A Vegetation Classification of St. Kitts and Nevis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plants for a Future Species Database Bibliography
Plants For A Future Species Database Bibliography Numbers in square brackets are the reference numbers that appear in the database. [K] Ken Fern Notes from observations, tasting etc at Plants For A Future and on field trips. [1] F. Chittendon. RHS Dictionary of Plants plus Supplement. 1956 Oxford University Press 1951 Comprehensive listing of species and how to grow them. Somewhat outdated, it has been replaces in 1992 by a new dictionary (see [200]). [1b] Food Plants International. http://foodplantsinternational.com/plants/ [1c] Natural Resources Conservation Service http://plants.usda.gov [1d] Invasive Species Compendium www.cabi.org [2] Hedrick. U. P. Sturtevant's Edible Plants of the World. Dover Publications 1972 ISBN 0-486-20459-6 Lots of entries, quite a lot of information in most entries and references. [3] Simmons. A. E. Growing Unusual Fruit. David and Charles 1972 ISBN 0-7153-5531-7 A very readable book with information on about 100 species that can be grown in Britain (some in greenhouses) and details on how to grow and use them. [4] Grieve. A Modern Herbal. Penguin 1984 ISBN 0-14-046-440-9 Not so modern (1930's?) but lots of information, mainly temperate plants. [5] Mabey. R. Food for Free. Collins 1974 ISBN 0-00-219060-5 Edible wild plants found in Britain. Fairly comprehensive, very few pictures and rather optimistic on the desirability of some of the plants. [6] Mabey. R. Plants with a Purpose. Fontana 1979 ISBN 0-00-635555-2 Details on some of the useful wild plants of Britain. Poor on pictures but otherwise very good. -
Geology the Island of Nevis Consists of a Single Volcanic Complex Made up of a Series of Volcanic Domes Or Centres
Nevis Geology The island of Nevis consists of a single volcanic complex made up of a series of volcanic domes or centres. Although Nevis is made up primarily of volcanic material, the oldest outcropping rock on the island is a conglomerate containing blocks of crystallised limestone that contain fossils of mid-Eocene age (Hutton 1965). Seven volcanic centres have been identified on Nevis: Hurricane Hill, Round Hill, Cades Bay, Saddle Hill, Red Cliff, Butler’s Mountain and Nevis Peak (Hutton 1965; Hutton and Nockolds 1978). These centres have been interpreted as remnants of lava domes that were generated by effusive eruptions. Ages for Hurricane Hill, Round Hill and Cades Bay range from 3.43 to 2.7 Ma, and these are considered the oldest centres. Extrusive activity at the Round Hill and Cades Bay centres seems to have been controlled by a NW-SE trending feeder system, and that of Hurricane Hill by a NE-SW trending system (Geothermica Italiana 1991). Saddle Hill and Butler’s Mountain have yielded radiometric ages of 1.80 and 1.10 Ma respectively, and are therefore somewhat younger. The small eruptive centre of Red Cliff is interpreted as a remnant of a volcanic cone whose source was probably situated slightly east of the present shoreline and is now removed by wave action (Geothermica Italiana 1991). No radiometric age is available for Red Hill, but the relative freshness of the lava led Hutton and Nockolds (1978) to suggest an age comparable to that of Nevis Peak (1 Ma). These older volcanic centres discussed above are unlikely to be the sites of future volcanic activity. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Basseterre Valley National Park Management Plan
Rehabilitation and Management of the Basseterre Valley as a Protection Measure for the Underlying Aquifer Volume 2: National Park Management Plan Prepared for the St. Kitts Water Department by The Ocean Earth Technologies Consortium September 2009 The following is the second volume of the final report compiled by the Ocean Earth Technologies Consortium, prepared for the Water Services Department, Ministry of Public Works, Utilities, Transport & Post Government of St. Kitts & Nevis, for the project entitled: “Rehabilitation and Management of the Basseterre Valley as a Protection Measure for the Underlying Aquifer”. Volume 2 encompasses Output II of the above project, as described in the original contract. Output II is described as the National Park Management Plan for the Basseterre Valley. This report is preceded by an Executive Summary. 201 Alt. 19 Palm Harbor, FL 34683 Website: www.oceanearthtech.com Email: [email protected] Office (727) 787-5975 Fax: (727)786-3577 This volume is the result of a collaborative effort organized by Ocean Earth Technologies Consortium: Volume 2 is Prepared by: Aukerman, Haas and Associates 3403 Green Wing Court, Fort Collins, Colorado 80524. Tel. 970-498-9350 Email: [email protected] Glenn Haas, Ph.D. 201 Alt. 19 Palm Harbor, FL 34683 Website: www.oceanearthtech.com Email: [email protected] Office (727) 787-5975 Fax: (727)786-3577 Rehabilitation and Management of the Basseterre Valley as a Protection Measure for the Underlying Aquifer: Volume 2: A Management Plan for the Proposed National Park in the Basseterre Valley Prepared for the St. Kitts Water Department by The Ocean Earth Technologies Consortium September 2009 Volume II - Executive Summary National Park Management Plan - Key Findings and Solutions Finding #1: The Government of St. -
Evolution of Unusual Morphologies in Lentibulariaceae (Bladderworts and Allies) And
Annals of Botany 117: 811–832, 2016 doi:10.1093/aob/mcv172, available online at www.aob.oxfordjournals.org REVIEW: PART OF A SPECIAL ISSUE ON DEVELOPMENTAL ROBUSTNESS AND SPECIES DIVERSITY Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification Rolf Rutishauser* Institute of Systematic Botany, University of Zurich, Zurich, Switzerland * For correspondence. E-mail [email protected] Received: 30 July 2015 Returned for revision: 19 August 2015 Accepted: 25 September 2015 Published electronically: 20 November 2015 Background Various groups of flowering plants reveal profound (‘saltational’) changes of their bauplans (archi- tectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather Downloaded from large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps ‘hopeful monsters’) that gave rise to new evolutionary lines of organisms, based on (major) genetic changes. Scope This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia,approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropi- http://aob.oxfordjournals.org/ cal river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolu- tionary history of both Lentibulariaceae and Podostemaceae is summarized. -
Memorial Day Sale Exclusive Rates· Book a Balcony Or Above and Receive up to $300 Onboard Credit ^ Plus 50% Reduced Deposit'
Memorial Day Sale Exclusive Rates· Book a Balcony or above and receive Up to $300 Onboard Credit ^ plus 50% Reduced Deposit' Voyage No. Sail Date Itinerary Voyage Description Nights Japan and Alaska Tokyo (tours from Yokohama), Hakodate, Sakaiminato, Busan, Sasebo, Kagoshima, Tokyo (tours from Yokohama), Hakodate, Aomori, Otaru, Cross Q216B 5/8/2022 International DateLine(Cruise-by), Anchorage(Seward), Hubbard Glacier (Cruise-by), Juneau, Glacier Bay National Park (Cruise-by), Ketchikan, Japan and Alaska 38 Victoria, Vancouver, Glacier Bay National Park (Cruise-by), Haines, Hubbard Glacier (Cruise-by), Juneau, Sitka, Ketchikan, Victoria, Vancouver Tokyo (tours from Yokohama), Hakodate, Aomori, Otaru, Cross International Date Line (Cruise-by), Anchorage (Seward), Hubbard Glacier (Cruise- Q217B 5/17/2022 by), Juneau, Glacier Bay National Park (Cruise-by), Ketchikan, Victoria, Vancouver, Glacier Bay National Park (Cruise-by), Haines, Hubbard Glacier Japan and Alaska 29 (Cruise-by), Juneau, Sitka, Ketchikan, Victoria, Vancouver Tokyo (tours from Yokohama), Hakodate, Aomori, Otaru, Cross International Date Line (Cruise-by), Anchorage (Seward), Hubbard Glacier (Cruise- Q217N 5/17/2022 Japan and Alaska 19 by), Juneau, Glacier Bay National Park (Cruise-by), Ketchikan, Victoria, Vancouver Alaska Q218N 6/4/2022 Vancouver, Glacier Bay National Park (Cruise-by), Haines, Hubbard Glacier (Cruise-by), Juneau, Sitka, Ketchikan, Victoria, Vancouver Alaska 10 Q219 6/14/2022 Vancouver, Juneau, Hubbard Glacier (Cruise-by), Skagway, Glacier Bay National Park -
MSRP Appendix E
Appendix E. Exotic Plant Species Reported from the South Florida Ecosystem. Community types are indicated where known Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Abelmoschus esculentus Abrus precatorius X X X X X X X X X X X X Abutilon hirtum Abutilon theophrasti Acacia auriculiformis X X X X X X X X X Acacia retinoides Acacia sphaerocephala Acalypha alopecuroidea Acalypha amentacea ssp. wilkesiana Acanthospermum australe Acanthospermum hispidum Achyranthes aspera var. X aspera Achyranthes aspera var. pubescens Acmella pilosa Page E-1 Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Acrocomia aculeata X Adenanthera pavonina X X Adiantum anceps X Adiantum caudatum Adiantum trapeziforme X Agave americana Agave angustifolia cv. X marginata Agave desmettiana Agave sisalana X X X X X X Agdestis clematidea X Ageratum conyzoides Ageratum houstonianum Aglaonema commutatum var. maculatum Ailanthus altissima Albizia julibrissin Albizia lebbeck X X X X X X X Albizia lebbeckoides Albizia procera Page -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Geothermal Activity and Development in East Caribbean Islands
Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN EAST CARIBBEAN ISLANDS Anelda Maynard-Date, Cartwright N. Farrell Nevis Electricity Company Limited Charlestown Commercial Site NEVIS [email protected], [email protected] ABSTRACT The geothermal activities on the 11 islands of the Eastern Caribbean have increased in the last six years. These islands, hosting 21 volcanoes were estimated by USDOE to have collectively 16,310 MWe of geothermal energy. In 2004 Guadeloupe upgraded its 4.7MWe plant to 15.7MWe and is the only island in the Eastern Caribbean having a geothermal plant. The Organisation of American States funded a programme that carried out geochemical, geological and geophysical studies on Nevis; geological and geophysical studies on Dominica; and reinterpreted the data from St. Lucia in 2004 and 2005. In 2007 Nevis gave a licence for exploratory work to West Indies Power Holdings (WIPH). In 2008 the government of Dominica signed an agreement for exploration, development, and export of power with the French islands of Martinique and Guadeloupe from the Wotten Waven area. They also signed an agreement with WIPH for the Galion- Soufriere area. WIPH began negotiations with the government of Saba. Three slim-hole wells were drilled in Nevis with attendant steam from two. In 2009 Nevis Island Administration signed a government contract and a power purchase agreement for the supply of geothermal power from WIPH. The initial power supplied will be 10MWe to Nevis and then another 25MWe to St. -
St Lucia 44 St Vincent and the Grenadines 47 Suriname 50 Trinidad and Tobago 52
~ . ' ,....•..•.•.........•....../. , . /": , .. ' ..""", .. " ," , "0" : .... ~ '" .. ~. • .' ': THE' THE· .~.... " . ,'. '....... .. ." .. ·0·• ••... ....••... '. ... .>~..•••........",-, j. ', .. ;;. •••••.•. :••.j.•...••, •.•••.•.••. :.. " " '''', -'... ', . ..'.. .. ...~ ~ European Commission Directorate-General for Development Unit 'Communications, publications and The ACP-EU Courier' rue de la Loi 200, B-1049 Brussels Telephone: 299 30 62 - Fax: 299 25 25 Manuscript completed in December 1994. Luxembourg: Office for Official Publications of the European Communities, 1995 © ECSC-EC-EAEC Brussels • Luxembourg, 1995 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged Printed in Germany CONTENTS _________ ] Introduction 3 The European Union and Development Co-operation 4 The Union in Europe and in the World The Lome Convention and the Association of the Overseas Countries and 4 Territories with the Union The Caribbean and the European Union 6 Economic and political situation of the Caribbean 6 Instruments of EU-Caribbean co-operation 8 Regional co-operation 11 Co-operation with ACP States Antigua and Barbuda 18 The Bahamas 20 Barbados 22 Belize 25 Dominica 27 Dominican Republic 30 Grenada 33 Guyana 35 Haiti 37 Jamaica 39 St Christopher and Nevis 42 St Lucia 44 St Vincent and the Grenadines 47 Suriname 50 Trinidad and Tobago 52 Co-operation with the Overseas Countries and Territories Anguilla 54 British Virgin Islands 56 Cayman Islands 58 Montserrat 59 Netherlands Antilles and Aruba 61 Turks -
Nevis Geological Profile
NEVIS GEOLOGICAL PROFILE SUMMARY The island of Nevis consists of a single volcanic complex made up of a series of volcanic domes or centres. There have been no recent signs of increased activity on Nevis; however, frequent shallow earthquake swarms and hydrothermal activity associated with the Nevis Peak volcanic centre indicate that this centre is potentially active, and an increase in activity could occur at any time. Caption: View looking southeast at the main edifice of Nevis Peak and the older dome of Butlers Mountain (to the left). Note the communities living on the northern flank of Nevis Peak, this area is a pyroclastic fan developed in a prehistoric eruption of Nevis Peak. View is taken from near the gps benchmark on Round Hill. GEOLOGY The island of Nevis is situated in the northern region of the Lesser Antilles. Nevis is 93 km2 in size and has a population of ~ 9,000 people. The highest point on Nevis is Nevis Peak, rising to 984 m (3232 ft) and this mountain represents a typical andesitic lava dome characteristic of the Lesser Antilles. Although the island of Nevis is made up primarily of volcanic material, the oldest rock outcropping on the island is a small conglomerate unit containing blocks of crystalline limestone that contain fossils of mid-Eocene age. Caption: Generalised geological map (modified from Hutton & Nockolds, 1978) Seven volcanic centres have been identified on Nevis: Hurricane Hill, Round Hill, Cades Bay, Saddle Hill, Red Cliff, Butlers Mountain and Nevis Peak. These centres have been interpreted as remnants of lava domes that were generated by effusive volcanic activity. -
Forest Inventory and Analysis National Core Field Guide
National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.