Thesis Organization

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Organization NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA CONSORTIUM FOR ROBOTICS AND UNMANNED SYSTEMS EDUCATION AND RESEARCH (CRUSER) FY17 ANNUAL REPORT Prepared by Lyla Englehorn, Faculty Associate – Research December 2017 Approved for public release: distribution unlimited Prepared for: Raymond R. Buettner Jr., CRUSER Director and Dr. Brian Bingham, CRUSER Deputy Director THIS PAGE INTENTIONALLY LEFT BLANK Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From-To) 30 December 2017 Technical Report 1 Oct 2016 – 30 Sept 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) FY17 Annual Report 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Lyla Englehorn, MPP 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School (NPS) ORGANIZATION REPORT 1 University Circle NUMBER Monterey CA 93943 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S Deputy Undersecretary of the Navy – PPOI ACRONYM(S) 100 Navy Pentagon Room 5E171 USECNAV/ONR Washington, DC 20350 11. SPONSOR/MONITOR’S Office of Naval Research (ONR) REPORT NUMBER(S) One Liberty Center, 875 North Randolph Street, Suite 1425 Arlington, VA 22203-1995 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release: distribution unlimited 13. SUPPLEMENTARY NOTES This report is not the work of one author, but a compilation of event reports and funded research summaries for FY17 14. ABSTRACT The Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This FY17 annual report summarizes CRUSER activities in its seventh year of operations, and highlights future plans. 15. SUBJECT TERMS Autonomy, autonomous systems, robotics, RAS, unmanned systems, UxS, UAV, USV, UGV, UUV 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF a. REPORT b. ABSTRACT c. THIS PAGE OF ABSTRACT OF PAGES RESPONSIBLE PERSON UNCLASS UNCLASS UNCLASS UU 151 Lyla Englehorn 19b. TELEPHONE NUMBER (include area code) 831-656-2615 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 THIS PAGE INTENTIONALLY LEFT BLANK NAVAL POSTGRADUATE SCHOOL Monterey, California 93943-5000 Ronald A. Route Steven R. Lerman President Provost The report entitled “Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) FY17 Annual Report” was prepared for the Office of the Secretary of the Navy (SECNAV), 1000 Navy Pentagon, Room 4D652, Washington, DC 20350. Further distribution of all or part of this report is authorized. This report was prepared by: ________________________ Lyla Englehorn, MPP CRUSER Associate Director Reviewed by: Released by: ________________________ ________________________ Raymond R. Buettner Jr., PhD Jeffrey D. Paduan, PhD CRUSER Director Dean of Research THIS PAGE INTENTIONALLY LEFT BLANK UNCLASSIFIED//Approved for public release: distribution unlimited CONSORTIUM FOR ROBOTICS AND UNMANNED SYSTEMS EDUCATION AND RESEARCH (CRUSER): FY17 Annual Report Prepared by Lyla Englehorn, CRUSER Associate Director for Dr. Raymond R. Buettner Jr., CRUSER Director; Dr. Brian Bingham, CRUSER Deputy Director NAVAL POSTGRADUATE SCHOOL December 2017 ii THIS PAGE INTENTIONALLY LEFT BLANK iii TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................. VI I. BACKGROUND ..........................................................................................................1 A. VISION .............................................................................................................2 B. MANAGEMENT .............................................................................................3 C. FY17 PROGRAM ACTIVITY SUMMARY .................................................4 II. PRIORITIES ................................................................................................................7 A. RESEARCH AND EXPERIMENTATION ..................................................7 1. Investigation of Requirements and Capabilities of Next Generation Mine Warfare (MIW) Unmanned Underwater Vehicles (UUVs) ...9 2. Multi-Domain Mesh Network of Short Appearance Unmanned Nodes ..............................................................................................................11 3. Cooperative Underwater Sensing with Aqua-Quad .......................13 4. Alternative PNT for Persistent Undersea Navigation ....................16 5. Arctic ScanEagle ................................................................................17 6. UAV EM Sensors for Spectrum Sensing and Propagation Environment Assessment ..................................................................18 7. Closing the Experimental Gap in the Search and MCM Communities ..............................................................................................................19 8. Bio-inspired MEMS Acoustic Sensor for Robotic Autonomous Systems Applications .........................................................................21 9. Investigation of Unsteady Hydrodynamic Loads an a UUV During Near Surface Operations ...................................................................24 10. Low-Cost Expendable UAS with Application to Low Altitude Atmospheric Measurements - Phase II ............................................26 11. C2 Design for Asymmetric Advantage: Teams of Autonomous Systems & People ...............................................................................28 12. Multi-Modal Sensor Fusion from Autonomous Platforms with 3D Modeling .............................................................................................31 13. Network Enabled Digital Swarm Image Synthesis (NEDSIS) .......32 14. Innovations in Unmanned Technologies for Humanitarian Assistance and More .............................................................................................34 15. Study of Security Primitives for the Robot Operating System (ROS) of UAV Swarms ......................................................................................36 16. RoboDojo ............................................................................................38 17. Autonomous Wave Glider Based Measurements and Analyses in Support of Electromagnetic Maneuver Warfare (EMW) ..............40 18. Vision-Based Navigation and Guidance for Swarm UAS ..............42 19. Prototyping of Air-Launched Fast Recon UAS...............................46 iv 20. Optimal Trajectory Generation for Small Drones Used as Micro Interceptors ........................................................................................48 B. EXPERIMENTATION .................................................................................50 1. JIFX .....................................................................................................51 2. MTX ....................................................................................................52 C. EDUCATIONAL ACTIVITIES ...................................................................52 1. NPS Course Offerings and Class Projects .......................................53 a. Capstone Projects ....................................................................53 b. Courses ....................................................................................54 2. Robotics Short Course Development ...............................................59 3. Continuing Education Panel Series ..................................................60 4. CRUSER Colloquiums ......................................................................61 5. NPS Student Theses and Travel .......................................................63 D. CONCEPT GENERATION ..........................................................................70 1. Warfare Innovation Continuum (WIC) Workshop 2017...............71 2. Technology Continuum (TechCon) 2017 .........................................75 E. OUTREACH AND RELATIONSHIPS .......................................................76 1. Community of Interest ......................................................................76
Recommended publications
  • And Financial Implications of Unmanned
    Disruptive Innovation and Naval Power: Strategic and Financial Implications of Unmanned Underwater Vehicles (UUVs) and Long-term Underwater Power Sources MASSACHUsf TTT IMef0hrE OF TECHNOLOGY by Richard Winston Larson MAY 0 8 201 S.B. Engineering LIBRARIES Massachusetts Institute of Technology, 2012 Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2014 © Massachusetts Institute of Technology 2014. All rights reserved. 2) Author Dep.atment of Mechanical Engineering nuaryL5.,3014 Certified by.... Y Douglas P. Hart Professor of Mechanical Engineering Tbesis Supervisor A ccepted by ....................... ........ David E. Hardt Ralph E. and Eloise F. Cross Professor of Mechanical Engineering 2 Disruptive Innovation and Naval Power: Strategic and Financial Implications of Unmanned Underwater Vehicles (UUVs) and Long-term Underwater Power Sources by Richard Winston Larson Submitted to the Department of Mechanical Engineering on January 15, 2014, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract The naval warfare environment is rapidly changing. The U.S. Navy is adapting by continuing its blue-water dominance while simultaneously building brown-water ca- pabilities. Unmanned systems, such as unmanned airborne drones, are proving piv- otal in facing new battlefield challenges. Unmanned underwater vehicles (UUVs) are emerging as the Navy's seaborne equivalent of the Air Force's drones. Representing a low-end disruptive technology relative to traditional shipborne operations, UUVs are becoming capable of taking on increasingly complex roles, tipping the scales of battlefield entropy. They improve mission outcomes and operate for a fraction of the cost of traditional operations.
    [Show full text]
  • Marine Robotics: Opportunities for the Commonwealth of Massachusetts
    Marine Robotics: Opportunities for the Commonwealth of Massachusetts Dr. J. G. Bellingham, Director Center for Marine Robotics, Woods Hole Oceanographic Institution Framing the Marine Robotics Market Massachusetts leads the newest and most promising segment of Marine Robotics, the research, development and commercial manufacture of Autonomous Underwater Vehicles. Two classes of platforms dominate the Marine Robotics industry today, Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs). ROVs share similarities to drone aircraft, in that they are continuously controlled by a team of human operators. Because radio waves do not penetrate seawater, ROVs are tethered to ships, which house the operators and which provide power and communications to the vehicles. AUVs operate without a tether, allowing them much greater freedom of motion, but also imposing the requirements that they be capable of operating without direct human control and that they carry their own power source. AUVs are a newer technology, enabled by advances in computers, software, sensors, and batteries. While the market for AUVs is currently less than ROVs, its growth is projected to be greater for the foreseeable future. ROVs capable of operating at several thousand meters depth once existed only at Woods Hole Oceanographic Institution and a few other advanced operational organizations. Today ROVs are essential operational elements of off-shore oil and gas production, used for drilling support, installation of subsea equipment, ongoing inspection and maintenance, and decommissioning. The 2013 market for ROVs operations is variously estimated from $1.6B1 and $2.5B2. ROV production is global in nature. Massachusetts firms provide many ROV components, and produce some of the smaller classes of ROVs, but is not a large player in the current ROV market.
    [Show full text]
  • The Drone Revolution Revisited
    The Drone Revolution Revisited: An Assessment of Military Unmanned Systems in 2016 Arthur Holland Michel Dan Gettinger September 2016 The Center for the Study of the Drone at Bard College is an interdisciplinary research institution founded in 2012 that examines the novel and complex opportunities and challenges presented by unmanned technologies in both the military and civilian sphere. 30 Campus Road Annandale-on-Hudson, New York 12504 Holland Michel, Arthur and Dan Gettinger. “The Drone Revolution Revisited: An Assessment of Military Unmanned Systems in 2016.” Center for the Study of the Drone at Bard College, September 6, 2016. We would like to thank the Bard College students whose outstanding research formed the basis for this report. We would like to express our gratitude to Thomas Keenan, with whom we co-taught the seminar “The Drone Revolutions,” which gave rise to this report. We would like to thank Peter W. Singer for his participation and support. Madi Garvin and Erin O’Leary provided editorial support for this report. Cover photo by Staff Sgt. Manuel J. Martinez/U.S. Air Force. The Drone Revolution Revisited Contents Introduction 1 I: Systems 4 Figure 1: System Status in 2009 and 2016 5 Figure 2: Program Timelines 6 Future Combat Systems Program 15 II: Discussion with Peter W. Singer 24 References 31 Introduction Photo credit: Lance Cpl. Julien Rodarte/USMC In 2009, not many people were talking seriously about robots in war. Even though every U.S. armed service operated drones either in the air, on the ground, or undersea, and though numerous initiatives to develop the next generation of advanced systems were already publicly underway, there was very little broad public dialogue on the topic.
    [Show full text]
  • Navy SBIR Leads to Resilient, Rechargeable Batteries Powering
    Navy SBIR leads to Resilient, rechargeable batteries Systems Courtesy General Dynamics Mission Photos powering autonomous undersea applications n March 8, 2014, Malaysia Airlines Flight underwater sensor sweeps, aiding in the search. 370 disappeared over the Andaman Sea. After The Bluefin-21 AUV was developed by Bluefin- Ro an erratic flight path, it slipped off the radar botics—a small business founded in 1997 by a group of Oand under the waves, carrying 239 passengers and crew engineers from Massachusetts Institute of Technolo- members. The disappearance triggered one of largest, gy’s AUV lab. In February 2016, Bluefin Robotics was most extensive, and expensive multinational aviation acquired by General Dynamics Mission Systems, a search efforts in history. business unit of General Dynamics. Since the acquisi- A few weeks later, Phoenix International, a marine tion, General Dynamics has continued to invest in, and service contractor that provides worldwide manned advance, the Bluefin Robotics AUV products and relat- and unmanned underwater services, deployed a Blue- ed subsea power solutions. They are now fielded world- fin-21 autonomous underwater vehicle (AUV)—pow- wide, across both defense and commercial industries. ered by Bluefin’s 1.5kWh subsea battery—to conduct Regarding the Malaysian Air search, Chris Moore, Director of Commercial Operations, Phoenix tems business unit within General Dynamics International, said, “We had a lot of great sup- Mission Systems. port from Bluefin Robotics, and we successfully The 30-pound battery can not only be placed dove 15 times down to 5,000-plus meters, do- directly into the water, the battery electronics ing side-scan sonar surveys looking for a debris include built-in protection, monitoring, power field from the airplane crash.
    [Show full text]
  • Ifremer New 6000M AUV Will Feature Ixblue SAS
    AcousticAcoustic TransducersTransducers andand ArraysArrays Position / Heading Weather Monitoring Ultrasonic / Electromagnetic Speed Smart™ Depth Sensor Acoustic Communications (ACOMMs) Acoustic Communications (ACOMMs) Forward-looking Sonar Altimeter Synthetic Aperture Sonar Transducers Multibeam Sonar Standard Configurations and Custom Designs CUSTOMIZATION Ultrasonic Collaboration DESIGN Solutions Manufacture TEST Innovation Prototype Quality Production From prototype to production, AIRMAR and MSI push the boundaries of sonar technology. Whether you need a simple single element sensor or a large multi-element array, we have the solution. We specialize in partnerships providing strong engineering support, innovative technology, advanced manufacturing capabilities and exceptional customer service. TRANSDUCERS AIRMAR.COM MSITRANSDUCERS.COM PRESENTS Technology solution for tomorrow Intelligent control system Eco-friendly Low cost of ownership High degree of integrity WHO DO YOU TRUST? macartney.com THE WORLD NAVAL DEFENCE EXHIBITION OCTOBER 2020 EXHIBITION CONFERENCE 20/23 19 LE BOURGET PARIS 4 ST | June 2020 www.sea-technology.com www.euronaval.fr JUNE 2020 CONTENTS Volume 61, No. 6 FEATURES [email protected] sound by design GOING IT ALONE 10 John Houlder (Sonardyne), Matt Kingsland (U.K. National Oceanography Centre) and Geraint West (Sonardyne) introduce a project that has achieved enhanced independent Multibeam Imaging Sonars AUV navigation. Single and Dual Frequency Operation ICESAT-2 SPACE-BASED LASER 15 Kyle Goodrich and Ross Smith (TCarta Marine) discuss a new process of validation for satellite-derived bathymetry in NSF-funded research. UUVS ON THE FRONTIER 23 Michael Guay and Gordon Clark (General Dynamics Mission Systems) explain how UUVs are augmenting naval operations in the new decade. ACCELERATING SHIP DESIGN 27 Stefan Tynelius (MSC Software) and Ole Jan Nekstad (DNV GL) outline how to support sustainable shipping with improved ship simulation.
    [Show full text]
  • Mass. Robotics Cluster Report
    THE MASSACHUSETTS ROBOTICS CLUSTER www.abiresearch.com THE MASSACHUSETTS ROBOTICS CLUSTER Dan Kara Research Director, Robotics ABI Research Phil Solis Research Director ABI Research Photo Credits: Amazon Robotics: www.amazonrobotics.com, Aquabotix Technology: www.aquabotix.com, Bluefin Robotics: www.bluefinrobotics.com, Boston Engineering: www.boston-engineering.com, Corindus Vascular Robotics: www.corindus.com, Endeavor Robotics: www.endeavorrobotics.com, iRobot: www.irobot.com, Jibo: www.jibo.com, Locus Robotics: www.locusrobotics.com, Neurala: www.neurala.com, Rethink Robotics: www.rethinkrobotics.com, ReWalk Robotics: www.rewalk.com, Robai: www.robai.com, Softrobotics: www.softroboticsinc.com, Vecna Technologies: www.vecna.com I www.abiresearch.com THE MASSACHUSETTS ROBOTICS CLUSTER TABLE OF CONTENTS 1. CONTRIBUTORS ....................................................................................................1 2. EXECUTIVE SUMMARY ........................................................................................2 3. INTRODUCTION ....................................................................................................7 3.1. INNOVATION ECONOMY ...............................................................................................7 3.2. STRATEGIC APPROACH ...................................................................................................7 4. ROBOTS AND ROBOTICS TECHNOLOGIES ......................................................9 4.1. AUTONOMY ....................................................................................................................9
    [Show full text]
  • ISN November/December 2019 Newsletter
    Innovation ™ Sourcing Network Monthly November/December 2019 ININNOVATION Vol 3, Issue 9 SOURCING NETWORK Maritime and Strategic Systems Overview Get to Know Katie Small Business Partnership Forum Overview Buyer Feature Spotlight on Pittsfield Get to Know the SCM Team Scotty Miller II VP, Supply Chain Management THANK YOU ALL I would like to thank you all for your collaboration and partnership efforts throughout the past year. On November 12, we hosted our Small Business Partnership Forum in Washington, DC, where we emphasized the importance of partnering, innovating and winning business together. Through partnering and investing for success, we can accomplish our mission together. I wish you all a happy holiday season and a happy new year! SCOTTY’S MESSAGE 2 NOVEMBER/DECEMBER 2019 gdmissionsystems.com/isn In This Issue 4 Maritime and Strategic Systems Overview 7 Get to Know Katie 8 Small Business Partnership Forum Overview 10 Buyer Feature 13 Get to Know the Team 16 Spotlight on Pittsfield About this publication: This is General Dynamics Mission Systems’ Innovation Sourcing Network, open supplier innovation ecosystem monthly newsletter. Suppliers may submit articles to be considered for publication to: [email protected] © 2019 General Dynamics gdmissionsystems.com/isn NOVEMBER/DECEMBER 2019 3 Maritime and Strategic Systems Overview As we have done in our last three newsletters, today we will break down another of our lines of business at General Dynamics Mission Systems. This issue we will focus on our Maritime and Strategic Systems line of business. Our maritime solutions are trusted above and below the open sea to address next-generation challenges.
    [Show full text]