143. Phosphate Triesters with Flame Retardant Properties

Total Page:16

File Type:pdf, Size:1020Kb

143. Phosphate Triesters with Flame Retardant Properties nr 2010;44(6) The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 143. Phosphate triesters with flame retardant properties Bengt Sjögren, Anders Iregren and Jill Järnberg arbete och hälsa | vetenskaplig skriftserie isbn 978-91-85971-23-7 issn 0346-7821 Arbete och Hälsa Arbete och Hälsa (Work and Health) is a scientific report series published by Occupational and Environmental Medicine at Sahlgrenska Academy, University of Gothenburg. The series publishes scientific original work, review articles, criteria documents and dissertations. All articles are peer-reviewed. Arbete och Hälsa has a broad target group and welcomes articles in different areas. Instructions and templates for manuscript editing are available at http://www.amm.se/aoh Summaries in Swedish and English as well as the complete original texts from 1997 are also available online. Arbete och Hälsa Editorial Board: Editor-in-chief: Kjell Torén Tor Aasen, Bergen Gunnar Ahlborg, Göteborg Co-editors: Maria Albin, Ewa Wigaeus Kristina Alexanderson, Stockholm Tornqvist, Marianne Törner, Lotta Dellve, Berit Bakke, Oslo Roger Persson and Kristin Svendsen Lars Barregård, Göteborg Managing editor: Cina Holmer Jens Peter Bonde, Köpenhamn Jörgen Eklund, Linköping © University of Gothenburg & authors 2009 Mats Eklöf, Göteborg Mats Hagberg, Göteborg Arbete och Hälsa, University of Gothenburg Kari Heldal, Oslo SE 405 30 Gothenburg, Sweden Kristina Jakobsson, Lund Malin Josephson, Uppsala ISBN 978-91-85971-23-7 Bengt Järvholm, Umeå ISSN 0346–7821 Anette Kærgaard, Herning http://www.amm.se/aoh Ann Kryger, Köpenhamn Printed at Geson Hylte Tryck, Gothenburg Carola Lidén, Stockholm Svend Erik Mathiassen, Gävle Gunnar D. Nielsen, Köpenhamn Catarina Nordander, Lund Torben Sigsgaard, Århus Staffan Skerfving, Lund Gerd Sällsten, Göteborg Allan Toomingas, Stockholm Ewa Wikström, Göteborg Eva Vingård, Uppsala Preface The main task of the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals (NEG) is to produce criteria documents to be used by the regulatory authorities as the scientific basis for setting occupational exposure limits for chemical substances. For each document, NEG appoints one or several authors. An evaluation is made of all relevant published, peer-reviewed original literature found. The document aims at establishing dose-response/dose-effect relationships and defining a critical effect. No numerical values for occupational exposure limits are proposed. Whereas NEG adopts the document by consensus procedures, thereby granting the quality and conclusions, the authors are re- sponsible for the factual content of the document. The evaluation of the literature and the drafting of this document on Phosphate triesters with flame retardant properties were done by Dr. Bengt Sjögren, Karolinska Institutet, Sweden, Dr. Anders Iregren and Dr. Jill Järnberg, Swedish Work Environment Authority, Sweden. The draft versions were discussed within NEG and the final version was accepted by the present NEG experts on September 28, 2009. Editorial work and technical editing were performed by the NEG secre- tariat. The following present and former experts participated in the elaboration of the document: Present NEG experts Gunnar Johanson Institute of Environmental Medicine, Karolinska Institutet, Sweden Kristina Kjærheim Cancer Registry of Norway Anne Thoustrup Saber National Research Centre for the Working Environment, Denmark Tiina Santonen Finnish Institute of Occupational Health, Finland Vidar Skaug National Institute of Occupational Health, Norway Mattias Öberg Institute of Environmental Medicine, Karolinska Institutet, Sweden Former NEG experts Maria Albin Department of Occupational and Environmental Medicine, Lund University Hospital, Sweden Vidir Kristjansson Administration of Occupational Safety and Health, Iceland Kai Savolainen Finnish Institute of Occupational Health, Finland Karin Sørig Hougaard National Research Centre for the Working Environment, Denmark NEG secretariat Jill Järnberg and Swedish Work Environment Authority, Sweden Anna-Karin Alexandrie This work was financially supported by the Swedish Work Environment Authority, the former Swedish National Institute for Working Life, and the Norwegian Ministry of Labour. All criteria documents produced by the Nordic Expert Group may be down- loaded from www.nordicexpertgroup.org. Gunnar Johanson, Chairman of NEG Contents Preface Abbreviations and acronyms 1. Introduction 1 2. Substance identification 1 3. Physical and chemical properties 8 4. Occurrence, production and use 12 5. Measurement and analysis of workplace exposure 17 6. Occupational exposure data 18 6.1 Airborne exposure 18 6.2 Dermal exposure 22 7. Toxicokinetics 23 7.1 Uptake 23 7.2 Distribution 25 7.3 Biotransformation 28 7.4 Excretion 31 7.5 Summary 32 8. Biological monitoring 33 8.1 Markers of exposure 33 8.2 Markers of effect 33 9. Mechanisms of toxicity 35 9.1 Neurotoxicity 35 9.2 Carcinogenicity 36 9.3 Hormonal and reproductive effects 36 10. Effects in animals and in vitro studies 37 10.1 Irritation and sensitisation 37 10.2 Effects of single exposure 41 10.3 Effects of short-term exposure (up to 90 days) 45 10.4 Neurotoxicity 49 10.5 Mutagenicity and genotoxicity 67 10.6 Effects of long-term exposure and carcinogenicity 74 10.7 Reproductive and developmental toxicity 85 10.8 Summary 100 11. Observations in man 102 11.1 Irritation and sensitisation 102 11.2 Effects of single and short-term exposure 103 11.3 Effects of long-term exposure 104 12. Substance summaries with dose-effect and dose-response relationships 108 13. Previous evaluations by national and international bodies 116 14. Evaluation of human health risks 129 14.1 Assessment of health risks 129 14.2 Groups at extra risk 131 14.3 Scientific basis for an occupational exposure limit 131 15. Research needs 133 16. Summary 134 17. Summary in Swedish 135 18. References 136 19. References reviewed by others 151 20. Data bases used in search of literature 156 Appendix 1. Dose-effect and dose-response relationships in animals 157 Appendix 2. Occupational exposure limit values 217 Appendix 3. Previous NEG criteria documents 218 Abbreviations and acronyms Phosphate triesters TBEP tris(2-butoxyethyl) phosphate TBP tri-n-butyl phosphate TCEP tris(2-chloroethyl) phosphate TCP tricresyl phosphate TDCPP tris(1,3-dichloro-2-propyl) phosphate TEHP tris(2-ethylhexyl) phosphate TEP triethyl phosphate TIPP isopropylated triphenyl phosphate including triisopropylated phenyl phosphate TMCP tri-meta-cresyl phosphate, tri-m-cresyl phosphate TMCPP tris(monochloropropyl) phosphate, all isomers TOCP tri-ortho-cresyl phosphate, tri-o-cresyl phosphate TPCP tri-para-cresyl phosphate, tri-p-cresyl phosphate TPP triphenyl phosphate Other ACGIH American Conference of Governmental Industrial Hygienists AChE acetylcholinesterase BDCPP bis(1,3-dichloro-2-propyl) phosphate bw body weight CAR constitutively active receptor CAS Chemical Abstracts Service ChE cholinesterase CHO Chinese hamster ovary CNS central nervous system CYP cytochrome P450 ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals ED50 effective dose for 50 % of the population exposed EPA Environmental Protection Agency EU European Union GC gas chromatography HPRT hypoxanthine-guanine phosphoribosyl transferase IPCS International Programme on Chemical Safety LC50 lethal concentration for 50 % of the exposed animals at single administration LD50 lethal dose for 50 % of the exposed animals at single administration LOAEL lowest observed adverse effect level MAK Maximale Arbeitsplatzkonzentration (maximum concentration at the workplace) MN-PCE micronucleus containing polychromatic erythrocyte NADPH nicotinamide adenine dinucleotide phosphate NOAEL no observed adverse effect level NTE neurotoxic or neuropathy target esterase NTP National Toxicology Program (United States) OECD Organisation for Economic Co-operation and Development OEL occupational exposure limit OPIDN organophosphorus-induced delayed neuropathy PNS peripheral nervous system PVC polyvinyl chloride RACB reproductive assessment by continuous breeding protocol SCE sister chromatid exchange SP(M)E solid-phase (micro)extraction TLV threshold limit value TWA time-weighted average US United States 1. Introduction Phosphate esters are frequently utilised as flame retardants and plasticisers but also as stabilisers and additives in products such as floor polishes, lubricants and hydraulic fluids. Both phosphorous and chlorine provide the flame retardant pro- perties. The organic parts of the molecule make it possible for the substance to be incorporated in organic materials. These parts can also interpose themselves between the polymer chains in a plastic and in that way plasticise it. The global consumption of organophosphorus compounds used as flame retardants was estimated to about 207 000 tonnes in 2004 and the consumption is expected to increase (52). In Western Europe, the consumption, evenly distributed between chlorinated phosphate and non-chlorinated organophosphorus flame retardants, increased from 58 000 to 83 000 tons between the years 1998 and 2001 (145). In 2006, the estimated annual consumption of chlorinated phosphate and non-chlorinated organophosphorus flame retardants within the European Union (EU) was 51 000 and 40 000 tons, respectively (52). This document reviews some phosphate triesters with flame retardant properties, as particularly requested by the Swedish Work Environment Authority. The phosphorylated mono- and diesters
Recommended publications
  • Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6
    EPA Document# EPA-740-D-20-010 April 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Draft Scope of the Risk Evaluation for Triphenyl Phosphate CASRN 115-86-6 April 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................5 ABBREVIATIONS AND ACRONYMS ..................................................................................................6 EXECUTIVE SUMMARY .......................................................................................................................8 1 INTRODUCTION ............................................................................................................................11 2 SCOPE OF THE EVALUATION ...................................................................................................11 2.1 Reasonably Available Information ..............................................................................................11 Search of Gray Literature ...................................................................................................... 12 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 13 Search of TSCA Submissions ................................................................................................ 19 2.2 Conditions of Use ........................................................................................................................19 Categories
    [Show full text]
  • SDS for Taylor Mason's Hygrometer
    SAFETY DATA SHEET Preparation Date: 3/11/2015 Revision Date: 3/11/2015 Revision Number: G1 Product identifier Product code: T2256 Product Name: TRIETHYL PHOSPHATE Other means of identification Synonyms: Ethyl phosphate TEP Triethoxyphosphine oxide Phosphoric acid, triethyl ester CAS #: 78-40-0 RTECS # TC7900000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Used as a catalyst in the production of acetic anhydride by the ketene process, as a desensitizing agent for peroxides, and as a solvent and plasticizer for cellulose acetate. Solvent; plasticizer for resins, plastics, gums; catalyst; lacquer remover. As a plasticizer, solvent, fire-retarding agent, anti-foaming agent As an ethylating agent, and as a raw material to prepare insecticides such as tetraethyl pyrophosphate. As ethylating agent; formation of polyesters which are used as insecticides.. Uses advised against No information available Supplier: Spectrum Chemicals and Laboratory Products, Inc. 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Oral Category 4 Serious eye damage/eye irritation Category 2A Label elements Product code: T2256 Product name: TRIETHYL 1 / 12 PHOSPHATE Warning Hazard statements Harmful if swallowed Causes serious eye irritation Hazards not otherwise classified (HNOC) Not Applicable Other hazards Not available Precautionary Statements - Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear eye/face protection IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • United States Patent 0 Ice Patented Feb
    1 3,642,956 United States Patent 0 ice Patented Feb. 15, 1972 1 2 reacting nonmetallic acid esters of nonmetals of Groups 3,642,956 III, IV and VI of the Mendeleeif Periodic Table or mix PROCESS FOR THE MANUFACTURE OF NEUTRAL tures of these nonmetallic acid esters, if desired in the POLYPHOSPHORIC ACID ESTERS FROM P205 presence of a solvent, at a temperature within the range AND ORTHOCARBONIC ACID ESTERS ‘ Klaus-Dieter Kampe and Edgar Fischer, both % Farb Ch of —78° C. and 140° C. with phosphorus pentoxide. werke Hoechst AG, Frankfurt am Main, Germany The term1“nonmetallic acid esters” is used herein to No Drawing. Continuation of application Ser. No. mean compounds of the elements boron, carbon, silicon 504,187, Oct. 23, 1965. This application Apr. 15, and sulfur which correspond to one of the following For 1969, Ser. No. 817,280 mulae I to IV. Claims priority, application Ggrmany, Oct. 28, 1964, 10 F Int. (:1. C07f’9/08, 7/02 US. Cl. 260-920 1 Claim (Hammett).(RH): ( R’ > .0 < OR ) .. ABSTRACT OF THE DISCLOSURE 15 A process has been provided for producing neutral poly phosphoric acid ester derivatives which comprises react ing an acid ester with phosphorus pentoxide at a tem perature within the range of —78° C. to +140° C., in 20 the absence of moisture and in a mole ratio of ester to phosphorus pentoxide from 0.02 to 3 moles ester to 1 mole phosphorus pentoxide, said acid ester being de?ned by the formula _ , (R')m-—C(0‘R)n 25 wherein m<+n=4 in which Formula R represents a satu in which R represents a saturated or unsaturated, ox rated, unsaturated, oxalkylated, or halogenated aliphatic alkylated or halogenated aliphatic radical or an aromatic radical, R’ and R” each represent a saturated or unsatu radical of l to 12 carbon atoms, or an aromatic radical of rated, oxalkylated or halogenated aliphatic or cycloaliphat 1 to 12 carbon atoms, and R’ represents a hydrogen, a saturated, unsaturated, oxalkylated, or halogenated ali ic radical or an aromatic radical.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,572,806 MANUEFACTURE of TETRAETHY, PYROPHOSPAATE John Sterling Harris, Richmond Heights, Mo., Assignor to Monsanto Chemical Company, St
    Patented Oct. 23, 1951 2,572,806 UNITED STATES PATENT OFFICE 2,572,806 MANUEFACTURE OF TETRAETHY, PYROPHOSPAATE John Sterling Harris, Richmond Heights, Mo., assignor to Monsanto Chemical Company, St. Louis, Mo., a corporation of Delaware No Drawing. Application May 1, 1948, Serial No. 24,683 2 Claims, (C. 260-461) 2 This invention relates to compositions con enty known to the art. A still further object of taining increased amounts of tetraethyl pyro this invention is to provide biological toxicant phosphate, and more. particularly to a process compositions containing increased amounts of for the manufacture of tetraethyl pyrophosphate. tetraethyl pyrophosphate which poSSeSS over Compositions containing tetraethyl pyrophos 5. S00% greater biological activity for the combat phate are widely used as agricultural economic ing and control of pests such as aphids and mites poisons, particularly against many insects such than do the compositions containing tetraethyl as aphids and against many acarina such as the pyrophosphate which are presently known to red Spider mites, however, such compositions may the art. be used generally against the lower forms of life O In the practice of this invention, the mixtures which, in the past, have been combatted by the of reaction products from the processes of this use of nicotine or nicotine salts. Furthermore, invention contain substantially 40%, that is tetraethyl pyrophosphate has been found useful 38-45%, of tetraethyl pyrophosphate as con in the preparation of insectivoricide and rodenti trasted with the processes of the prior art which cide compositions. 5 yielded mixtures of the reaction productS con While the art has disclosed several methods for taining only 10-15% of the tetraethyl pyrophoS the preparation of tetraethyl pyrophosphate, phate.
    [Show full text]
  • (VOC) and Organophosphate Flame Retardants (OPFR) in Building Materials
    Identification of volatile organic compounds (VOC) and organophosphate flame retardants (OPFR) in building materials Daniel Duberg 2017-05-29 Exam project, 15 HP, Chemistry Supervisor: Thanh Wang, Josefin Persson Examiner: Tuulia Hyötyläinen Abstract Humans today spend most of their time in various indoor settings such as housing, schools and workplaces. The quality of the indoor environment is therefore of great significance for our wellbeing. However, it has been suggested that the indoor environment contains over 6000 organic compounds, such as various volatile organic compounds (VOC). Around 500 of these compounds is believed to be due to emissions from different surrounding building materials such as insulation, plastic film, sealants and flooring. This study targeted building materials from three low energy preschools that were sampled and analyzed for emissions of VOCs and nine different organophosphate flame retardant compounds (OPFR) using a gas chromatograph coupled to a mass spectrometer (GC/MS). Low energy buildings are buildings that is particularly air tight to be so energy efficient as possible. The study uses a qualitative approach and therefore mainly identifies possible contribution from building materials to indoor environment. More than 100 different VOCs was identified and the most noticeable were meta-, ortho- and para-xylene, toluene, n-hexane and propylene glycol, all but the last compound is associated with hazardous health effects. The building materials that emitted the largest amounts of VOCs was sealants and adhesives. Linoleum flooring and acrylic was also large emitters. Tris(1-chloro-2-propyl) phosphate (TCIPP) were identified in all samples and all nine targeted OPFR compounds were identified in the various material samples and dust samples.
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern ..............................................................................................................................
    [Show full text]
  • Triphenyl Phosphate (TPP)
    EPA Document# EPA-740-R-20-010 August 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Final Scope of the Risk Evaluation for Triphenyl Phosphate (TPP) CASRN 115-86-6 August 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................6 ABBREVIATIONS AND ACRONYMS ..................................................................................................7 EXECUTIVE SUMMARY .......................................................................................................................9 1 INTRODUCTION ............................................................................................................................12 2 SCOPE OF THE EVALUATION ...................................................................................................12 2.1 Reasonably Available Information ..............................................................................................12 Search of Gray Literature ...................................................................................................... 13 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 14 Search of TSCA Submissions ................................................................................................ 24 2.2 Conditions of Use ........................................................................................................................24 Categories
    [Show full text]
  • Revision 2 Carbonic Acid Monohydrate
    1 Revision 2 2 3 Carbonic Acid Monohydrate 4 5 Evan H. Abramson1, Olivier Bollengier1, J. Michael Brown1, Baptiste Journaux1, Werner 6 Kaminsky2, Anna Pakhomova3 7 1 Department of Earth and Space Sciences, University of Washington, Seattle, Washington, 8 98195, USA 9 2 Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA 10 3 Deutsches Elektronen-Synchrotron, Hamburg, 22607, Germany 11 12 Abstract 13 In the water-carbon dioxide system, above a pressure of 4.4 GPa, a crystalline phase consisting 14 of an adduct of the two substances can be observed to exist in equilibrium with the aqueous fluid. 15 The phase had been found to be triclinic, and its unit cell parameters determined, but the full 16 crystalline, and even molecular, structure remained undetermined. Here, we report new diamond- 17 anvil cell, x-ray diffraction data of a quality sufficient to allow us to propose a full structure. The 18 crystal exists in the P1 space group. Unit cell parameters (at 6.5 GPa and 140°C) are 19 a = 5.8508(14) Å, b = 6.557(5) Å, c = 6.9513(6) Å, = 88.59(2), = 79.597(13), and 20 = 67.69(4). Direct solution for the heavy atoms (carbon and oxygen) revealed CO3 units, with 21 co-planar, but isolated, O units. Construction of a hydrogen network, in accordance with the 22 requirements of hydrogen bonding and with minimum allowed distances between non-bonded 1 23 atoms, indicates that the phase consists of a monohydrate of carbonic acid (H2CO3H2O) with the 24 carbonic acid molecule in the cis-trans configuration.
    [Show full text]
  • Image Forming Method
    Europaisches Patentamt (19) European Patent Office Office europeen des brevets (11) EP0 911 153 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) int. CI.6: B41C 1/10, B41M 5/36 28.04.1999 Bulletin 1999/17 (21) Application number: 98119706.4 (22) Date of filing: 19.10.1998 (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Hirai, Katsura MCNLPTSE Hino-shi, Tokyo (JP) Designated Extension States: Hattori, Ryoji AL LT LV MK RO SI Hino-shi, Tokyo (JP) Honda, Junko (30) Priority: 21.10.1997 JP 288496/97 Hino-shi, Tokyo (JP) 31.10.1997 JP 300540/97 (74) Representative: (71) Applicant: KONICA CORPORATION Turk, Gille, Hrabal Tokyo 163 (JP) Patentanwalte - European Patent Attorneys, Brucknerstrasse 20 40593 Dusseldorf (DE) (54) Image forming method (57) Disclosed is an image forming method com- prising the steps of imagewise heating or imagewise exposing to a laser with a wavelength of 700 to 1 200 nm an image forming material; and continuously developing the exposed or heated material with a developer, while the developer is replenished with a developer replen- ishes wherein the image forming material comprises a support and provided thereon, a radiation sensitive layer containing a dye having an absorption band in the wavelength region of from 700 nm to 1200 nm, an acid generating compound capable of generating an acid on irradiation of heat or actinic light, and an acid decom- posable compound having a bond capable of being decomposed by an acid, the acid decomposable com- pound being decomposed by an acid to produce a diol compound containing an ethylene glycol component or a propylene glycol component.
    [Show full text]
  • INDUSTRIAL and ENGINEERING CHEMISTRY Vol
    INDUSTRIAL a n d ENGINEERING CHEMISTRY ANALYTICAL EDITION WALTER J. MURPHY, EDITOR ISSUED JUNE 17, 1943 VOL. 15, NO. 6 CONSECUTIVE NO. 12 Editorial Assistant: G. Gladys Gordon Manuscript Assistant: Stella Anderson Make-up Assistant: C harlotte C. Sayre Advisory Board B. L. C l a r k e G. E. F. L u n d e l l R. H. M ü l l e r T . R. C u n n i n g h a m M . G. M e l l o n H. H. W i l l a r d Determination of Precision of Analytical Control Determination of Iron in Presence of Chromium M e t h o d s ........................................... Raymond F. Moran 361 and Titanium with Jones Reductor .......................... F. S. Grimaldi, R. E. Stevens, and M. K. Carron 387 Turbidimetric Determination of Small Amounts of C h lo rid es . E. N. Luce, E. C. Denice, and F. E. Akerlund 365 Extraction of Ascorbic Acid from Plant M aterials . J. D. Ponting 389 Color Index. Light-Colored Petroleum Products . I. M. Diller, J. C. Dean, R. J. DeGray, and J. W. Wilson, Jr. 367 Apparatus for Purification of Hydrocarbons by Re­ crystallization ...................................... John Lake Keays 391 Determination of Iodine in Tetraiodophenol- Filtration Cylinder . R. J. DeGray and E. P. Rittershausen 392 p h th a le in .................................................................................. Samuel Weiner, Byron E. Leach, and Mary Jane Bratz 373 MICROCHEMISTRY: Determination of Monoalkyl Ethers of Ethylene Semimicroanalysis of Saline Soil Solutions .... Glycol . Harold W. Werner and James L. Mitchell 375 R. F. Reitemeier 393 Collection and Estimation of Traces of Formalde­ Estimation of Sulfonamides..........................................
    [Show full text]
  • United States Patent (19. 11 3,876,708 Speh Et Al
    United States Patent (19. 11 3,876,708 Speh et al. (45) Apr. 8, 1975 54 ORTHOCARBONIC ACID ESTERS 56) References Cited 75) Inventors: Peter Speh, Esslingen-Hegensberg; OTHER PUBLICATIONS Willi Kantlehner, Aalen, both of Chem. Abs., 7th Col. Index (1962-1966), Subj. Germany A-Amm., pg. 380 S. 73) Assignee: Fluka AG Chemische Fabrik, Buchs Chiang et al., Chem. Abs., Vol. 61 (1964), 13169. S.G., Switzerland Post, Chemistry of Aliphatic Orthoesters (1943) page 22 Filed: Oct. 30, 1972 20. 21 Appl. No.: 301,784 Primary Examiner-Bernard Helfin Attorney, Agent, or Firm-Wallenstein, Spangenberg, 30 Foreign Application Priority Data Hattis & Strampel Nov. 15, 1971 Switzerland....................... 16537.17 57 ABSTRACT 52 U.S. Cl...... 260/611 R; 260/615A; 260/63R; Orthocarbonic acid esters are prepared from 1 mole 260/576 of trichloro acetonitrile and 4 moles of an alkali metal (51 int. Cl. ............................................ C07 c 43/32 or alkaline earth metal salt of alcohols which contain 58 Field of Search............ 260/615 A, 61 1 R, 613, at least one o-hydrogen. 260/576 20 Claims, No Drawings 3,876,708 2 ORTHOCARBONCACD ESTERS broad application, furnishes the desired final products The present invention relates to a new method for the in good yields and is easy to carry out. production of orthocarbonic acid esters of the general The method comprises reacting an alkali metal or an formula alkaline earth metal salt of an alcohol of the general C(OR), 5 formula R-OH I wherein R represents a saturated hydrocarbon residue, which may be substituted and wherein the carbon atom O in which R has the above indicated significance, with bound to the oxygen atom contains at least one hydro trichloro acetonitrile.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,395,935 B1 Baurmeister Et Al
    USOO6395935B1 (12) United States Patent (10) Patent No.: US 6,395,935 B1 Baurmeister et al. (45) Date of Patent: May 28, 2002 (54) USE OF PHOSPHORIC ACIDASA (52) U.S. Cl. ....................................................... 568/302 HOMOGENEOUS CATALYST DURING THE (58) Field of Search .......................................... 568/302 PREPARATION OF KETENE (75) Inventors: Jochen Baurmeister, Eckernförde; (56) References Cited Thomas Schäfer, Heppenheim, both of U.S. PATENT DOCUMENTS DE (DE) 2.278,537 A 4/1942 Dreyfus et al. ............. 260/547 (73) Assignee: Axiva GmbH (DE) 2.856,426 A 10/1958 Estabrook ................... 260/547 3,378,583 A 4/1968 Van Bogaert ............... 260/547 (*) Notice: Subject to any disclaimer, the term of this 3,836,583 A 9/1974 Matthias et al. ......... 260/585.5 patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C. 154(b) by 0 days. DE 2O59292 6/1972 (21) Appl. No.: 09/485,257 GB 478303 1/1938 (22) PCT Filed: Jul. 24, 1998 Primary Examiner Sreeni Padmanabhan (86) PCT No.: PCT/EP98/04654 ASSistant Examiner J. Parsa (74) Attorney, Agent, or Firm-Connolly Bove Lodge & S371 (c)(1), Huitz LLP (2), (4) Date: Apr. 27, 2000 (57) ABSTRACT (87) PCT Pub. No.: WO99/07662 The invention relates to a process for the catalytic pyrolysis PCT Pub. Date: Feb. 18, 1999 of acetic acid for preparing ketene and/or Secondary (30) Foreign Application Priority Data products, which comprises Spraying, as catalyst, phosphoric acid in the form of a liquid jet into the acetic acid vapor. Aug. 7, 1997 (DE) ......................................... 19734 275 (51) Int. Cl.
    [Show full text]