DGG Tagung Potsdam 2017

Total Page:16

File Type:pdf, Size:1020Kb

DGG Tagung Potsdam 2017 Deutschen Geophysikalischen Gesellschaft 77. Jahrestagung der 27.–30. März 2017 in Potsdam DGG Tagung Potsdam 2017 ISSN 0344-7251 Deutsche Nationalbibliothek Bibliographische Daten unter http://d-nb.info/010965963/about/html Redaktion: Helmholtzzentrum Potsdam, Deutsches GeoForschungsZentrum, Telegrafenberg 1, 14473 Potsdam Druck: bud - brandenburgische universitätsdruckerei und verlagsgesellschaft potsdam mbh Herzlich Willkommen zur 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft in Potsdam! 2016 und 2017 feiern die Universität Potsdam und das GFZ, die beiden Aus- richter der Tagung, ihr 25-jähriges Bestehen – ein guter Anlass, unsere Jahres- tagung in Potsdam abzuhalten. Auf der DGG-Tagung 2017 werden wir, einer modernen Tradition folgend, Schwerpunktthemen und prominente Vortragende haben, welche die geo- physikalischen Forschungsaktivitäten am Standort Potsdam widerspiegeln. Im Rahmen der Eröffnungsveranstaltung wird ein „Company Slam“ stattfinden, bei dem die auf der Tagung vertretenen Firmen die Möglichkeit haben, ihre Ak- tivitäten kurz vorzustellen. Die Firmenausstellung wird anschließend eröffnet. Wir hoffen, viele jüngere Kolleginnen und Kollegen auf der DGG-Tagung be- grüßen zu können, insbesondere, da wir Aktivitäten wie „Meet & Greet“ für Nachwuchswissenschaftlerinnen fortführen und erstmalig ein „Lunchseminar Karriereperspektiven“ zu unserem Programm hinzugefügt haben. Das Programm wird weiterhin durch einen öffentlichen Abendvortrag und das Kolloquium „Angewandte Geophysik“ ergänzt. Wir hoffen, Sie zahlreich in Potsdam auf der DGG-Tagung 2017 begrüßen zu dürfen! Michael Weber Charlotte Krawczyk Jens Tronicke Anke Lerch und das Tagungsteam 3 Inhaltsverzeichnis Tagungsorganisation Veranstalter/ Ausrichter/ Tagungsbüro ....................................................... 9 Organisationsteam ........................................................................................... 11 Mitgliederversammlung DGG Einladung/ Tagesordnung ............................................................................. 13 Sponsoren und Firmenaussteller ................................................................................. 15 Allgemeine Hinweise Tagungsgebühren und Anmeldefristen .................................................... 17 Hinweise zu Vorträgen und Postern ........................................................... 17 Hörsäle und Sitzungsräume .......................................................................... 19 Internetzugang ................................................................................................... 19 Übersicht Tagungsprogramm ......................................................................................... 19 Wissenschaftliches Tagungsprogramm Schwerpunktthemen ....................................................................................... 22 Plenarvorträge .................................................................................................... 22 DGG-Kolloquium ................................................................................................ 25 Rahmenprogramm Begrüßungsabend ............................................................................................ 25 Eröffnungsveranstaltung ................................................................................ 25 Firmenausstellung ............................................................................................. 25 Studentischer Abend ....................................................................................... 27 Meet & Greet ....................................................................................................... 27 Gesellschaftsabend ........................................................................................... 27 Führung Telegrafenberg ................................................................................. 27 Lunchseminar Karriereperspektiven .......................................................... 27 Öffentlicher Abendvortrag ............................................................................. 29 Lunch´n´Learn ..................................................................................................... 29 Abschlussveranstaltung mit Preisverleihung .......................................... 29 EAGE-DGG Workshop .......................................................................................................... 29 Weitere Sitzungstermine ................................................................................................... 29 Sessions (thematische Übersicht) ................................................................................. 31 5 Lösen Sie Ihre Herausforderungen in der Produktentwicklung durch COMSOL Multiphysics® mit Leichtigkeit. Nutzen Sie die leistungsfähigen mathematischen Modellierungswerkzeuge und Löser-Technologien für die Erstellung genauer und verständlicher Simulationen. Entwickeln Sie aus diesen TESTEN UND benutzerdefi nierte Apps mit dem Application Builder und stellen OPTIMIEREN SIE Sie Ihren Kollegen und Kunden weltweit die Möglichkeiten der IHRE PRODUKTE Simulation auf Ihrer mit COMSOL Multiphysics® COMSOL Server™ -Installation bereit. Die Entwicklung der numerischen Simulation physikbasierter Systeme hat Profi tieren Sie schon heute den nächsten Meilenstein erreicht. von den Möglichkeiten der Multiphysik-Simulation comsol.de/products © Copyright 2017 COMSOL. Übersicht Programm, Vorträge und Poster Sonntag/Montag, 26./27. März 2017 ....................................................................... 34 Dienstag, 28. März 2017 ............................................................................................... 49 Mittwoch, 29. März 2017 .............................................................................................. 61 Donnerstag, 30. März 2017 ......................................................................................... 83 Abstracts S1 Instrumentelle und methodische Entwicklungen in der Geophysik . 92 S2 Naturgefahren durch Erdbeben, Vulkane und Erdrutsche .................... 93 S3 Aktuelle Entwicklungen in der oberflächennahen Geophysik ............ 94 S4 Globale Beobachtungen und Modellierung ............................................... 95 AG Archäogeophysik .................................................................................................. 96 BL Bohrlochgeophysik .............................................................................................. 97 DL Didaktik/ Lehre .................................................................................................... 101 EM Elektromagnetik/ Georadar ............................................................................ 102 EP Extraterrestrische Physik ................................................................................. 107 GD Geodynamik ......................................................................................................... 112 GE Geoelektrik/IP ...................................................................................................... 119 GF Geodäsie/Fernerkundung ............................................................................... 130 GO Geophysik in der Öffentlichkeit .................................................................... 132 GR Gravimetrie ........................................................................................................... 133 GS Geschichte der Geophysik .............................................................................. 134 GT Geothermie/Radiometrie ................................................................................ 135 MA Magnetik/Erdmagnetismus ............................................................................ 138 MG Marine Geophysik .............................................................................................. 140 S1 Instrumentelle und methodische Entwicklungen in der Geophysik 148 S2 Naturgefahren durch Erdbeben, Vulkane und Erdrutsche .................. 158 S3 Aktuelle Entwicklungen in der oberflächennahen Geophysik .......... 175 S4 Globale Beobachtungen und Modellierung ............................................ 188 SM Seismik ................................................................................................................... 197 SO Seismologie .......................................................................................................... 207 UI Umwelt- und Ingenieurgeophysik ............................................................... 237 A1 Poster ...................................................................................................................... 242 B1 Poster ...................................................................................................................... 312 7 Sie suchen die sichersten C-14 Datierungen? - Vertrauen Sie auf unsere Expertise! Detaillierte technische Beratung Hervorragender Kundenservice Ergebnisbericht in 3 - 14 Tagen ISO/IEC 17025:2005 akkreditiert Tagungsorganisation der 77. Jahrestagung der DGG http://dgg2017.dgg-tagung.de Veranstalter Deutsche Geophysikalische Gesellschaft e.V. Geschäftsstelle: Deutsches GeoForschungsZentrum – GFZ Telegrafenberg 14473 Potsdam Telefon: +49 (0)331 288 1206 E-Mail: [email protected] Internet: http://www.dgg-online.de Ausrichter Universität Potsdam Am Neuen Palais 10 14469 Potsdam www.geo.uni-potsdam.de Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ) Telegrafenberg 14473 Potsdam
Recommended publications
  • Gemeinsame Stellungnahme
    10.10.2018 Gemeinsame Stellungnahme Der agl-Konzeptvorschlag zur Rohstoffsicherung in der Vulkaneifel - Fakten, Kritik, Wertung - Zusammenfassung und Wertung Von der Vielzahl der Lagerstätten mit Lava und Basalt des Landkreises Vulkaneifel hat das Landesamt für Geologie (LGB) 46 Lagerstätten als Rohstoffpotenzialflächen in einer Karte dargestellt. Dabei wurde, anders als bisher, keine Nutzungsempfehlung (Vorrang- bzw. Vor- behaltsgebiet) ausgesprochen. Diese Vorgehensweise ist zu begrüßen, da sie zu einer freieren und sachgerechteren Entscheidung durch die Entscheidungsträger beiträgt. Von den 46 erfass- ten Potenzialflächen werden 13 überhaupt nicht für den Rohstoffabbau in Anspruch genom- men. An weiteren 14 wird der Abbau nur noch in dem bereits genehmigten Umfang fortge- führt. Dadurch bleibt eine Vielzahl unverzichtbarer Landschaftselemente erhalten, die durch die früheren Vorschläge für den neuen Raumordnungsplan (ROPneu) akut gefährdet waren. Zu begrüßen ist die Ausweisung eines Gebietes, in dem über den genehmigten Umfang hinaus ein weiterer Gesteinsabbau ausgeschlossen wird. In der vorgeschlagenen Abgrenzung ge- währleistet das Gebiet jedoch nicht den Erhalt des charakteristischen Aussehens der hiesigen Vulkanlandschaft. Es ist daher entsprechend dieser Zielsetzung zu arrondieren. Die 19 für einen Abbau bzw. künftigen Abbau vorgeschlagenen Flächen (Vorranggebiete für die Rohstoffgewinnung bzw. Vorranggebiete für die vorsorgende Rohstoffsicherung und Vorbehaltsgebiete) sind zumeist auf landschaftlich bereits stark vorgeschädigte
    [Show full text]
  • Hymenoptera: Aculeata) Der Eifel 1115-1154 Esser Und Cölln: Bedeutung Von Tuff- Und Lavagruben Für Stechimmen 1115
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fauna und Flora in Rheinland-Pfalz Jahr/Year: 2000-2002 Band/Volume: 9 Autor(en)/Author(s): Esser Jürgen, Cölln Klaus Artikel/Article: Bedeutung von Tuff- und Lavagruben für die Stechimmenfauna (Hymenoptera: Aculeata) der Eifel 1115-1154 Esser und Cölln: Bedeutung von Tuff- und Lavagruben für Stechimmen 1115 Fauna Flora Rheinland-Pfalz 9: Heft 4 (2002): S.l 115-1154. Landau Bedeutung von Tuff- und Lavagruben für die Stechimmenfauna (Hymenoptera: Aculeata) der Eifel* von Jürgen Esser und Klaus Cölln (mit Zeichnungen von Jochen Jacobi) Inhaltsübersicht Kurzfassung Abstract Resume 1. Einleitung 2. Untersuchungsgebiet 3. Material und Methoden 4. Ergebnisse 4.1 Stechimmen und assoziierte Tierarten der Tuffsteilwand 4.2 Stechimmenfauna der Gruben insgesamt 4.3 Bemerkenswerte Nachweise 5. Diskussion 5.1 Die Seidenbiene im Zentrum der Steilwandbiozönose 5.2 Bedeutung von Tuff- und Lavagruben für den Arten- und Biotopschutz 6. Literatur Kurzfassung Die vorliegende Arbeit beschäftigt sich mit den Hymenoptera Aculeata der Tuff- und Lavagruben des Westeifeier Vulkanfeldes. Die vegetationslosen Steilwände dieser Ab­ grabungen sind relativ artenarm. Dabei ist unter den Primärbesiedlem die Seidenbiene Colletes daviesanus in vielen Fällen die eudominante Spezies. Dagegen treten die we­ nigen anderen selbstgrabenden Arten, die alle zur Familie der Sphecidae gehören, von der Individuenzahl her deutlich zurück. Zu den Folgenutzern der geschaffenen Bauten gehören eine Art der Pompilidae und sechs Spezies der Apidae. Außerdem wurden w Baustein der BMU-Aktion „Leben braucht Vielfalt“. braucht o * Herrn Prof. Dr. Albrecht EGELHAAF zum 80. Geburtstag gewidmet. 1116 Fauna Flora Rheinland-Pfalz 9: Heft 4, 2002, S.l 115-1154 noch Arachnida, Collembola, Dermaptera, Diptera und Hymenoptera als Kommensalen, Prädatoren oder Parasitoide registriert, so dass sich das Nahrungsnetz in der Steilwand in erster Näherung beschreiben lässt.
    [Show full text]
  • Carbonation and Decarbonation Reactions: Implications for Planetary Habitability K
    American Mineralogist, Volume 104, pages 1369–1380, 2019 Carbonation and decarbonation reactions: Implications for planetary habitability k E.M. STEWART1,*,†, JAY J. AGUE1, JOHN M. FERRY2, CRAIG M. SCHIFFRIES3, REN-BIAO TAO4, TERRY T. ISSON1,5, AND NOAH J. PLANAVSKY1 1Department of Geology & Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109, U.S.A. 2Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, U.S.A. 3Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 4School of Earth and Space Sciences, MOE Key Laboratory of Orogenic Belt and Crustal Evolution, Peking University, Beijing 100871, China 5School of Science, University of Waikato, 101-121 Durham Street, Tauranga 3110, New Zealand ABSTRACT The geologic carbon cycle plays a fundamental role in controlling Earth’s climate and habitability. For billions of years, stabilizing feedbacks inherent in the cycle have maintained a surface environ- ment that could sustain life. Carbonation/decarbonation reactions are the primary mechanisms for transferring carbon between the solid Earth and the ocean–atmosphere system. These processes can be broadly represented by the reaction: CaSiO3 (wollastonite) + CO2 (gas) ↔ CaCO3 (calcite) + SiO2 (quartz). This class of reactions is therefore critical to Earth’s past and future habitability. Here, we summarize their signifcance as part of the Deep Carbon Obsevatory’s “Earth in Five Reactions” project. In the forward direction, carbonation reactions like the one above describe silicate weathering and carbonate formation on Earth’s surface. Recent work aims to resolve the balance between silicate weathering in terrestrial and marine settings both in the modern Earth system and through Earth’s history.
    [Show full text]
  • Earth Catastrophes and Their Impact on the Carbon Cycle
    Earth Catastrophes and their Impact on the Carbon Cycle Celina A. Suarez1, Marie Edmonds2, and Adrian P. Jones3 1811-5209/19/0015-0301$2.50 DOI: 10.2138/gselements.15.5.301 arbon is one of the most important elements on Earth. It is the basis search for catastrophic causes of of life, it is stored and mobilized throughout the Earth from core to perturbations in the carbon cycle ranges from the tipping points Ccrust and it is the basis of the energy sources that are vital to human reached during slow accretion civilization. This issue will focus on the origins of carbon on Earth, the roles of tectonic plates into megacon- played by large-scale catastrophic carbon perturbations in mass extinctions, tinents, to shifts in atmospheric or ocean circulation, to instanta- the movement and distribution of carbon in large igneous provinces, and neous megaenergy events deliv- the role carbon plays in icehouse–greenhouse climate transitions in deep ered by Earth’s inevitable orbital time. Present-day carbon fluxes on Earth are changing rapidly, and it is of space encounters with bolides, utmost importance that scientists understand Earth’s carbon cycle to secure to large-scale volcanism. These major events are often associated a sustainable future. with biological diversity crises and KEYWORDS: impacts, Earth’s origin, extinction, climate change, volcanism, mass extinctions. Deciphering the large igneous province complex and often faint signals of distant catastrophes requires a INTRODUCTION multidisciplinary effort and the most innovative analytical technology. Great strides have been made in quantifying the diverse world of carbon in Earth.
    [Show full text]
  • Geopark Progress Reports
    EUROPEAN GEOPARKS NETWORK Geopark Progress Reports March 2012- September 2012 Updated: 2012-09-16 INDEX OF GEOPARKS Page Adamello Brenta – ITALY 3 Apuan Alps - ITALY 5 Arouca - PORTUGAL 7 Basque Coast – SPAIN 9 Bauges – FRANCE 11 Beigua - ITALY 13 Bergstrasse-Odenwald - GERMANY 15 Bohemian Paradise – CZECH REPUBLIC 17 Burren and Cliffs of Moher- REPUBLIC OF IRELAND 19 Cabo de Gata – Nijar Natural Park - SPAIN 21 Chelmos Vouraikos – GREECE 23 Copper Coast – IRELAND 24 English Riviera – UK 26 Fforest Fawr – Wales, UK 28 Gea Norvegica – NORWAY 30 GeoMon – Wales, UK 31 Harz Braunschweiger Land Ostfalen – GERMANY 33 Hateg Country Dinosaurs – ROMANIA 35 Katla – ICELAND 37 Madonie Geopark – ITALY 39 Maestrazgo Cultural Park – SPAIN 41 Magma – NORWAY 43 Marble Arch Caves– NORTHERN IRELAND and REP OF IRELAND 45 Muskau Arch – GERMANY and POLAND 47 Naturtejo – PORTUGAL 49 North Pennines AONB – ENGLAND UK 51 Novohrad-Nógrád - HUNGARY and SLOVAKIA 53 Papuk – CROATIA 55 Parco Nazionale del Cilento e Vallo di Diano, Campania – ITALY 57 Park Naturel Régional du Luberon – FRANCE 59 Petrified Forest of Lesvos – GREECE 61 Psiloritis Natural Park – GREECE 63 Rocca di Cerere – ITALY 64 Rokua – FINLAND 66 Shetland – SCOTLAND UK 68 Sierra Norte de Sevilla Natural Park - SPAIN 70 Sierras Subbeticas Natural Park – SPAIN 72 Sobrarbe – SPAIN 74 Steirische Eisenwurzen – AUSTRIA 76 Swabian Alb – GERMANY 78 Terra.Vita Naturpark – GERMANY 80 Vikos Aoos – GREECE 82 Villuercas-Ibores-Jara – SPAIN 84 Vulkaneifel European – GERMANY 86 1 No report from: North West Highlands – SCOTLAND UK; Réserve Géologique de Haute - Provence – FRANCE, Sardenia Geominerario Park – ITALY and Tuskan Mining Geopark - ITALY. 2 Adamello Brenta Nature Park – ITALY Adamello Brenta Nature Park, consistently with its wider and more complex conservation strategy of the natural, historical and cultural heritage, has continued its work to improve the geological heritage conservation and geotouristic and popularization activities.
    [Show full text]
  • Deep Carbon Emissions from Volcanoes Michael R
    Reviews in Mineralogy & Geochemistry Vol. 75 pp. 323-354, 2013 11 Copyright © Mineralogical Society of America Deep Carbon Emissions from Volcanoes Michael R. Burton Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy [email protected] Georgina M. Sawyer Laboratoire Magmas et Volcans, Université Blaise Pascal 5 rue Kessler, 63038 Clermont Ferrand, France and Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy Domenico Granieri Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy INTRODUCTION: VOLCANIC CO2 EMISSIONS IN THE GEOLOGICAL CARBON CYCLE Over long periods of time (~Ma), we may consider the oceans, atmosphere and biosphere as a single exospheric reservoir for CO2. The geological carbon cycle describes the inputs to this exosphere from mantle degassing, metamorphism of subducted carbonates and outputs from weathering of aluminosilicate rocks (Walker et al. 1981). A feedback mechanism relates the weathering rate with the amount of CO2 in the atmosphere via the greenhouse effect (e.g., Wang et al. 1976). An increase in atmospheric CO2 concentrations induces higher temperatures, leading to higher rates of weathering, which draw down atmospheric CO2 concentrations (Ber- ner 1991). Atmospheric CO2 concentrations are therefore stabilized over long timescales by this feedback mechanism (Zeebe and Caldeira 2008). This process may have played a role (Feulner et al. 2012) in stabilizing temperatures on Earth while solar radiation steadily increased due to stellar evolution (Bahcall et al. 2001). In this context the role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth.
    [Show full text]
  • Diamond Formation in the Deep Lower Mantle
    www.nature.com/scientificreports OPEN Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2 Received: 30 August 2016 Fumiya Maeda1, Eiji Ohtani1,2, Seiji Kamada1,3, Tatsuya Sakamaki1, Naohisa Hirao4 & Accepted: 07 December 2016 Yasuo Ohishi4 Published: 13 January 2017 Diamond is an evidence for carbon existing in the deep Earth. Some diamonds are considered to have originated at various depth ranges from the mantle transition zone to the lower mantle. These diamonds are expected to carry significant information about the deep Earth. Here, we determined the phase relations in the MgCO3-SiO2 system up to 152 GPa and 3,100 K using a double sided laser- heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. MgCO3 transforms from magnesite to the high-pressure polymorph of MgCO3, phase II, above 80 GPa. A reaction between MgCO3 phase II and SiO2 (CaCl2-type SiO2 or seifertite) to form diamond and MgSiO3 (bridgmanite or post-perovsktite) was identified in the deep lower mantle conditions. These observations suggested that the reaction of the MgCO3 phase II with SiO2 causes formation of super-deep diamond in cold slabs descending into the deep lower mantle. Carbon is circulated around the surface and interior of the Earth with subducting slabs and volcanic eruptions; subduction carries carbon-bearing rocks to the Earth’s interior and volcanic eruption expels carbon-bearing gas, lavas and rocks from the interior of the Earth1. The flux of subducted carbon within oceanic plates is estimated to be more than 5 Tmol/yr, almost twice as large as the expelled-carbon flux, 2–3 Tmol/yr, through arc magmatism2.
    [Show full text]
  • Wenn Es Unter Den Maaren Brodelt. Das
    Forschung aktuell Wenn es unter den Maaren brodelt Das Eifelvulkanfeld ist noch lebendig ie Vulkane der Eifel sind weltweit bekannt und für DGeowissenschaftler von großer Bedeutung. Seit der Gründung des »Vulkaneifel European Geopark« sind die Vulkane nun auch zu einer Attraktion für Ur- lauber geworden. Besucher aus Deutschland, Belgien und den Niederlanden bewundern in zunehmender Zahl die geologischen Schätze, die lange Zeit nur von der Baustoffi ndustrie genutzt wurden. Die Geowissen- schaften und die Faszination, die von der gewaltigen Kraft der Erde ausgeht, sind nun ein populäres Thema. Von den neuen Geo-Touristen als auch von den An- wohnern der Region kommen viele Fragen: Insbeson- dere wollen sie wissen, ob das Vulkanfeld ausgestorben ist oder sich nur in einer Ruhephase befi ndet. Und falls weitere Ausbrüche möglich wären, folgen eine gan- ze Reihe weiterer Fragen: Wo wird es losgehen? Wie wird eine Eruption aussehen? Wird sie groß oder klein sein? Ist das Katastrophen-Szenario in dem Buch »Die Flucht der Ameisen«/1/ realistisch? Die Eifel lässt sich in zwei kleinere Gebiete aufteilen: die Ost-Eifel rund um den Laacher See und die West- Eifel, die sich von der belgischen Grenze circa 50 Ki- lometer bis fast ins Moselletal im Südosten ausstreckt. Geowissenschaftler haben etwa 100 vulkanische Zent- ren in der Ost-Eifel und 250 Zentren in der West-Eifel identifi ziert./2/ 1 Die letzte vulkanische Aktivität in der Ost-Eifel war vor 12 900 Jahren. Damals gab es eine riesige Eruption, die den Laacher See gebildet hat. In der West-Eifel ist das Ulmener Maar, östlich von Gerol- 1 Die Maare in der Vulkaneifel sehen an der Oberfl äche ruhig aus.
    [Show full text]
  • Planungsgemeinschaft Trier Herrn Leitenden Planer Wernig Herrn
    Struktur- und Genehmigungsdirektion Nord Stresemannstraße 3-5 Postfach 20 03 61 I 56003 Koblenz 56068 Koblenz Telefon 0261 120-0 Planungsgemeinschaft Trier Telefax 0261 120-2200 Herrn Leitenden Planer Wernig [email protected] www.sgdnord.rlp.de Herrn Klemens Weber Deworastraße 8 D-54290 Trier 15.12.2011 Mein Aktenzeichen Ihr Schreiben vom Ansprechpartner(in)/ E-Mail Telefon/Fax Az. 423 Michael Konermann 0261 120-2116 [email protected] 0261 120-882116 Stellungnahme der oberen Naturschutzbehörde zum Konflikt Rohstoffabbau und Na- turschutz in der Vulkaneifel im Zuge der Landschaftsrahmenplanung Anlage I: Landschaftsbildanalyse mit Karte als Anlage Anlage II: Ausarbeitung der Arbeitsgemeinschaft Dauner Naturschutzverbände Sehr geehrter Herr Wernig, sehr geehrter Herr Weber, nach Abschluss der Landschaftsrahmenplanung mit Stand September 2009 legte das Lan- desamt für Geologie und Bergbau eine Rohstoffplanung vor, die zum Zeitpunkt der Erstel- lung des Landschaftsrahmenplans noch nicht bekannt war. Vor diesem Hintergrund und auf- grund der besonderen Konfliktsituation in der Vulkaneifel wurde die obere Naturschutzbe- hörde von der Geschäftsstelle der Planungsgemeinschaft gebeten, den Aspekt Landschafts- bild für diesen Teilraum in Bezug auf die Rohstoffplanung in einer präzisierenden Stellung- nahme im Zuge der Landschaftsrahmenplanung vertieft zu behandeln. Der Entwurf dieser Stellungnahme wurde Ihnen im Juni 2011 zugeleitet und in einer Bespre- chung am 27.10.2011 in unserem Hause vorgestellt. Hiermit erhalten Sie,
    [Show full text]
  • Paleomagnetic Investigation of Quaternary West Eifel Volcanics (Germany): Indication for Increased Volcanic Activity During Geomagnetic Excursion/Event?
    |00000058|| 1 Geophys (1987) 62:5{}-61 Journal of Geophysics Paleomagnetic investigation of Quaternary West Eifel volcanics (Germany): indication for increased volcanic activity during geomagnetic excursion/event? H. Bohne) 1 *, N. Reismann 1 **, G. Jager 1 ***, U. Haverkamp 1 ****, J.F.W. Negendank 2 , and H.-U. Schmincke 3 1 Institut fur Geophysik, Universitiit Munster, CorrensstraBe 24, D-4400 Munster, Federal Republic of Germany 2 Abteilung Geologie, Universitiit Trier, Postfach 3825, D-5500 Trier, Federal Republic of Germany 3 Institut fiir Mineralogie, Ruhr-Universitiit Bochum, Postfach 102148, D-4630 Bochum, Federal Republic of Germany Abstract. Eighty-five sites of West Eifel volcanoes were in­ larity of magnetization and (3) to compare the secular varia­ vestigated paleomagnetically, giving 64 independent virtual tion of this region with that determined in the eastern part geomagnetic poles (VGP). The VGP distribution is strongly of the Eifel. asymmetric: about 30% of the VGPs have latitudes below 60° N and are confined to the longitude sector between 30° E and 120° E. This leads to a mean VGP situated at The West Eifel volcanic field 74.0° N/63.9° E, deviating significantly from the north geo­ graphical pole. The VGP distribution is non-Fisherian, but The Quaternary West Eifel volcanic field (covering about the radial component is rather similar to that observed for 600 km2 ) extends for 50 km NW-SE and comprises about Tertiary to Quaternary Icelandic lavas. Tectonic, petro­ 240 eruptive centres (Biichel and Mertes, 1982; Schmincke, graphic, rock magnetic properties and secular variation do 1982; Mertes, 1983; Schmincke et al., 1983) (Fig.
    [Show full text]
  • Zur Mineralogie Und Geologie Des Koblenzer Raumes Des Hunsrücks Und Der Osteifel
    Der Aufschluß Sonderband 30 (Koblenz) Heidelberg 1980 Zur Mineralogie und Geologie des Koblenzer Raumes des Hunsrücks und der Osteifel Schriftleitung: BolkoCRUSE, Koblenz Herausgegeben von der Vereinigung der Freunde der Mineralogie und Geologie (VFMG) e. V., Heidelberg Druck: PELLENZ-DRUCKEREI - E. Badock - 5472 Plaidt V INHALT VORWORT (Bolko Cruse) VII MEYER, W.: Zur Erdgeschichte des Koblenzer Raumes 1 CRUSE, B.: Neue Haldenfunde von Corkit im Bad Emser Gangzug im Vergleich zu denen der „Grube Schöne Aussicht" bei Dernbach/Ww. 11 CRUSE, B.; KNOP, H.; RONDORF, E.; TERNES, B.: Mineralvorkommen im nördlichen Rheinland-Pfalz (mit 15 Fundortbeschreibungen und 16, teils färb., Mineralfotos) . 19 BEYER, H.: Eine Magnesium-Mineralgenese als Folge primärer biologi­ scher Stoffanlage und sekundärem vulkanischem Erhitzungsprozeß am Arensberg/Eifel 45 LEHNEN. O.: Einführung in die Nomenklatur und die Klassifikation der Effusivgesteine des Laacher Vulkangebietes 57 REBSKE, W.: Allgemein-vulkanische Exkursion mit Einführung in die äußere Form der Vulkane, Ergüsse, Maarbildungen, etc. des ter­ tiären und quartären Vulkanismus 65 KNEIDL, V.: Zur Geologie des Hunsrücks 87 WILL, V.: Haldenfunde im Hunsrückschief er 101 SIMON, W.: Erdgeschichte am Rhein - Historische Anmerkungen .... 109 VII Vorwort Die Grundlage dieses Sonderbandes bildet die Tagungsunterlage der VFMG- Sommertagung 1979 in Koblenz. Die darin enthaltenen Fundortbeschreibungen waren als Exkursionsführer gedacht. Sie stehen auch in diesem Band im Mit­ telpunkt. Umrahmt werden sie von Beiträgen
    [Show full text]
  • Chapter 18. Geoheritage and Geoparks
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Geoheritage, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution's website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From José Brilha, Geoheritage and Geoparks. In: Emmanuel Reynard and José Brilha, editors, Geoheritage. Chennai: Elsevier, 2018, pp. 323-336. ISBN: 978-0-12-809531-7 Copyright © 2018 Elsevier Inc. Elsevier. Author’s personal copy CHAPTER GEOHERITAGE AND GEOPARKS 18 Jose´ Brilha University of Minho, Braga, Portugal 18.1 GEOPARKS: THE DAWN OF AN INNOVATIVE CONCEPT For all geoconservationists, the geopark is the striking concept that in less than 20 years has gained a worldwide recognition and has taken geoheritage outside the limited and small world of geoscientists. The original concept of geopark was developed in Europe in the late 1980s. It refers to a territory with a particular geological heritage and a sustainable territorial development strategy (EGN, 2000). In order to understand the context in which the geopark concept was developed, it is necessary to travel back to the early 1970s, when the world began to be concerned about the protection of natural and cultural assets.
    [Show full text]