The Atmospheric Oxidation of Ethyl Formate and Ethyl Acetate Over a Range of Temperatures and Oxygen Partial Pressures John J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Common Names for Selected Aromatic Groups
More Nomenclature: Common Names for Selected Aromatic Groups Phenyl group = or Ph = C6H5 = Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. Benzyl = Bn = It has a -CH2- (methylene) group attached to the benzene ring. This group can be used to name particular compounds, such as the one shown below. This compound has chlorine attached to a benzyl group, therefore it is called benzyl chloride. Benzoyl = Bz = . This is different from benzyl group (there is an extra “o” in the name). It has a carbonyl attached to the benzene ring instead of a methylene group. For example, is named benzoyl chloride. Therefore, it is sometimes helpful to recognize a common structure in order to name a compound. Example: Nomenclature: 3-phenylpentane Example: This is Amaize. It is used to enhance the yield of corn production. The systematic name for this compound is 2,4-dinitro-6-(1-methylpropyl)phenol. Polynuclear Aromatic Compounds Aromatic rings can fuse together to form polynuclear aromatic compounds. Example: It is two benzene rings fused together, and it is aromatic. The electrons are delocalized in both rings (think about all of its resonance form). Example: This compound is also aromatic, including the ring in the middle. All carbons are sp2 hybridized and the electron density is shared across all 5 rings. Example: DDT is an insecticide and helped to wipe out malaria in many parts of the world. Consequently, the person who discovered it (Muller) won the Nobel Prize in 1942. The systematic name for this compound is 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane. -
United States Patent [19] [11] 15 Re. 30,811 Dykstra Et A1
United States Patent [19] [11] 15 Re. 30,811 Dykstra et a1. [45] Reissued Dec. 1, 1981 [54] SUBSTITUTED PIPERIDINES 2,780,577 2/1957 Phillips et a]. .................. .. 424/267 THERAPEUTIC PROCESS AND 3,192,213 1/1965 Krapcho . .. 260/253 COMPOSITIONS 3,789,072 1/1974 Bernstein ...... .. 260/557 D 3,931,195 1/1976 Dykstra et a1. .............. .. 260/293.58 [75] Inventors: Stanley J. Dykstra; Joseph L. OTHER PUBLICATIONS Minielli, both of Evansville, Ind. 73 A. - ._ Mead J hnson 81 C a Lawson, J. Pharm. Ex p . Thera p ., 160, pp . 21-31 (1968). [ 1 ‘Slgnee Evansv?le in mm’ ‘W’ Krapcho et al., J. Med. Chem, 6, p. 219 (1963). ' Krapcho et al., J. Med. Chem, 7, pp. 376-377 (1964). [2!] Appl- NW 98.008 Krapcho et 31., .1. Med. Chem, 9, pp. 809-812 (1966). [22] Filed. No“ 28, 1979 Krapcho et al., J. Med. Chem, 12, pp. 164-166 (1969). Phillips, J. Am. Chem. Soc., 72, pp. 1850-1852 (1950). Related US. Patent Documents Primary Examiner—Stanley J. Friedman Reissue of. Attorney, Agent, or Firm-Robert H. Uloth; Robert E. [64] Patent NO.I 4,064,254 Camha" Issued: Dec. 20, 1977 [57] ABSTRACT F531:A 1. N 0 .: 0cL734,583 21 1976 The compounds are of the heterocycltc, class of 2 v _ ’ phenethylpiperidines having an amido substituent in the U-5- APPl1cat1°I151 ortho position of the phenethyl moiety. Substituents in 160] Dlvisio" 0151?’ NO- 620-207’ Ocl- 3» 19751 Pa" N°~ the ortho position include formamido, benzamido, cin 4‘00Oé143' wh‘ch '5 agd‘wls‘gn 025:", No- 384'34l' Jul" namamido, 2-thiophenecarboxamido, alkanesul 31' 1. -
The Separation of Three Azeotropes by Extractive Distillation by An-I Yeh A
The separation of three azeotropes by extractive distillation by An-I Yeh A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Chemical Engineering Montana State University © Copyright by An-I Yeh (1983) Abstract: Several different kinds of extractive distillation agents were investigated to affect the separation of three binary liquid mixtures, isopropyl ether - acetone, methyl acetate - methanol, and isopropyl ether - methyl ethyl ketone. Because of the small size of the extractive distillation column, relative volatilities were assumed constant and the Fenske equation was used to calculate the relative volatilities and the number of minimum theoretical plates. Dimethyl sulfoxide was found to be a good extractive distillation agent. Extractive distillation when employing a proper agent not only negated the azeotropes of the above mixtures, but also improved the efficiency of separation. This process could reverse the relative volatility of isopropyl ether and acetone. This reversion was also found in the system of methyl acetate and methanol when nitrobenzene was the agent. However, normal distillation curves were obtained for the system of isopropyl ether and methyl ethyl ketone undergoing extractive distillation. In the system of methyl acetate and methanol, the relative volatility decreased as the agents' carbon number increased when glycols were used as the agents. In addition, the oxygen number and the locations of hydroxyl groups in the glycols used were believed to affect the values of relative volatility. An appreciable amount of agent must be maintained in the column to affect separation. When dimethyl sulfoxide was an agent for the three systems studied, the relative volatility increased as the addition rate increased. -
Trimethylacetic Formic Anhydride Precipitation from Ethanol and Diethyl Ether, M.P
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/16408 Please be advised that this information was generated on 2021-09-24 and may be subject to change. 460 Edward J. Vlietsira et al. / Trimethylacetic formic anhydride precipitation from ethanol and diethyl ether, m.p. 240°C (dec.); Acknowledgements [a]5 5 —140° (c 1.0, water). MS: M* 700. We thank Mr. P. Kranenburg for valuable technical as N-(6,14-endo-Etheno-7,8-dihydromorphine-7ai-carbonyl)-L- sistance and Messrs. J. A. de Groot, L. J. M. Helvensteijn -phenylalanyl-L-leucinol (14) and E. F. Lameijer for carrying out preliminary experi The hydrochloride of 12 (1.63 g, 2.4 mmol) was converted into the ments. We are grateful to the Management of Diosynth base and dissolved in 30 ml of anhydrous 2-propanol. To this B. V., Apeldoorn, The Netherlands, for gifts of chemicals. solution, 1.5 g (15 mmol) of anhydrous calcium chloride and We thank the U.S.A. Committee on Problems of Drug 1.14 g (30 mmol) of sodium tetrahydroborate were added. The Dependence and Dr. A. E. Jacobson, Biological Coordi conversion was complete (TLC) after 6 days at 35°C. Water nator, for the results of the pharmacological studies. We (50 ml) was then added and the mixture acidified with 2 N hydro gen chloride to pH 2-3. Extraction with a mixture of chloroform are indebted to Dr. -
Aldrich Vapor
Aldrich Vapor Library Listing – 6,611 spectra This library is an ideal tool for investigator using FT-IR to analyze gas phase materials. It contains gas phase spectra collected by Aldrich using a GC-IR interface to ensure chromatographically pure samples. The Aldrich FT-IR Vapor Phase Library contains 6,611 gas phase FT-IR spectra collected by Aldrich Chemical Company using a GC interface. The library includes compound name, molecular formula, CAS (Chemical Abstract Service) registry number, Aldrich catalog number, and page number in the Aldrich Library of FT-IR Spectra, Edition 1, Volume 3, Vapor-Phase. Aldrich Vapor Index Compound Name Index Compound Name 6417 ((1- 3495 (1,2-Dibromoethyl)benzene; Styrene Ethoxycyclopropyl)oxy)trimethylsilane dibromide 2081 (+)-3-(Heptafluorobutyryl)camphor 3494 (1-Bromoethyl)benzene; 1-Phenylethyl 2080 (+)-3-(Trifluoroacetyl)camphor bromide 262 (+)-Camphene; 2,2-Dimethyl-3- 6410 (1-Hydroxyallyl)trimethylsilane methylenebicyclo[2.2.1]heptane 6605 (1-Methyl-2,4-cyclopentadien-1- 2828 (+)-Diisopropyl L-tartrate yl)manganese tricarbonyl 947 (+)-Isomenthol; [1S-(1a,2b,5b)]-2- 6250 (1-Propynyl)benzene; 1-Phenylpropyne Isopropyl-5-methylcyclohexano 2079 (1R)-(+)-3-Bromocamphor, endo- 1230 (+)-Limonene oxide, cis + trans; (+)-1,2- 2077 (1R)-(+)-Camphor; (1R)-(+)-1,7,7- Epoxy-4-isopropenyl-1- Trimethylbicyclo[2.2.1]heptan- 317 (+)-Longifolene; (1S)-8-Methylene- 976 (1R)-(+)-Fenchyl alcohol, endo- 3,3,7-trimethyltricyclo[5.4.0 2074 (1R)-(+)-Nopinone; (1R)-(+)-6,6- 949 (+)-Menthol; [1S-(1a,2b,5a)]-(+)-2- Dimethylbicyclo[3.1.1]heptan-2- -
Pdf 462.69 K
Journal of Oil, Gas and Petrochemical Technology Vol. 5, No. 1 , pp. 63 - 75 6 3 The Investigation of Purity Improvement for the Production of Methyl Propionate in Different Types of Batch Distillation Systems Dhia Y. Aqar * 1 , Hassan H. Al Alak 2 , N. Rahmanian 3 , I.M. Mujtaba 3 1 Ministry of Oil, South Refineries Company, Basra, Iraq 2 Department of Materials Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq 3 Faculty of Engineering and Informatics, University of Bradford, Bradford, UK ARTICLE INFO ABSTRACT Received: January 06, 2018 Methyl propionate, also known as methyl propanoate, Accepted: September 08, 2018 is a clear colourless liquid with a characteristic odour (fruity smel l and taste). In this study , the formation of methyl propionate through the esterification o Keywords : propionic acid and methanol was inves tigated in the Methyl propionate reactive distillation system using a conventional (CBD), CBD single feed (SF - SBD), and double feed semi - batch SF - SBD distillatio n (DF - SBD) columns for the first time . The Double feed semi - batch distillation performances measure o f these distillation systems (DF - SBD) were evaluated in terms of min imum batch time for a given separation task. The optimization results clearly * Corresponding author: show ed that the DF - SBD system is a more attractive E - mail: : [email protected] operation in terms of reaction conversion, and maximum achievable purity as compared to the SF SBD, and CBD processes. 64 Dhia Y. Aqar et al. 1. Introduction Methyl propionate is a very important component which has useful applications in a variety of areas in the chemical industry such as solvents for cellulose nitrate, lacquers, plasticizers, chemical intermediates, fragrances, flavors, a raw material in organic synthesis for the production of varnishes, paints, and other chemical compound s such as methyl methacrylate [1] . -
Derivatives of Carboxylic Acid
Derivatives of Carboxylic Acid acid chloride carboxylate nitrile amide acid anhydride ester Nomenclature of Acid Halides IUPAC: alkanoic acid → alkanoyl halide Common: alkanic acid → alkanyl halide I: 3-aminopropanoyl chloride I: 4-nitropentanoyl chloride c: b-aminopropionyl chloride c: g-nitrovaleryl chloride I: hexanedioyl chloride c: adipoyl chloride Rings: (IUPAC only): ringcarbonyl halide I: benzenecarbonyl bromide I: 3-cylcopentenecarbonyl chloride c: benzoyl bromide Nomenclature of Acid Anhydrides Acid anhydrides are prepared by dehydrating carboxylic acids acetic anhydride ethanoic acid ethanoic anhydride I: benzenecarboxylic anhydride I: butanedioic acid I: butanedioic anhydride c: benzoic andhydride c: succinic acid c: succinic anhydride Some unsymmetrical anhydrides I: ethanoic methanoic I: benzoic methanoic anhydride anhydride I: cis-butenedioic c: benzoic formic anhydride anhydride c: acetic formic anhydride Nomenclature of Esters Esters occur when carboxylic acids react with alcohols I: phenyl methanoate I: t-butyl benzenecarboxylate I: methyl ethanoate c: phenyl formate c: methyl acetate c: t-butyl benzoate I: isobutyl I: cyclobutyl 2- I: dimethyl ethanedioate cyclobutanecarboxylate methylpropanoate c: cyclobutyl a- c: dimethyl oxalate c: none methylpropionate Cyclic Esters Reaction of -OH and -COOH on same molecule produces a cyclic ester, lactone. To name, add word lactone to the IUPAC acid name or replace the -ic acid of common name with -olactone. 4-hydroxy-2-methylpentanoic acid lactone -methyl- -valerolactone Amides Product of the reaction of a carboxylic acid and ammonia or an amine. Not basic because the lone pair on nitrogen is delocalized by resonance. Classes of Amides 1 amide has one C-N bond (two N-H). 2 amide or N-substituted amide has two C-N bonds (one N-H). -
Methyl Formate
SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 5.0 Revision Date 09/17/2012 Print Date 03/13/2014 1. PRODUCT AND COMPANY IDENTIFICATION Product name : Methyl formate Product Number : 291056 Brand : Sigma-Aldrich Supplier : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +1 800-325-5832 Fax : +1 800-325-5052 Emergency Phone # (For : (314) 776-6555 both supplier and manufacturer) Preparation Information : Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Flammable liquid, Target Organ Effect, Harmful by ingestion., Irritant Target Organs Eyes, Kidney GHS Classification Flammable liquids (Category 1) Acute toxicity, Oral (Category 4) Acute toxicity, Inhalation (Category 4) Eye irritation (Category 2A) Specific target organ toxicity - single exposure (Category 3) GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H224 Extremely flammable liquid and vapour. H302 + H332 Harmful if swallowed or if inhaled H319 Causes serious eye irritation. H335 May cause respiratory irritation. Precautionary statement(s) P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking. P261 Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. HMIS Classification Health hazard: 2 Sigma-Aldrich - 291056 Page 1 of 7 Chronic Health Hazard: * Flammability: 4 Physical hazards: 0 NFPA Rating Health hazard: 2 Fire: 4 Reactivity Hazard: 0 Potential Health Effects Inhalation May be harmful if inhaled. Causes respiratory tract irritation. Skin Harmful if absorbed through skin. -
Organic Chemistry Nomenclature Guide
Chemistry 222 Organic Chemistry Nomenclature Guide Many molecules in organic chemistry can be named using alkyl groups. MEMORIZE THEM! Common Alkyl (R) Groups Number of Carbons Formula Name 1 -CH3 methyl 2 -CH2CH3 ethyl 3 -CH2CH2CH3 propyl 4 -CH2CH2CH2CH3 butyl 5 -CH2CH2CH2CH2CH3 pentyl 6 -CH2(CH2)4CH3 hexyl 7 -CH2(CH2)5CH3 heptyl 8 -CH2(CH2)6CH3 octyl 9 -CH2(CH2)7CH3 nonyl Alkyl groups are generically referred to as R-groups, where R could be a methyl group, ethyl group, octyl group, etc. Organic compounds are often lumped into families or classes of compounds. The classes we will study this term include the following: R H R O H R O R R X Alcohols Ethers Alkanes Cycloalkanes Alkyl Halides or haloalkanes O O C C C C R C R C R H Ketones Aldehydes Alkynes Alkenes Aromatics H O O O All of these families are detailed in the R N R C R C R C pages that follow. H O H O R NH2 Amides Amines Carboxylic Acids Esters Page IV-20-1 / Organic Chemistry Nomenclature Guide Alkanes Elemental Formula: CnH2n+2 H Nomenclature Guidelines: -yl on alkyl group, +ane to ending Notes: An alkane is an alkyl group plus a hydrogen, often referenced as R-H. H C H Alkanes contain only carbon and hydrogen atoms in long chains with no rings. Each 3 H carbon atom is sp hybridized. Alkanes make great fuels but are generally unreactive. methane, CH4 Example: CH4 - methane - is a methyl group plus a hydrogen (CH3-H) Example: C2H6 - ethane - is a ethyl group plus a hydrogen (CH3CH2-H) Cycloalkanes H Elemental Formula: CnH2n H Nomenclature Guidelines: cyclo+ -yl on alkyl group, +ane to ending C H Notes: Cycloalkanes are alkanes which form an internal ring within the H C C molecule. -
Opinion on the SCCNFP on Methyl Acetate
SCCNFP/0694/03, final OPINION OF THE SCIENTIFIC COMMITTEE ON COSMETIC PRODUCTS AND NON-FOOD PRODUCTS INTENDED FOR CONSUMERS CONCERNING METHYL ACETATE adopted by the SCCNFP during the 24th plenary meeting of 24-25 June 2003 SCCNFP/0694/03, final Evaluation and opinion on : methyl acetate _____________________________________________________________________________________________ 1. Terms of Reference 1.1 Context of the question The Danish EPA has received a request from a poison information department in a hospital regarding the regulation of methyl acetate in cosmetics. A child had played with a nail polish remover containing 50 w/w % methyl acetate and there was suspicion that it had ingested some of the product. Methyl acetate is very quickly hydrolysed to acetic acid and methanol both whether inhaled or ingested. It is also well known that humans are more sensitive to methanol poisoning than rodents. In order to evaluate the acute toxicity of methyl acetate in humans, it was found rea- sonable to consider the acute toxicity of methanol as reported by clinical cases of poisoning. According to the IPCS report on methanol (Environmental Health Criteria 196, 1997), the lowest lethal dose in humans was considered to be 0.3-1.0 g/kg bw. Assuming a bodyweight of 10 kg for a child, the lowest lethal dose would be 3 g (or 0.09 mol) methanol, arising from the metabolism of 0.09 mol or 6.9 g methyl acetate. At a concentration of 50 w/w % methyl acetate, the lethal dose for humans might be 14 g of nail polish remover. The Danish EPA found it not unlikely that children could risk methanol poisoning if nail polish removers are not properly stored/contained. -
United States
Patented Jan. 6, 1931 1,787,483 UNITED STATES PATENT OFFICE BURRITT SAMUEL LACY, OF RED BANK, NEWJERSEY, AssIGNOR, BY MEsNE AssIGN MENTS, TO THE ROESSLER & BASSLACHER CEEMICAL COMPANY, OF NEW YORK, N. Y., A. CORPORATION OF DELAWARE PROCESS OR BE PRODUCTION OF FOR AMIDE NoDrawing. Application filed November 17, 1925. Serial No. 89,708. This invention relates to the formation of the reverse not only of this reaction but also formamide from ammonia and carbon mon of the analogous reaction with the methyl oxide. While this reaction is not unknown, compound is catalyzed by sodium ethylate the literature is full of records of unsuccess resp. sodium methylate, thus:- 50 5 highful attempts pressures and and work expensive involving equipment. the use Asof C. CO+CHOH=HCOOCH. an example of these unsuccessful attempts However, in carrying out reaction C and that of Meyer & Orthner, Ber. 54B 1705 the analogous reaction between ethyl alco (1921) at 125 atmospheres with clay as a cat hol and carbon monoxide, not only did Staeh 10 alyst is most conclusive. The result has been ler use enormous pressures, but the time con a complete lack of commercial development. sumed by the operation made it very imprac Aside from the attempts to make form tical for commercial use. Thus Staehler used amide by the direct reaction between carbon a pressure of 300 atmospheres in reacting monoxide and ammonia, there have been de with ethyl alcohol to form ethyl formate, 15 scribed in the literature reactions by which and one of 160 atmospheres in reacting with 60 it might be considered possible to obtain methyl alcohol to form methyl formate; formamide indirectly from carbon monox while there was required a reaction period of ide and ammonia as the ultimate raw ma 14 days at room temperature to produce a terials, but the conditions under which these 45% of theory conversion of ethyl alcohol to 20 reactions occurred were such as to discour ethyl formate, and one of 8 days (partly at 65 age employing them for the commercial pro 100-120° C. -
UC Irvine UC Irvine Electronic Theses and Dissertations
UC Irvine UC Irvine Electronic Theses and Dissertations Title Steps Toward CO2 Reduction to Methanol via Electrochemical Cascade Catalysis Permalink https://escholarship.org/uc/item/4wx6g1vm Author Mercer, Ian Patrick Publication Date 2020 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Steps Toward CO2 Reduction to Methanol via Electrochemical Cascade Catalysis THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Chemistry by Ian Patrick Mercer Dissertation Committee: Professor Jenny Y. Yang, Chair Professor William J. Evans Professor Andy S. Borovik 2020 © 2020 Ian Patrick Mercer ii Table of Contents Acknowledgements iv Abstract v Chapter 1: Methyl Formate and Formaldehyde Reduction by Metal Hydrides 1 Chapter 2: Synthesis of Group 8 Metal Complexes of LDMA for the Study of Outer Sphere Interactions 25 Conclusion 33 Experimental 34 References 37 iii Acknowledgements I would like to express my sincere appreciation to my committee, especially my chair, Professor Jenny Y. Yang. Her commitment to science, mentoring, and ‘doing the right thing’ will forever inspire me. Financial support was provided by the University of California, Irvine and US Department of Energy, Office of Science, Office of Basic Energy Sciences Awards DE-SC0012150 and DE- 0000243266. iv Abstract of the Thesis Steps Toward CO2 Reduction to Methanol via Electrochemical Cascade Catalysis by Ian Patrick Mercer Master of Science in Chemistry University of California, Irvine, 2020 Professor Jenny Y. Yang, Chair Research on two independent projects is presented: (1) Homogeneous cascade catalysis has been used for the hydrogenation of CO2 to methanol as it allows for rational tuning of catalyst reactivity and lower reaction temperatures compared to heterogeneous catalysis.