Cirsium Palustre)

Total Page:16

File Type:pdf, Size:1020Kb

Cirsium Palustre) Detection and Control Measures for the Invasive Marsh Thistle (Cirsium palustre) Eamonn Hinchey and Donna Vogler SUNY College at Oneonta November 19, 2011 European Marsh Thistle Cirsium palustre • Endemic to British Isles • Invaded European continent • From Canada to Upper Peninsula Michigan in 1980’s • Monocarpic biennial – Flowers only once then dies Other common members of Cirsium Cirsium vulgare Cirsium arvense Monocarpic biennial Perennial Why Do We Care? Shade tolerant Can impact any disturbed area including: “Like Purple Loosestrife, with spines” Tony Reznick. • Wetlands •Pastures • Road Sides • Power Lines Original Goals • Map and identify the leading edge of current C. palustre populations in NYS. – Remove small easily accessible fringe populations on site. • Select multiple high-density populations to test eradication methods. • Implement early detection rapid response measures facilitated by citizen science. Previously reported in 1994 in Madison Co Persists in Madison Co. but not at original USGS site Discovered in Otsego Co. in 2005 in a Ducks Unlimited constructed wetland on the Greenwoods Conservancy iMapInvasives.org iMapInvasives.org iMapInvasives.org Future Mapping goals • Continue to assess population extent (Dispersal Rate) • Soil map overlays • Contact landowners and follow-up with mailings (Employing NRCS help) Removal of 28 plants along a hillside seep in Chenango Co. What is the optimum cutting protocol? • 4 treatments: – June cut (A) – June + August cut (B) – August cut (C) – Control (D) • Assessed ability to re-bolt – June Aug – 2011 2012 Eamonn measures plant height before treatment. • Rosette Study to test Cut plants dried to determine above-ground biomass. bienniality After cutting we bagged them • SUNY Oneonta Biological Field Station interns helped collect and weigh plants throughout the summer. Some populations bigger and taller than others. Marsh Thistle = 2.1m Me = 1.9m Some had more flowers than others Average June Height vs. Average August Height 1.6 1.4 1.2 1 0.8 Avg June Height Avg August Height 0.6 Height (m) 0.4 0.2 0 Bullfrog Goldfinch Redwing Blackbird Beaver Pond Kraham Location June Height as a Percentage of Final 100 90 80 70 60 50 40 30 20 10 0 Bullfrog Goldfinch Redwing Blackbird Beaver Pond Kraham Average of all five = 87% Caterpillar damage • Genetics undergraduates studied the CO1 gene • Apamea devastator, a glassy cutworm in the Noctuidae family. Potential for Biocontrol… Percent of Population with Frass 60 50 40 30 Percent 20 10 0 Bullfrog Goldfinch Redwing Blackbird Beaver Pond Kraham Location Average Height of Plants with Frass vs. Without Frass 1.4 1.2 1 0.8 With Frass 0.6 Without Frass 0.4 Height (m) 0.2 0 Bullfrog Goldfinch Redwing Beaver Pond Blackbird Location Average Mass of Plants With Frass vs. Without Frass 20 18 16 14 12 With Frass 10 Without Frass 8 Mass (g) 6 4 2 0 Bullfrog Goldfinch Redwing Beaver Pond Blackbird Location One day on the way to Bear Swamp Conservancy… Confused by what looks like a C. palustre x arvense hybrid population in Madison Co. After some investigation…. • We found multiple studies investigating the hybridization potential of Cirsium. • Hybrids are so common in Europe because the many different species have overlapping flower periods and overlapping habitat. So does this mean that we now have enough invasive thistles for hybridization? What are the implications? Determining hybrid potential Canada thistle or Bull Thistle Experiment A: Pollinator exclusion survey to try and create hybrids Experiment B: Genetic study to determine hybridization using molecular markers Experiment C: Morphological analysis followed by PCA to determine intermediacy Possible hybrid Next year • Interns at BFS will continue to control peripheral populations (EDRR) • Determine Results of different cutting protocols • Demographic study continues. – Age class distribution. – Determine if facultative biennial. • Analysis of potential hybrids • Continue to analyze Apamea’s potential as biocontrol. Pursue the “Off with their Heads” campaign employing landowner mailings and citizen science Benefits of Early Detection Rapid Response • Minimal funding required. Undergraduate/Graduate students, Small county/state level agencies , Concerned Citizens. • Strong landowner approval • Potential to monitor or even control other invasive plants along the way (iMap) Thank You.
Recommended publications
  • Thistles of Colorado
    Thistles of Colorado About This Guide Identification and Management Guide Many individuals, organizations and agencies from throughout the state (acknowledgements on inside back cover) contributed ideas, content, photos, plant descriptions, management information and printing support toward the completion of this guide. Mountain thistle (Cirsium scopulorum) growing above timberline Casey Cisneros, Tim D’Amato and the Larimer County Department of Natural Resources Weed District collected, compiled and edited information, content and photos for this guide. Produced by the We welcome your comments, corrections, suggestions, and high Larimer County quality photos. If you would like to contribute to future editions, please contact the Larimer County Weed District at 970-498- Weed District 5769 or email [email protected] or [email protected]. Front cover photo of Cirsium eatonii var. hesperium by Janis Huggins Partners in Land Stewardship 2nd Edition 1 2 Table of Contents Introduction 4 Introduction Native Thistles (Pages 6-20) Barneyby’s Thistle (Cirsium barnebyi) 6 Cainville Thistle (Cirsium clacareum) 6 Native thistles are dispersed broadly Eaton’s Thistle (Cirsium eatonii) 8 across many Colorado ecosystems. Individual species occupy niches from Elk or Meadow Thistle (Cirsium scariosum) 8 3,500 feet to above timberline. These Flodman’s Thistle (Cirsium flodmanii) 10 plants are valuable to pollinators, seed Fringed or Fish Lake Thistle (Cirsium 10 feeders, browsing wildlife and to the centaureae or C. clavatum var. beauty and diversity of our native plant americanum) communities. Some non-native species Mountain Thistle (Cirsium scopulorum) 12 have become an invasive threat to New Mexico Thistle (Cirsium 12 agriculture and natural areas. For this reason, native and non-native thistles neomexicanum) alike are often pulled, mowed, clipped or Ousterhout’s or Aspen Thistle (Cirsium 14 sprayed indiscriminately.
    [Show full text]
  • Italian Thistle (Carduus Pycnocephalus)
    Thistles: Identification and Management Rebecca Ozeran 1 May 2018 Common thistles in the San Joaquin Valley Carduus Centaurea Cirsium Silybum Onopordum Italian thistle Yellow starthistle Bull thistle (Blessed) milkthistle Scotch thistle Tocalote Canada thistle (Malta starthistle) All of these species are found at least one of Fresno, Kern, Kings, Madera, or Tulare Counties Identification • Many species start as a basal rosette in fall • Mature plants can have dense & bushy or tall & stemmy appearance • Purple/pink or yellow-flowered Identification • Why does thistle species matter? • Varying levels of risk to animals • Varying competition with forage • Varying susceptibility to control options Identification – 1. Italian thistle • Carduus pycnocephalus • narrow, spiky flower heads • winged, spiny stems branching above the base • found in Fresno, Kern, Madera, Tulare Identification – 2. Centaurea thistles • YELLOW STARTHISTLE (C. solstitialis) • long, yellow/white spines on phyllaries • can get a bushy structure • found in Fresno, Kern, Madera, Tulare • TOCALOTE (MALTA STARTHISTLE, C. melitensis) • stouter flower heads and shorter, redder spines on phyllaries • found in all 5 counties Identification – 3. Cirsium thistles • Canada thistle (C. arvense) • smooth stems, non-spiny flowerheads • flowers Jun-Oct • found in Fresno, Kern, Tulare • Bull thistle (C. vulgare) • large spiky looking flowerheads • lots of branching, dense plant • flowers Jun-Oct • found in all 5 counties Identification – 4. Blessed milk thistle • Silybum marianum • Distinct,
    [Show full text]
  • Milk Thistle
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Thistle Identification
    Oklahoma Cooperative Extension Service PSS-2776 Thistle Identification January 2021 Laura Goodman Extension Rangeland Ecology Specialist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Tom Royer extension.okstate.edu Extension Entomologist Alex Rocateli can often develop. The current Thistle Law includes three of Forage Systems Extension Specialist the five species. However, all introduced thistles should be considered invasive. Oklahoma’s Noxious Weed Law, first enacted in 1994 in four counties in northeastern Oklahoma (Code 35:30-36-13) Thistles Listed in the Noxious Weed Law was amended in 1995, 1998 and 1999. The current law de- Canada thistle (Cirsium arvense) is an introduced peren- clares musk, scotch and Canada thistles to be noxious weeds nial thistle widely distributed in Nebraska and other northern and public nuisances in all counties of the state. states. At present, it does not appear to be a major threat in There are about a dozen purple-flowered spiny thistle Oklahoma. Several plants were collected in the panhandle species that occur in Oklahoma. Oklahoma’s Noxious Weed counties in the 1950s and several more in Bryan County in Law can raise concern among landowners if they do not the 1970s, but currently, no infestations are known to exist in know which thistles on their land they are required to control. the state. In a 1998 survey of noxious weeds in Meade County The purpose of this publication is to describe the introduced Kansas, north of Beaver County, Oklahoma, reported a small thistles, selected common native thistles and provide infor- infestation of Canada thistle.
    [Show full text]
  • Sterol Addition During Pollen Collection by Bees
    Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies? Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez To cite this version: Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez. Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies?. Apidologie, 2020, 51 (5), pp.826-843. 10.1007/s13592-020-00764-3. hal-02784696 HAL Id: hal-02784696 https://hal.archives-ouvertes.fr/hal-02784696 Submitted on 3 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2020) 51:826–843 Original article * INRAE, DIB and Springer-Verlag France SAS, part of Springer Nature, 2020 DOI: 10.1007/s13592-020-00764-3 Sterol addition during pollen collection by bees: another possible strategy to balance nutrient deficiencies? 1,2 1 3 1 Maryse VANDERPLANCK , Pierre-Laurent ZERCK , Georges LOGNAY , Denis MICHEZ 1Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium 2CNRS, UMR 8198 - Evo-Eco-Paleo, Univ. Lille, F-59000, Lille, France 3Analytical Chemistry, Agro Bio Chem Department, Gembloux Agro-Bio Tech University of Liège, 2 Passage des Déportés, 5030, Gembloux, Belgium Received 10 July 2019 – Revised2March2020– Accepted 30 March 2020 Abstract – Sterols are essential nutrients for bees which are thought to obtain them exclusively from pollen.
    [Show full text]
  • Cirsium Arvense (L.) Scop
    NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Cirsium arvense (L.) Scop. (C. setosum, C. incanum, Carduus arvensis, Serratula arvensis & all varieties of C. arvense) USDA Plants Code: CIAR4 Common names: Creeping thistle, Californian thistle, Canada thistle, field thistle Native distribution: Eurasia Date assessed: April 28, 2009 Assessors: Gerry Moore Reviewers: LIISMA SRC Date Approved: May 13, 2009 Form version date: 3 March 2009 New York Invasiveness Rank: High (Relative Maximum Score 70.00-80.00) Distribution and Invasiveness Rank ( Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Widespread High 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 40 ) 20 2 Biological characteristic and dispersal ability 25 ( 25 ) 21 3 Ecological amplitude and distribution 25 ( 25 ) 21 4 Difficulty of control 10 ( 10 ) 9 Outcome score 100 ( 100 )b 71 a † Relative maximum score 71.00 § New York Invasiveness Rank High (Relative Maximum Score 70.00-80.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places.
    [Show full text]
  • Ecology and Management of Canada Thistle [Cirsium Arvense (L.) Scop
    United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Invasive Species Technical Note No. MT-5 September 2006 Ecology and Management of Canada thistle [Cirsium arvense (L.) Scop.] by Jim Jacobs, NRCS Invasive Species Specialist, Bozeman, MT Joanna Sciegienka, Graduate Research Assistant, Montana State University, Bozeman, MT Fabian Menalled, Extension Cropland Weeds Specialist, Montana State University, Bozeman, MT Abstract A member of the Aster family, Canada thistle is a vigorous, highly competitive species. Occurring in a large range of habitats including croplands, ditch banks and riparian areas, gardens and pastures, this category 1 noxious perennial weed is particularly hard to control because of its deep, creeping, reproductive root system forming colonies. In general, infestations start on disturbed ground, with plants being able to colonize 10 to 12 feet per year. Canada thistle can grow in a variety of habitats, but it is best adapted to deep, well-aerated and productive soils. It prefers sunny and warm areas with 15 to 30 or more inches of precipitation or irrigation per year, but it can grow on dryer cropland and pasture sites with 12 to 13 inches of precipitation per year. When temperatures exceed 85º F for extended periods of time, it stops growing. Canada thistle threatens productivity in both crop and non-croplands. In cropland, Canada thistle causes extensive yield losses through competition for light, nutrients, and moisture. It also increases harvesting problems due to seed and forage contamination. In Montana, it is estimated that two shoots per square yard can reduce wheat yield by 15 percent and 25 shoots per square yard can reduce wheat yield by 60 percent.
    [Show full text]
  • Taxonomic Studies of Cirsium (Asteraceae) in Japan XXIII. a New Species from Hachiôji, Tokyo Prefecture, Central Japan
    Bull. Natl. Mus. Nat. Sci., Ser. B, 38(1), pp. 1–10, February 22, 2012 Taxonomic Studies of Cirsium (Asteraceae) in Japan XXIII. A New Species from Hachiôji, Tokyo Prefecture, Central Japan Yuichi Kadota Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan E-mail: [email protected] (Received 14 November 2011; accepted 28 December 2011) Abstract A new species, Cirsium tamastoloniferum Kadota is described from a small marshy land in Hachiôji, Tokyo Pref., central Honshu, Japan, as a member of subsect. Reflexae (the Cirsium kagamontanum group), sect. Onotrophe of the genus Cirsium. Cirsium tamastoloniferum is similar to C. tenuipedunculatum Kadota described from Yamanashi Pref., Chubu District, central Honshu, in having hardly glutinous involucres and paniculate inflorescence with small, numerous heads, however, the former is distinguished from the latter by gynodioecy, subterranean stolons, ovate to broadly ovate cauline leaves with ascending lobes and inner and involucral phyllaries with short- recurved apices in hermaphrodite plants or with short-ascending apices in female plants. Cirsium tamastoloniferum is a dweller of marshy lands exceptionally in the Cirsium kagamontanum group and occurs in Tokyo and Kanagawa Prefs., Kanto District, central Honshu, Japan. Kew words : Cirsium tamastoloniferum, Cirsium tenuipedunculatum, Japan, new species, wet- land. This is part of a revisional work on Japanese Hideshige Uchino, Nagaike Park Nature Center, Cirsium (Asteraceae) (Kadota, 1989–2011; Hachiôji. This thistle seemed to be included in Kadota and Nagase, 1988). In this paper a new the Cirsium kagamontanum group because it had species of subsect. Reflexae (Kitam.) Kadota of paniculate compound inflorescences with small, sect.
    [Show full text]
  • Coastal Invasive Plant Management Strategy ______
    Coastal Invasive Plant Management Strategy Prepared by Brian Wikeem, P.Ag. and Sandra Wikeem Solterra Resources Inc . June 30, 2010 ACKNOWLEDGEMENTS The BC Agricultural Research and Development Corporation and the BC Ministry of Transportation and Infrastructure are gratefully acknowledged for financial support for this project. In-kind support was also provided by the BC Ministry of Agriculture and Lands, BC Ministry of Environment, and the BC Ministry of Forests and Range. The members of the Coastal Invasive Plant Committee board of directors including Becky Brown, Glenda Barr, Zak Henderson, Michele Jones, Rob Lawrence, Kate Miller, June Pretzer, Valentin Schaefer, and Ernie Sellentin are thanked for their contributions to this report. Lynn Atwood, past Program Coordinator, is thanked for providing unpublished reports that furnished background information. Jeff Hallworth and Melissa Noel are especially acknowledged for collecting material, reviewing drafts of the report, and overall support. Coastal Invasive Plant Management Strategy ___________________________________________________________________________ EXECUTIVE SUMMARY Invasive plants have been a problem in Coastal British Columbia (BC) since earliest European settlement but little has been done to control these species until recently. The Coastal Invasive Plant Committee (CIPC) was formed in 2005 to service Vancouver Island and surrounding coastal communities. The committee consists of public and private sector groups, First Nations, industry, utilities, and conservation groups that share a common interest in promoting coordination and cooperation to manage invasive plants in the region. The CIPC area covers approximately 60,000 km 2 including Vancouver Island, mainland coast and Gulf Islands; and consists of eight regional districts, 34 municipalities, 15 Gulf Islands, and 57 First Nations.
    [Show full text]
  • FSC Nettlecombe Court Nature Review 2014
    FSC Nettlecombe Court Nature Review 2014 Compiled by: Sam Tuddenham Nettlecombe Court- Nature Review 2014 Introduction The purpose of this report is to review and share the number of different species that are present in the grounds of Nettlecombe Court. A significant proportion of this data has been generated by FSC course tutors and course attendees studying at Nettlecombe court on a variety of courses. Some of the data has been collected for the primary purpose of species monitoring for nationwide conservation charities e.g. The Big Butterfly Count and Bee Walk Survey Scheme. Other species have just been noted by members or staff when out in the grounds. These records are as accurate as possible however we accept that there may be species missing. Nettlecombe Court Nettlecombe Court Field Centre of the Field Studies Council sits just inside the eastern border of Exmoor national park, North-West of Taunton (Map 1). The house grid reference is 51o07’52.23”N, 32o05’8.65”W and this report only documents wildlife within the grounds of the house (see Map 2). The estate is around 60 hectares and there is a large variety of environment types: Dry semi- improved neutral grassland, bare ground, woodland (large, small, man –made and natural), bracken dominated hills, ornamental shrubs (lawns/ domestic gardens) and streams. These will all provide different habitats, enabling the rich diversity of wildlife found at Nettlecombe Court. Nettlecombe court has possessed a meteorological station for a number of years and so a summary of “MET” data has been included in this report.
    [Show full text]
  • Jefferson County Weed Control Newsletter
    WEED NEWSLETTER FOR OCTOBER 2013 WEED BOARD CONTACT INFORMATION: 360-379-5610 EXT 205 [email protected] http://www.co.jefferson.wa.us/WeedBoard WEED BOARD MEETING: The next meeting will be Thursday, November 21st, from 5 to 7 pm at the Tri-Area Community Center—10 West Valley Road in Chimacum. All Weed Board meetings are open to the public. Call if you need directions. WEED BOARD MEMBERS NEEDED: We need two new Board Members, to represent District 2—Cape George and Discovery Bay, and District 4—West End. If you are interested and are involved in farming then please contact us. FALL WEED CONTROL This time of year, when rains have loosened up the soil, but before it gets too wet and heavy, is an excellent time for pulling or digging weeds, thereby reducing problems in the spring. Many biennial weeds, especially our old enemies, poison hemlock and wild chervil, are already visible. They are in their rosette stage, building up roots and waiting to send up those long stalks and flowers next spring and summer. Pull them now, while they are small and vulnerable!! . Roadside Wild Chervil Young Poison Hemlock Other weeds that can be manually controlled this time of year include bull thistle, teasel, spotted knapweed and tansy ragwort. They are all biennials or short-lived perennials so if plants are pulled or dug now they will not re-grow. However, seeds still in the soil may germinate over the winter. Bull thistle Teasel—spreading rapidly Spotted knapweed (note the Tansy ragwort in east Jefferson—dig distinctive blue-green color) rosettes now to help slow its spread Herb Robert can be pulled any time of year—it’s an annual with little root mass so it comes out quite easily, but seeds can germinate year-round, so look out for seedlings and pull them whenever you can.
    [Show full text]
  • BULL THISTLE (Cirsium Vulgare) Description
    BULL THISTLE (Cirsium vulgare) Description: Bull thistle, also referred to as spear thistle, Fuller’s thistle and lance-leafed thistle, is a member of the Asteraceae or sunflower family. Bull thistle can grow 2 to 5 feet tall with numerous spreading branches. Stems of the plant are sparsely hairy, irregularly and spiny winged, green or brownish in color with purple veins. Leaf margins are double dentate (toothed and toothed again), each ending in a lone stiff spine. The leaf surface of the plant has a distinct center vein with slight pubescence on the topside and more underneath. Flower heads are usually solitary on the end of each stem, gumdrop-shaped, one to two inches tall with long, stiff, yellow tipped spines. Flowers are generally bright purple but sometimes white in color. Seeds are light-colored with dark brown to black longitudinal stripes. Seeds are generally 1/16 inch long, oblong, somewhat flattened or curved, with a long, white, hairy plume. Plant Images: Bull thistle Rosette Leaf Gumdrop-shaped flower Distribution and Habitat: This thistle is generally found in the northern and eastern counties in North Dakota and is the least serious of the introduced thistles in the s tate. The plant thrives in moist soils and is less common on sand and pure clay soils. Typical habitats include disturbed or degraded land, such as roadsides, fence rows, overgrazed pastures and rangelands, eroded gullies, ditch banks and vacant lots. Life History/Ecology: Bull thistle is a biennial that reproduces and spreads solely by seed production. Germination of the plant occurs in the spring or during the fall in response to adequate soil moisture.
    [Show full text]