C.Skeletal System.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

C.Skeletal System.Pdf Skeletal System Skeletal Anatomy bones, cartilage and ligaments are tightly joined to form a strong, flexible framework each individual bone is a separate organ of the skeletal system bone is active tissue: !5-7% bone mass/week ~270 bones (organs) of the Skeletal System Functions of Skeletal System: with age the number decreases as bones fuse 1. Support by adulthood the number is 206 (typical) strong and relatively light; 20% body weight 2. Movement even this number varies due to varying numbers framework on which muscles act of minor bones: act as levers and pivots sesamoid bones – small rounded bones that form within 3. Protection tendons in response to stress brain, lungs, heart, reproductive system eg. kneecap (patella), in knuckles 4. Mineral storage (electrolyte balance 99% of body’s calcium is in bone tissue wormian bones –bones that form within the sutures of (1200-1400g vs <1.5g in blood, rest in cells) skull also stores phosphate each skeletal organ is composed of many kinds of 5. Hemopoiesis tissues: blood cell formation bone (=osseous tissue) 6. Detoxification cartilage bone tissue removes heavy metals and other foreign materials fibrous connective tissues from blood blood (in blood vessels) can later release these materials more slowly for excretion nervous tissue but this can also have bad consequences General Shapes of Bones Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 1 Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 2 bones can be categorized according to their general the general structure of a typical longbone: shape: 1. long: cylindrical, longer than wide articular cartilage rigid levers for muscle actions eg crowbars epiphysis periosteum eg. arms, legs, fingers, toes medullary cavity diaphysis 2. short: length nearly equal width endosteum limited motion, gliding if any epiphysis eg. carpals, tarsals, patella 3. flat: thin sheets of bone tissue epiphyses enclose and protect organs large surface area for muscle attachment and pivot broad surfaces for muscle attachments spongy bone with trabeculae; eg. sternum, ribs, most skull bones, scapula, os coxa contains red marrow (=hemopoietic tissues) 4. irregular: elaborate shapes different from above ! produces blood cells in delicate mesh of reticular tissues eg. vertebrae, sphenoid, ethmoid in adults red marrow is limited to vertebrae, sternum, ribs, pectoral and pelvic girdles, proximal heads of Bone Structure humerus and femur bones have outer shell of compact bone with age, red marrow is replaced by yellow marrow usually encloses more loosely organized bone tissue articular cartilage = spongy (=cancellous) bone on surface of epiphyses Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 3 Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 4 resilient cushion of hyaline cartilage highly organized arrangement of matrix and cells diaphysis lacunae w osteocyte thick compact bone but light; hollow ! medullary cavity & canaliculi medullary cavity lamellae yellow marrow – fat (adipose) storage haversian canal “fat at the center of a ham bone” perforating canals (Volkmann canals) interconnect the haversian canals in event of severe anemia, yellow marrow can transform back into red marrow to make blood cells periosteum provides life support system for periosteum bone cells white fibrous connective tissue continuous with tendons penetrates bone – welds blood vessels to bone blood vessels penetrate bone and connect with those in haversian canals endosteum fibrous CT that lines medullary cavity B. cartilage Microscopic Structure (Histology) resembles bone: large amount of matrix A. bone: lots of collagen fibers connective tissue; contains cells and matrix differs: firm flexible gel is not calcified (hardened) bone cells = osteocytes no haversian canal system no direct blood supply matrix predominates; ~ 1/3rd organic and ! nutrients and O2 by diffusion 2/3rd’s inorganic all bone starts out as cartilage matrix contains lots of collagen fibers Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 5 Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 6 in bone the matrix is hardened (= ossified) by Anatomy of Skeletal System calcification (or mineralization) microscopic structure of cartilage: Bone Markings: any bump, hole, ridge, etc on each bone; eg.: chondrocytes in lacunae Foramen: opening in bone – passageway for nerves and blood vessels kinds of cartilage: (all similar matrix with lots of collagen Fossa: shallow depression – eg a socket into which another bone fibers; differ in other fibers) articulates Sinus: internal cavity in a bone 1. hyaline most common Condyle: rounded bump that articulates with another bone eg. covers articular surfaces of joints, costal cartilage of ribs, rings of tracheae, nose Tuberosity: large rough bump – point of attachment for muscle 2. fibrous Spine: sharp slender process mostly collagen fibers eg. discs between vertebrae, pubic symphysis two main subdivisions of skeletal system: 3. elastic axial : skull, vertebral column, rib cage also has elastic fibers eg. external ear, eustacean tube appendicular: arms and legs and girdles The Axial Skeleton A. Skull most complex part of the skeleton consists of facial and cranial bones most bones are paired, not all Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 7 Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 8 in 4 of the bones making up the face bones joined at sutures in life lined with mucous membrane to form sinuses 1. Fontanels lighten bone, warm and moisten air ossification of skull begins in about 3rd month of 6 sinuses: fetal development frontal -2 maxillary -2 ethmoid -1 not completed at birth!bones have not yet fused sphenoid -1 gaps = fontanels Examples of Paired Skull Bones: frontal (anterior) occipital (posterior) 5. Maxilla 2 sphenoid 2 mastoid cheek bones, upper teeth cemented to these bones at this stage skull is covered by tough membrane for protection hard palate: palatine process and palatine bones normally, bones grow together and fuse to form solid case around brain cleft palate ! when bones of palatine process of maxilla bones do not fuse properly 3. Skull Cavities not only cosmetic effect inside of skull contains several significant cavities: can lead to serious respiratory and feeding problems in babies and small children today, fairly easily corrected cranial cavity – largest (adult – 1,300 ml); part of dorsal body cavity orbits – eye sockets 6. Temporal Bone nasal cavity external auditory meatus - opening to ear canal leads to middle ear chamber buccal cavity ear ossicles: middle and inner ear cavities malleus = hammer 4. Paranasal Sinuses incus = anvil stapes = stirrup Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 9 Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 10 7. Mandible = lower jaw very delicate and easily damaged by sharp upward blow to the nose largest, strongest bone of face articulates at temporal bone can drive bone fragments through the cribriform plate into the meninges or brain itself Examples of Unpaired Skull Bones: can also shear off olfactory nerves! loses of smell 8. occipital bone 11. hyoid bone – single “U” shaped bone in neck just below mandible foramen magnum - large opening in base through which spinal cord passes suspended from styloid process of temporal bone occipital condyles - articulation of vertebral column only major bone in body that doesn’t directly articulate with other bones 9. sphenoid bone – irregular, unpaired bone serves as point of attachment for tongue and several other muscles resembles bat or butterfly; “keystone” in floor of cranium B. Vertebral Column ! anchors many of the bones of cranium main axis of body contains sinuses flexible rather than rigid sella turcica – depression for the pituitary gland permits foreward, backward, and some sideways 10. ethmoid – irregular, unpaired bone movement honeycomed with sinuses divided into 5 regions: cribiform plate – perforated with openings which cervical allow olfactory nerves to pass thoracic lumbar nasal conchae – passageways for air; filtering, sacral warming, moistening coccygeal crista galli – attachment of meninges all but last two are similar in structure: Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 11 Human Anatomy & Physiology: Skeletal System; Ziser, Lecture Notes, 2010.4 12 body sacroiliac joint – lots of stress spinous process vertebral foramen Coccyx (4-5, some fused): transverse process superior and inferior articular process intervertebral foramen between each pair tailbone separated by intervertebral discs painful if broken Cervical (7): sometimes blocks birth canal, must be broken have transverse foramena C. Ribcage 1s t and 2nd are highly modified for movement: manubrium atlas – holds head up sternum body (=gladiolus) no body or spinous process xiphoid process “yes” movement of head ribs: most joined to sternum by costal cartilages axis -- dens (odontoid process) – forms pivot “no” movement true ribs (7prs) Thoracic (12): false ribs (5 prs) include floating ribs (2prs) distinguished by facets smooth areas for articulation of ribs each rib articulates at two places one on body of vertebrae one on transverse process Lumbar (5): short and thick spinous processes modified for attachment of powerful back muscles Sacrum (5 fused): triangular bone formed from fused vertebrae Human Anatomy
Recommended publications
  • Mesenchymal Stem Cells in Combination with Hyaluronic Acid
    www.nature.com/scientificreports OPEN Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects Received: 1 August 2017 Lang Li1, Xin Duan1, Zhaoxin Fan2, Long Chen1,3, Fei Xing1, Zhao Xu4, Qiang Chen2,5 & Accepted: 19 April 2018 Zhou Xiang1 Published: xx xx xxxx Mesenchymal stem cells (MSCs) and hyaluronic acid (HA) have been found in previous studies to have great potential for medical use. This study aimed to investigate the therapeutic efects of bone marrow mesenchymal stem cells (BMSCs) combined with HA on articular cartilage repair in canines. Twenty-four healthy canines (48 knee-joints), male or female with weight ranging from 5 to 6 kg, were operated on to induce cartilage defect model and divided into 3 groups randomly which received diferent treatments: BMSCs plus HA (BMSCs-HA), HA alone, and saline. Twenty-eight weeks after treatment, all canines were sacrifced and analyzed by gross appearance, magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining, Masson staining, toluidine blue staining, type II collagen immunohistochemistry, gross grading scale and histological scores. MSCs plus HA regenerated more cartilage-like tissue than did HA alone or saline. According to the macroscopic evaluation and histological assessment score, treatment with MSCs plus HA also lead to signifcant improvement in cartilage defects compared to those in the other 2 treatment groups (P < 0.05). These fndings suggested that allogeneic BMSCs plus HA rather than HA alone was efective in promoting the formation of cartilage-like tissue for repairing cartilage defect in canines. Articular cartilage is composed of chondrocyte and extracellular matrix and has an important role in joint move- ment including lubrication, shock absorption and conduction.
    [Show full text]
  • (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: a Five-Year Follow-Up Prospective Cohort Study
    life Communication Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study Filippo Migliorini 1 , Jörg Eschweiler 1, Nicola Maffulli 2,3,4,5,* , Hanno Schenker 1, Arne Driessen 1 , Björn Rath 1,6 and Markus Tingart 1 1 Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; [email protected] (F.M.); [email protected] (J.E.); [email protected] (H.S.); [email protected] (A.D.); [email protected] (B.R.); [email protected] (M.T.) 2 School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire ST4 7QB, UK 3 Barts and the London School of Medicine and Dentistry, London E1 2AD, UK 4 Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, London E1 4DG, UK 5 Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria 6 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy * Correspondence: [email protected] Abstract: Introduction: Many procedures are available to manage cartilage defects of the talus, Citation: Migliorini, F.; Eschweiler, J.; including microfracturing (MFx) and Autologous Matrix Induced Chondrogenesis (AMIC). Whether Maffulli, N.; Schenker, H.; Driessen, AMIC or MFx are equivalent for borderline sized defects of the talar shoulder is unclear. Thus, the A.; Rath, B.; Tingart, M. Autologous present study compared the efficacy of primary isolated AMIC versus MFx for borderline sized Matrix Induced Chondrogenesis focal unipolar chondral defects of the talar shoulder at midterm follow-up.
    [Show full text]
  • Making Stillbirths Visible: Changes in Indicators of Lithuanian Population During the 1995-2016 Period
    Uniwersytet Medyczny w Łodzi Medical University of Lodz https://publicum.umed.lodz.pl Intramuscular Innervation Pattern of Extraocular Rectus Muscles (Superior, Inferior, Publikacja / Publication Medial and Lateral) in Humans , Haładaj Robert , Wysiadecki Grzegorz, Topol Mirosław Adres publikacji w Repozytorium URL / Publication address in https://publicum.umed.lodz.pl/info/article/AML3e183c5c8a3e4dc29d1d9c421ec762f6/ Repository Data opublikowania w Repozytorium 2020-09-11 / Deposited in Repository on Rodzaj licencji / Type of licence Attribution (CC BY) Haładaj Robert , Wysiadecki Grzegorz, Topol Mirosław: Intramuscular Innervation Cytuj tę wersję / Cite this version Pattern of Extraocular Rectus Muscles (Superior, Inferior, Medial and Lateral) in Humans , Medicina-Lithuania, vol. 55, no. Supplement 2, 2019, pp. 226-226 ISSN 1648-9233 Volume 55, Supplement 2, 2019 Issued since 1920 EDITOR-IN-CHIEF Prof. Dr. Edgaras Stankevičius Lithuanian University of Health Sciences, Kaunas, Lithuania ASSOCIATE EDITORS Prof. Dr. Vita Mačiulskienė Prof. Dr. Vytenis Arvydas Skeberdis Lithuanian University of Health Sciences, Kaunas, Lithuania Lithuanian University of Health Sciences, Kaunas, Lithuania Prof. Dr. Bayram Yılmaza Prof. Dr. Andrius Macas Yeditepe University, İstanbul, Turkey Lithuanian University of Health Sciences, Kaunas, Lithuania Prof. Dr. Abdonas Tamošiūnas Assoc. Prof. Dr. Julius Liobikas Lithuanian University of Health Sciences, Kaunas, Lithuania Lithuanian University of Health Sciences, Kaunas, Lithuania EDITORIAL BOARD Assoc. Prof. Dr. Ludovico Abenavoli Prof. Dr. Ioanna Gouni-Berthold Prof. Dr. Michel Roland Magistris Prof. Dr. Ulf Simonsen Magna Græcia University, University of Cologne, Köln, Geneva University Hospitals, Aarhus University, Aarhus, Catanzaro, Italy Germany Geneva, Switzerland Denmark Prof. Dr. Mauro Alaibac Prof. Dr. Martin Grapow Dr. Philippe Menasché Prof. Dr. Jean-Paul Stahl University of Padua, Padova, Italy Universität Basel, Basel, Switzerland Hôpital Européen Georges Universite Grenoble Alpes, Grenoble cedex, France Dr.
    [Show full text]
  • Applications of Chondrocyte-Based Cartilage Engineering: an Overview
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 1879837, 17 pages http://dx.doi.org/10.1155/2016/1879837 Review Article Applications of Chondrocyte-Based Cartilage Engineering: An Overview Abdul-Rehman Phull,1 Seong-Hui Eo,1 Qamar Abbas,1 Madiha Ahmed,2 and Song Ja Kim1 1 Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea 2Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan Correspondence should be addressed to Song Ja Kim; [email protected] Received 14 May 2016; Revised 24 June 2016; Accepted 26 June 2016 Academic Editor: Magali Cucchiarini Copyright © 2016 Abdul-Rehman Phull et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment.
    [Show full text]
  • Synovial Joints Permit Movements of the Skeleton
    8 Joints Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes 8.1 Contrast the major categories of joints, and explain the relationship between structure and function for each category. 8.2 Describe the basic structure of a synovial joint, and describe common accessory structures and their functions. 8.3 Describe how the anatomical and functional properties of synovial joints permit movements of the skeleton. © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes (continued) 8.4 Describe flexion/extension, abduction/ adduction, and circumduction movements of the skeleton. 8.5 Describe rotational and special movements of the skeleton. © 2018 Pearson Education, Inc. Module 8.1: Joints are classified according to structure and movement Joints, or articulations . Locations where two or more bones meet . Only points at which movements of bones can occur • Joints allow mobility while preserving bone strength • Amount of movement allowed is determined by anatomical structure . Categorized • Functionally by amount of motion allowed, or range of motion (ROM) • Structurally by anatomical organization © 2018 Pearson Education, Inc. Module 8.1: Joint classification Functional classification of joints . Synarthrosis (syn-, together + arthrosis, joint) • No movement allowed • Extremely strong . Amphiarthrosis (amphi-, on both sides) • Little movement allowed (more than synarthrosis) • Much stronger than diarthrosis • Articulating bones connected by collagen fibers or cartilage . Diarthrosis (dia-, through) • Freely movable © 2018 Pearson Education, Inc. Module 8.1: Joint classification Structural classification of joints . Fibrous • Suture (sutura, a sewing together) – Synarthrotic joint connected by dense fibrous connective tissue – Located between bones of the skull • Gomphosis (gomphos, bolt) – Synarthrotic joint binding teeth to bony sockets in maxillae and mandible © 2018 Pearson Education, Inc.
    [Show full text]
  • Embryonic Cell That Forms Cartilage Medical Term
    Embryonic Cell That Forms Cartilage Medical Term Unexploited Gordie languishes: he scumbles his initiatives atweel and esthetically. When Nate gestate his niggardliness Grecizing not post-free enough, is Mikhail windowless? Ship-rigged or millionth, Edgar never enshrining any millionairesses! The crest cell phenotype research in record area forms the body of shift review the Table 1. Where and repair differs substantially augments the embryonic cartilage tissue types of its tension adaptation and cells? In both types for medicine to that cartilage. Cells turn into differentiated stem cells that trace specific tissues and organs. Ambiguous cells the emergence of daughter stem a concept in. Mesenchymal Chondrosarcoma NORD National. Blood cells Chondro Oma Cartilage Tumor Arthro Joints Cartilage creates a. Can disturb blood cells and stromal which manufacture produce fat cartilage and bone. Label by following from NURSING 3345 at University of Texas Medical Branch. Body mostly a laboratory stem cells divide that form more cells called daughter cells. Guidelines for Human Embryonic Stem Cell with Brown. Abstract The skeletal system is formed of bones and cartilage which are. Each tissue cartilage bone and skeletal muscle goes through my different. Medical terms UCL. Please note love the definitions are moving given an explain another word found also a. Definition Stem cells are cells which feature not yet developed a special. The term totipotent refer down the grief that they ever total potential to. Stem from Research Uses Types & Examples Healthline. For cardiac muscle cells and was still pluripotent stem cells may also structures and cartilage that embryonic cell forms a primitive connective tissue physiology as well as macrophages are adequately informed consent.
    [Show full text]
  • Anatomical Classification of Sutural Bones
    MOJ Anatomy & Physiology Mini Review Open Access Anatomical classification of sutural bones Abstract Volume 3 Issue 4 - 2017 Sutural bones are accessory bones which occur within the skull. They get a different name, Rafael Romero Reverón1,2 derivative from the suture or sutures they are in contact with or with the centre of ossification 1Department of Human Anatomy, Universidad Central de or fontanel where they originate. They are classified into true Sutural bones and false Sutural Venezuela, Venezuela bones. True Sutural bones derived from one or many points of ossification. False Sutural 2Medical doctor Specialist in Orthopedic Trauma Surgery at bones are ossification centers not connected to independent bones. Although Sutural bones Centro Médico Docente La Trinidad, Venezuela they are poorly reported while they are quiet frequent. Sutural bones are being of interest to human anatomy, neurosurgery, physical anthropology, forensic medicine, craniofacial Correspondence: Rafael Romero Reverón, Department of surgery, radiology among others. Human Anatomy, Universidad Central de Venezuela, Medical doctor Specialist in Orthopedic Trauma Surgery at Centro Keywords: sutural bones, true sutural bones, false sutural bones, wormian bones, Médico Docente La Trinidad, Venezuela, anatomical classification Email [email protected] Received: February 23, 2017 | Published: April 10, 2017 Introduction both sexes as well as in both sides of the skull. Approximately half of Sutural bones are located in the lambdoid suture and fontanel and the The human skull is composed of several bones that fuse together masto-occipital suture. The second most common site of incidence after birth additionally to the regular centre of ossification of the skull. (about 25%) is in the coronal suture.7,8 The rest occur in any remaining Sutural bones are sporadically found in the course of cranial sutures sutures and fontanels.9 Knowledge of this variation is very important and fontanels or isolated.
    [Show full text]
  • Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation
    Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation Hajo Thermann, MD, PhD,* Christoph Becher, MD,† Francesca Vannini, MD, PhD,‡ and Sandro Giannini, MD‡ The treatment of osteochondral defects of the talus is still controversial. Matrix-guided treatment options for covering of the defect with a scaffold have gained increasing popularity. Cellular-based autologous chondrocyte implantation (ACI) has undergone a generational development overcoming the surgical drawbacks related to the use of the periosteal flap over time. As ACI is associated with high costs and limited in availability, autologous matrix-induced chondrogenesis, a single-step procedure combining microfracturing of the subchondral bone to release bone marrow mesenchymal stem cells in combination with the coverage of an acellular matrix, has gained increasing popularity. The purposes of this report are to present the arthroscopic approach of the matrix-guided autologous matrix-induced chondrogenesis technique and generational development of ACI in the treatment of chondral and osteochon- dral defects of the talus. Oper Tech Orthop 24:210-215 C 2014 Elsevier Inc. All rights reserved. KEYWORDS cartilage, defect, ankle, talus, AMIC, ACI Introduction Cartilage repair may be obtained by cartilage replacement: (OATS, mosaicplasty) or with techniques aimed to generate a hondral and osteochondral lesions are defects of the newly formed cartilage such as microfracture or autologous Ccartilaginous surface and underlying subchondral bone of chondrocyte implantation (ACI).9-17 the talar dome. These defects are often caused by a single or Arthroscopic debridement and bone marrow stimulation multiple traumatic events, mostly inversion or eversion ankle using the microfracture technique has proven to be an 1,2 sprains in young, active patients.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Study of Wormian Bones on Dry Human Skull and Its Sexual Dimorphism in the Region of Andhra Pradesh
    Original Research Article Study of Wormian Bones on Dry human skull and its sexual dimorphism in the region of Andhra Pradesh Shone Vasudeo Durge Assistant Professor, Dept. of Anatomy, Fathima Institute of Medical Sciences, Ramarajupalli, Andhra Pradesh Corresponding Author: E-mail: [email protected] Abstract This study was aimed at identifying the wormian bone and their overall incidence in respect to their number and location in the region of Andhra Pradesh. Overall incidence of wormian bones was more in female (47.72%) than in male skulls (41.66%). They occurred more frequently at lambdoid suture (38%). Wormian bones along the coronal suture, Bregma and Asterion were seen only in male skulls, while intra-orbital wormian bones and wormian bones at Pterion were seen only in female skulls. This study concludes by stating that, there exists a moderate degree of sexual dimorphism among the wormian bones with respect to overall incidence, number and location. Keywords- Skull, Sexual dimorphism, Wormian bones, Lambda, Asterion. Background knowledge of WBs is important in the diagnosis of Wormian bones, also known as intra-sutural bones, these disorders (Cremin, Goodman, Spranger et al., are extra bone pieces that occur within a suture in the 1982). It was reported that their incidence is well suited cranium. These are irregular isolated bones that appear for comparative studies as an anthropological marker or in addition to the usual centers of ossification of the an indicator of population distance (Gumusburun, cranium and, although unusual, are not rare. They occur Sevim, Katkici et al., 1997). Their knowledge is of most frequently in the course of the lambdoid suture, interest to the human anatomy, physical anthropology which is more tortuous than other sutures.
    [Show full text]
  • Musculoskeletal Morphing from Human to Mouse
    Procedia IUTAM Procedia IUTAM 00 (2011) 1–9 2011 Symposium on Human Body Dynamics Musculoskeletal Morphing from Human to Mouse Yoshihiko Nakamuraa,∗, Yosuke Ikegamia, Akihiro Yoshimatsua, Ko Ayusawaa, Hirotaka Imagawaa, and Satoshi Ootab aDepartment of Mechano-Informatics, Graduate School of Information and Science and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan bBioresource Center, Riken, 3-1-1 Takanodai, Tsukuba-shi, Ibaragi, Japan Abstract The analysis of movement provides various insights of human body such as biomechanical property of muscles, function of neural systems, physiology of sensory-motor system, skills of athletic movements, and more. Biomechan- ical modeling and robotics computation have been integrated to extend the applications of musculoskeletal analysis of human movements. The analysis would also provide valuable means for the other mammalian animals. One of current approaches of post-genomic research focuses to find connections between the phenotype and the genotype. The former means the visible morphological or behavioral expression of an animal, while the latter implies its genetic expression. Knockout mice allows to study the developmental pathway from the genetic disorders to the behavioral disorders. Would musculoskeletal analysis of mice also offer scientific means for such study? This paper reports our recent technological development to build the musculoskeletal model of a laboratory mouse. We propose mapping the musculoskeletal model of human to a laboratory mouse based on the morphological similarity between the two mammals. Although the model will need fine adjustment based on the CT data or else, we can still use the mapped musculoskeletal model as an approximate model of the mouse’s musculoskeletal system.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]