disappointing that so many regard science as simply a nerdy pursuit, or with contempt, or with boredom. In many ways w​ e stopped dreaming.​ Yet science is the alchemy and magic of yesterday, harnessed for humanity's benefit today. Perhaps no other subject has been so thoroughly embraced by the Internet and modern computing.
    [Show full text]
  • Cost-Efficient Video Interactions for Virtual Training Environment
    COST-EFFICIENT VIDEO INTERACTIONS FOR VIRTUAL TRAINING ENVIRONMENT Arsen Gasparyan A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2007 Committee: Hassan Rajaei, Advisor Guy Zimmerman Walter Maner ii ABSTRACT Rajaei Hassan, Advisor In this thesis we propose the paradigm for video-based interaction in the distributed virtual training environment, develop the proof of concept, examine the limitations and discover the opportunities it provides. To make the interaction possible we explore and/or develop methods which allow to estimate the position of user’s head and hands via image recognition techniques and to map this data onto the virtual 3D avatar thus allowing the user to control the virtual objects the similar way as he/she does with real ones. Moreover, we target to develop a cost efficient system using only cross-platform and freely available software components, establishing the interaction via common hardware (computer, monocular web-cam), and an ordinary internet channel. Consequently we aim increasing accessibility and cost efficiency of the system and avoidance of expensive instruments such as gloves and cave system for interaction in virtual space. The results of this work are the following: the method for estimation the hand positions; the proposed design solutions for the system; the proof of concepts based on the two test cases (“Ball game” and “Chemistry lab”) which show that the proposed ideas allow cost-efficient video-based interaction over the internet; and the discussion regarding the advantages, limitations and possible future research on the video-based interactions in the virtual environments.
    [Show full text]
  • Physics Editor Mac Crack Appl
    1 / 2 Physics Editor Mac Crack Appl This is a list of software packages that implement the finite element method for solving partial differential equations. Software, Features, Developer, Version, Released, License, Price, Platform. Agros2D, Multiplatform open source application for the solution of physical ... Yves Renard, Julien Pommier, 5.0, 2015-07, LGPL, Free, Unix, Mac OS X, .... For those who prefer to run Origin as an application on your Mac desktop without a reboot of the Mac OS, we suggest the following virtualization software:.. While having the same core (Unigine Engine), there are 3 SDK editions for ... Turnkey interactive 3D app development; Consulting; Software development; 3D .... Top Design Engineering Software: The 50 Best Design Tools and Apps for ... design with the intelligence of 3D direct modeling,” for Windows, Linux, and Mac users. ... COMSOL is a platform for physics-based modeling and simulation that serves as ... and tools for electrical, mechanical, fluid flow, and chemical applications .... Experience the world's most realistic and professional digital art & painting software for Mac and Windows, featuring ... Your original serial number will be required. ... Easy-access panels let you instantly adjust how paint is applied to the brush and how the paint ... 4 physical cores/8 logical cores or higher (recommended).. A dynamic soft-body physics vehicle simulator capable of doing just about anything. ... Popular user-defined tags for this product: Simulation .... Easy-to-Use, Powerful Tools for 3D Animation, GPU Rendering, VFX and Motion Design. ... Trapcode Suite 16 With New Physics, Magic Bullet Suite 14 With New Color Workflows Now ... Maxon Cinema 4D Immediately Available for M1-Powered Macs image ..
    [Show full text]
  • Software Design for Pluggable Real Time Physics Middleware
    2005:270 CIV MASTER'S THESIS AgentPhysics Software Design for Pluggable Real Time Physics Middleware Johan Göransson Luleå University of Technology MSc Programmes in Engineering Department of Computer Science and Electrical Engineering Division of Computer Science 2005:270 CIV - ISSN: 1402-1617 - ISRN: LTU-EX--05/270--SE AgentPhysics Software Design for Pluggable Real Time Physics Middleware Johan GÄoransson Department of Computer Science and Electrical Engineering, LuleºaUniversity of Technology, [email protected] October 27, 2005 Abstract This master's thesis proposes a software design for a real time physics appli- cation programming interface with support for pluggable physics middleware. Pluggable means that the actual implementation of the simulation is indepen- dent and interchangeable, separated from the user interface of the API. This is done by dividing the API in three layers: wrapper, peer, and implementation. An evaluation of Open Dynamics Engine as a viable middleware for simulating rigid body physics is also given based on a number of test applications. The method used in this thesis consists of an iterative software design based on a literature study of rigid body physics, simulation and software design, as well as reviewing related work. The conclusion is that although the goals set for the design were ful¯lled, it is unlikely that AgentPhysics will be used other than as a higher level API on top of ODE, and only ODE. This is due to a number of reasons such as middleware speci¯c tools and code containers are di±cult to support, clash- ing programming paradigms produces an error prone implementation layer and middleware developers are reluctant to port their engines to Java.
    [Show full text]
  • Physics Engine Design and Implementation Physics Engine • a Component of the Game Engine
    Physics engine design and implementation Physics Engine • A component of the game engine. • Separates reusable features and specific game logic. • basically software components (physics, graphics, input, network, etc.) • Handles the simulation of the world • physical behavior, collisions, terrain changes, ragdoll and active characters, explosions, object breaking and destruction, liquids and soft bodies, ... Game Physics 2 Physics engine • Example SDKs: – Open Source • Bullet, Open Dynamics Engine (ODE), Tokamak, Newton Game Dynamics, PhysBam, Box2D – Closed source • Havok Physics • Nvidia PhysX PhysX (Mafia II) ODE (Call of Juarez) Havok (Diablo 3) Game Physics 3 Case study: Bullet • Bullet Physics Library is an open source game physics engine. • http://bulletphysics.org • open source under ZLib license. • Provides collision detection, soft body and rigid body solvers. • Used by many movie and game companies in AAA titles on PC, consoles and mobile devices. • A modular extendible C++ design. • Used for the practical assignment. • User manual and numerous demos (e.g. CCD Physics, Collision and SoftBody Demo). Game Physics 4 Features • Bullet Collision Detection can be used on its own as a separate SDK without Bullet Dynamics • Discrete and continuous collision detection. • Swept collision queries. • Generic convex support (using GJK), capsule, cylinder, cone, sphere, box and non-convex triangle meshes. • Support for dynamic deformation of nonconvex triangle meshes. • Multi-physics Library includes: • Rigid-body dynamics including constraint solvers. • Support for constraint limits and motors. • Soft-body support including cloth and rope. Game Physics 5 Design • The main components are organized as follows Soft Body Dynamics Bullet Multi Threaded Extras: Maya Plugin, Rigid Body Dynamics etc. Collision Detection Linear Math, Memory, Containers Game Physics 6 Overview • High level simulation manager: btDiscreteDynamicsWorld or btSoftRigidDynamicsWorld.
    [Show full text]
  • Physics Application Programming Interface
    PHI: Physics Application Programming Interface Bing Tang, Zhigeng Pan, ZuoYan Lin, Le Zheng State Key Lab of CAD&CG, Zhejiang University, Hang Zhou, China, 310027 {btang, zgpan, linzouyan, zhengle}@cad.zju.edu.cn Abstract. In this paper, we propose to design an easy to use physics applica- tion programming interface (PHI) with support for pluggable physics library. The goal is to create physically realistic 3D graphics environments and inte- grate real-time physics simulation into games seamlessly with advanced fea- tures, such as interactive character simulation and vehicle dynamics. The actual implementation of the simulation was designed to be independent, interchange- able and separated from the user interface of the API. We demonstrate the util- ity of the middleware by simulating versatile vehicle dynamics and generating quality reactive human motions. 1 Introduction Each year games become more realistic visually. Current generation graphics cards can produce amazing high-quality visual effects. But visual realism is only half the battle. Physical realism is another half [1]. The impressive capabilities of the latest generation of video game hardware have raised our expectations of not only how digital characters look, but also they behavior [2]. As the speed of the video game hardware increases and the algorithms get refined, physics is expected to play a more prominent role in video games. The long-awaited Half-life 2 impressed the players deeply for the amazing Havok physics engine[3]. The incredible physics engine of the game makes the whole game world believable and natural. Items thrown across a room will hit other objects, which will then react in a very convincing way.
    [Show full text]
  • Program and Book of Abstracts
    20th International Conference on Multimedia in Physics Teaching and Learning Program and Book of Abstracts MPTL 2015 International Conference September 9–11, 2015 at LMU Munich Wed, 9 Sep Thu, 10 Sep Fri, 11 Sep Opening Ceremony Plenary Lecture Plenary Lecture 09:00 - 10:00 Michael Dubson Wouter van Joolingen Plenary Lecture Plenary Lecture Plenary Lecture 10:00 - 11:00 Jochen Schieck Christian Hackenberger David Lowe 11:00 - 11:30 Coffee Break Coffee Break Coffee Break 1A Invited Symposium REP 3A Parallel Session QP 6A Parallel Session SIM/VID 11:30 - 13:00 1B Invited Symposium IWB 3B Parallel Session VRL/MAP 6B Invited Symposium ASS 3C Workshop CAM 6C Workshop MAP Lunch Lunch Closing Ceremony 13:00 - 14:00 2A Invited Symposium VRL 4A Invited Symposium iMP Lunch 2B Invited Symposium ILA 4B Invited Symposum GBL 14:00 - 16:00 4C Parallel Session MM 16:00 - 16:30 Coffee Break Coffee Break Poster Session 5A Invited Symposium QP & 5B Parallel Session ILA 16:30 - 18:30 Welcome Party 5C Workshop VRL Guided Tour Conference Dinner 18:30 - 20:30 20:30 - 23:00 Program and Book of Abstracts European Physical Society 20th International Conference on Multimedia in Physics Teaching and Learning Program and Book of Abstracts MPTL 2015 International Conference September 9–11, 2015 at LMU Munich, Germany Organized by: Multimedia in Physics Teaching and Learning (MPTL) Chair of Physics Education, Faculty of Physics, LMU Munich With the support of: German Research Foundation (DFG) European Physical Society (EPS) – Physics Education Division German Physical
    [Show full text]
  • Lab 3 Particle Systems
    1/18/2011 Course Materials Course webpage: http://www.scss.tcd.ie/John.Dingliana/cs7055 Lecture Slides Labs Readings from the course Submission and feedback through WebCT CS7057 – Real-time Physics 01 - Introduction Relevant References Learning Outcomes Outline and describe the architecture and components Baraff, Witkin and Kass “Physically based Animation Course notes” – Siggraph 2001 of a physics-based motion pipeline that would be Most of the Labs are http://www.pixar.com/companyinfo/research/pbm2001/ based on these notes employed in a typical game. Mueller, James, Theurey, Stam “Real-time Physics” – Siggraph Explain basic rigid body dynamics and the mechanics of 2008 deformable systems. http://www.matthiasmueller.info/realtimephysics/index.html Analyze and compare different approaches for collision • Ian Millington – “Game Physics Engine Development” detection and collision response of rigid and deformable • Kenny Erleben - “Physics based objects. animation” • David H.Eberley“Game Physics Engine Build a real-time rigid body simulation system for Development” convex polyhedra. Assessment Physically Based Modelling 100% based on coursework Cs7057 Final A form of Procedural ~60% labs and ~40% final assignment Mark [100%] Modelling, Lab assessment: Synthesize motions of Weekly demos 60% Labs Final Project Final Cumulative submission 40% [~60%] [~40%] inanimate objects due to Youtube Video external forces Approx. 4 page written report Cumulative Weekly Mark Source code Submission Motivations: Realism / (60% of labs) (40% of labs) Details of final project will be provided plausibility, Useful later in the year Automation, Interaction Supplemental [if required] will be by exam All work is expected to be done individually, where other help or sources are used these Jenga App © 2010, NaturalMotion should be duly referenced.
    [Show full text]