Smart Grid Standardization Documentation Map

Total Page:16

File Type:pdf, Size:1020Kb

Smart Grid Standardization Documentation Map D2.1 – SMART GRID STANDARDIZATION DOCUMENTATION MAP The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318782. STandard Analysis supporting D2.1 – smart eneRgy GRID Development SMART GRID STANDARDIZATION DOCUMENTATION MAP 1.0 D2.1 – SMART GRID STANDARDIZATION DOCUMENTATION MAP Project name STARGRID - STandard Analysis EC FP7 – contract supporting smart Support no 318782 eneRgy GRID Development Code of the project WP2 / M8 Date of Publication 2013-07-02 deliverable Nature of the Report Status and version Final draft, v 1.0 publication Inés Gómez (Tecnalia) Authors J. Emilio Rodríguez (Tecnalia) Speranta Stomff (ASRO) Joseba Jimeno (Tecnalia) Christoph Nölle (IWES) Ibon Arechalde (Tecnalia) Acknowledgments Eduardo García (Tecnalia) Eutimio Sánchez (Tecnalia) David Nestle (IWES) Dissemination PU Number of pages 301 Level D2.1 – Smart Grid standardization documentation map TABLE OF CONTENTS Table of Contents ............................................................................................................................................. 3 Glossary ........................................................................................................................................................... 6 1 Executive Summary ..................................................................................................................................... 10 2 Introduction ................................................................................................................................................ 11 2.1 Purpose of work .......................................................................................................................................... 11 2.2 Contributions of partners ............................................................................................................................ 11 2.3 Relations to other activities ........................................................................................................................ 11 2.4 Organisation of the deliverable ................................................................................................................... 11 3 CEN-CENELEC-ETSI ....................................................................................................................................... 13 3.1 Joint Working Group for Smart Grids .......................................................................................................... 13 3.2 Smart Grids Coordination Group (SGCG) .................................................................................................... 15 3.3 Smart Meter Coordination Group (SMCG) .................................................................................................. 21 4 CEN-CENELEC ............................................................................................................................................... 24 4.1 Emobility Coordination Group (eMCG) ....................................................................................................... 24 5 CENELEC ...................................................................................................................................................... 27 5.1 Technical Committee 8X, Working Group 5 ................................................................................................ 27 5.2 Technical Committee 13.............................................................................................................................. 30 6 ETSI ............................................................................................................................................................. 32 6.1 Technical Committee M2M ......................................................................................................................... 32 6.1 oneM2M ...................................................................................................................................................... 33 7 IEC ............................................................................................................................................................... 34 7.1 Standardization Management Board – Strategic Group on Smart Grid ...................................................... 34 7.2 Standardization Management Board – Strategic Group on Electrotechnology for Mobility ...................... 39 7.3 Technical Committee 8 – Ad-hoc group 4 “Smart Grids Requirements” .................................................... 42 7.4 Technical Committee 8 – WG6 “Generic Smart Grid Requirements” ........................................................ 45 7.5 Technical Committee 57 ............................................................................................................................. 49 7.6 Technical Committee 13 ............................................................................................................................. 54 2013-06-28 v1.0 3/301 D2.1 – Smart Grid standardization documentation map 7.7 Technical Committee 69 ............................................................................................................................. 57 7.8 Project Committee 118 ............................................................................................................................... 58 8 DKE (Germany) ............................................................................................................................................ 59 8.1 DKE STD 1911 .............................................................................................................................................. 59 9 ISO/IEC ........................................................................................................................................................ 61 9.1 ISO/IEC Joint Technical Committee 1 Special Working Group on Smart Grid ............................................. 61 10 ITU-T .......................................................................................................................................................... 66 10.1 ITU-T Focus Group on Smart Grid ............................................................................................................. 66 10.2 ITU-T Joint Coordination Activity on Smart Grid and Home Networking .................................................. 71 11 National Institute of Standards and Technology (NIST).............................................................................. 76 11.1 NIST Smart Grid Interoperability Panel ..................................................................................................... 76 11.2 NIST Smart Grid Interoperability Panel 2.0 ............................................................................................... 87 12 American National Standards Institute (ANSI) ........................................................................................... 90 12.1 ANSI/Consumer Electronics Association (CEA) ......................................................................................... 90 13 Institute of Electrical and Electronics Engineers (IEEE) ............................................................................... 90 13.1 IEEE & Smart Grids .................................................................................................................................... 90 14 International Council on Large Electric Systems (CIGRÉ) ............................................................................ 94 14.1 CIGRÉ Study Committee D2 ...................................................................................................................... 95 15 KOREA ....................................................................................................................................................... 98 15.1 Korean Agency for Technology and Standards ......................................................................................... 98 15.2 Korean Smart Grid Association ............................................................................................................... 101 16 JAPAN ...................................................................................................................................................... 103 16.1 Japanese Industrial Standards Committee. Subcommittee on SG International Standardization ........ 103 16.2 Japan Smart Community Alliance ........................................................................................................... 105 17 CHINA ...................................................................................................................................................... 108 17.1 State Grid Corporation of China. Smart Grid Special Working Group .................................................... 108 17.2 National Smart Grid Standardization Promotion Group ......................................................................... 110 Appendix A: Committees Information .......................................................................................................... 113 2013-06-28 v1.0 4/301 D2.1 – Smart Grid standardization documentation map Appendix B: List of Smart Grid-related Standards ........................................................................................ 131 B.1 European and IEC Standards ....................................................................................................................
Recommended publications
  • Opening EC Meeting and Opening Plenary Meeting Minutes
    MINUTES (Unconfirmed) - IEEE 802 LMSC EXECUTIVE COMMITTEE MEETING, revision 2 Monday, July 13, 2009 – 8:00 am. All times Pacific Daylight Time (PDT) San Francisco, CA EC members present: Paul Nikolich - Chair, IEEE 802 LAN / MAN Standards Committee Mat Sherman - Vice Chair, IEEE 802 LAN / MAN Standards Committee Pat Thaler – Vice Chair, IEEE 802 LAN / MAN Standards Committee James Gilb - Recording Secretary, IEEE 802 LAN / MAN Standards Committee Buzz Rigsbee - Executive Secretary, IEEE 802 LAN / MAN Standards Committee John Hawkins - Treasurer, IEEE 802 LAN/MAN Standards Committee Tony Jeffree - Chair, IEEE 802.1 – HILI Working Group David Law - Chair, IEEE 802.3 – CSMA/CD Working Group Bruce Kraemer - Chair, IEEE 802.11 – Wireless LANs Working Group Bob Heile - Chair, IEEE 802.15 – Wireless PAN Working Group Roger Marks - Chair, IEEE 802.16 – Broadband Wireless Access Working Group John Lemon - Chair, IEEE 802.17 – Resilient Packet Ring Working Group Mike Lynch - Chair, IEEE 802.18 – Regulatory TAG Steve Shellhammer - Chair, IEEE 802.19 – Wireless Coexistence TAG Mark Klerer - Chair, IEEE 802.20 – Mobile Broadband Wireless Access Vivek Gupta - Chair, IEEE 802.21 – Media Independent Handover Geoff Thompson - Member Emeritus (non-voting) EC members absent: Carl Stevenson - Chair, IEEE 802.22 – Wireless Regional Area Networks Attending in place of Carl Stevenson Gerald Chouinard – Vice Chair, IEEE 802.22 – Wireless Regional Area Networks Meeting called to order at 8:00 am local time. r01 AGENDA - IEEE 802 LMSC EXECUTIVE COMMITTEE MEETING
    [Show full text]
  • State-Of-The-Art Artificial Intelligence Techniques for Distributed Smart
    electronics Review State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review Syed Saqib Ali and Bong Jun Choi * School of Computer Science and Engineering, Soongsil University, Seoul 06978, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-820-0923 Received: 12 May 2020; Accepted: 10 June 2020; Published: 22 June 2020 Abstract: The power system worldwide is going through a revolutionary transformation due to the integration with various distributed components, including advanced metering infrastructure, communication infrastructure, distributed energy resources, and electric vehicles, to improve the reliability, energy efficiency, management, and security of the future power system. These components are becoming more tightly integrated with IoT. They are expected to generate a vast amount of data to support various applications in the smart grid, such as distributed energy management, generation forecasting, grid health monitoring, fault detection, home energy management, etc. With these new components and information, artificial intelligence techniques can be applied to automate and further improve the performance of the smart grid. In this paper, we provide a comprehensive review of the state-of-the-art artificial intelligence techniques to support various applications in a distributed smart grid. In particular, we discuss how artificial techniques are applied to support the integration of renewable energy resources, the integration of energy storage systems, demand response, management of the grid and home energy, and security. As the smart grid involves various actors, such as energy produces, markets, and consumers, we also discuss how artificial intelligence and market liberalization can potentially help to increase the overall social welfare of the grid.
    [Show full text]
  • Integration Ecosystems Panel (Howard Self)
    Howard Self, ABB , Program Manager Smart Grid, May 10, 2017 GMLC Interoperability Technical Meeting © ABB June 6, 2017 | Slide 1 Utility Network Control Overview Transmission – 1970 - 1995 SCADA‪ Control Center Proprietary‪ Protocols Harris‪ 5000 CDC‪ I & II Conitel‪ 2020/3000 Telegyr‪ 6500/8979 Valmet‪ III & V PG&E‪ 2179 SES‪ 92 © ABB June 6, 2017 | Slide 2 Microprocessor Evolution(Integration Nightmare) 1988-1996, RS232,RS485 – 9600 Baud Relay/IEDs‪ Regulator‪ Controller RTU/Data‪ Concentrator GETAC‪ 2179‪ Incom‪ /Modbus ASCII Incom‪ Meter‪ IED PLC/Data‪ Concentrator SEL‪ ASCII Modbus/DNP‪ © ABB June 6, 2017 | Slide 3 The Birth of DNP3 1992-1994 through today o Open, non-proprietary o SBO (Select Before Operate) o Accurate Time Sync and Time Stamped Data o Quality flags, Internal Indications o Multiple Data Formats o Layer Separation (Link, transport, application) o Quiescent, Report-by-exception, polling o File transfer o UDP/TCP o Secure Authentication V2/V5 © ABB June 6, 2017 | Slide 4 The Need for Speed Inside the substation o Modbus Plus – 1 mb/s (Serial Taken ring) o Modbus TCP/IP – 10/100 mb/s o Profibus – 12mbs o DNP/IP – 10/100mbs o LON o UCA – 10/100 mb/s (Client/Server, Peer-to-peer) o IEC 61850 – 10/100 mb/s (Client/Server, Peer-to- peer, Sample measured Values) © ABB June 6, 2017 | Slide 5 Introduction UCA 2.0/IEC 61850 start-up UCA Project Origin: . Utility Communications Architecture (UCA) - enterprise-wide unified scheme to share all operating and management information . 1994 - EPRI member utilities called for common standard for IEDs in substations .
    [Show full text]
  • Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations
    Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations Report of Working Group P6 of the Power System Communications and Cybersecurity Committee of the Power and Energy Society of IEEE September 12, 2017 1 IEEE PES Power System Communications and Cybersecurity Committee (PSCCC) Working Group P6, Configuring Ethernet Communications Equipment for Substation Protection and Control Applications, has existed during the course of report development as Working Group H12 of the IEEE PES Power System Relaying Committee (PSRC). The WG designation changed as a result of a recent IEEE PES Technical Committee reorganization. The membership of H12 and P6 at time of approval voting is as follows: Eric A. Udren, Chair Benton Vandiver, Vice Chair Jay Anderson Galina Antonova Alex Apostolov Philip Beaumont Robert Beresh Christoph Brunner Fernando Calero Christopher Chelmecki Thomas Dahlin Bill Dickerson Michael Dood Herbert Falk Didier Giarratano Roman Graf Christopher Huntley Anthony Johnson Marc LaCroix Deepak Maragal Aaron Martin Roger E. Ray Veselin Skendzic Charles Sufana John T. Tengdin 2 IEEE PES PSCCC P6 Report, September 2017 Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations Table of Contents 1. Introduction ...................................................................................... 10 2. Ethernet for protection and control .................................................. 10 3. Overview of Ethernet message
    [Show full text]
  • Connecting the Dots: How Inverters Have, Can, and Should Be Used for Ancillary Services
    Connecting the Dots: How inverters have, can, and should be used for ancillary services Donny Zimmanck Principal Engineer Enphase Energy History of Inverter Participation Sparse grid connected systems seen as negligible. Interconnection rules designed to enforce non- participation. UL 1741 P1547 Initiated 1999 2001 2003 2005 2011 2012 2014 2015 2016 2017 UL 1741 Revised Synchronized with IEEE 929 and 519 2 History of Inverter Participation Rapidly falling costs acceleration adoption. Issues begin to be observed on high penetration circuits. IEEE 1547 Approved UL 1741 Underlying jurisdiction P1547 Initiated for Interconnections 1999 2001 2003 2005 2011 2012 2014 2015 2016 2017 UL 1741 Revised Synchronized with IEEE 1547.1 IEEE 929 Published Testing of Interconnection Systems UL 1741 Revised Harmonized with 3 1547.1 History of Inverter Participation Industry responds by developing new interconnection behaviors. The “smart inverter” is born. IEEE 1547A (.1A) IEEE 1547 Approved UL 1741 Amendment to allow Underlying jurisdiction Rule 21 and Rule 14H P1547 Initiated for Interconnections 1999 2001 2003 2005 2011 2012 2014 2015 2016 2017 UL 1741 UL 1741 Revised Supplement A Synchronized with IEEE 1547.1 Rule 21 Settlement Certification for IEEE 929 Published Rule 21 and Rule Testing of 14H Interconnection Systems HECO implements mandatory ride- UL 1741 Revised Harmonized with through 4 1547.1 History of Inverter Participation Communication and interoperability standards to enable coordinated DER participation in grid regulation and control. IEEE
    [Show full text]
  • A Survey of Smart Grid Architectures, Applications, Benefits and Standardization
    A survey of smart grid architectures, applications, benefits and standardization This is the Accepted version of the following publication Nafi, NS, Ahmed, Khandakar, Gregory, MA and Datta, M (2016) A survey of smart grid architectures, applications, benefits and standardization. Journal of Network and Computer Applications, 76. 23 - 36. ISSN 1084-8045 The publisher’s official version can be found at http://www.sciencedirect.com/science/article/pii/S1084804516302314 Note that access to this version may require subscription. Downloaded from VU Research Repository https://vuir.vu.edu.au/32688/ Author’s Accepted Manuscript A Survey of Smart Grid Architectures, Applications, Benefits and Standardization Nazmus S. Nafi, Khandakar Ahmed, Mark A. Gregory, Manoj Datta www.elsevier.com/locate/jnca PII: S1084-8045(16)30231-4 DOI: http://dx.doi.org/10.1016/j.jnca.2016.10.003 Reference: YJNCA1730 To appear in: Journal of Network and Computer Applications Received date: 11 June 2016 Revised date: 22 August 2016 Accepted date: 4 October 2016 Cite this article as: Nazmus S. Nafi, Khandakar Ahmed, Mark A. Gregory and Manoj Datta, A Survey of Smart Grid Architectures, Applications, Benefits and Standardization, Journal of Network and Computer Applications, http://dx.doi.org/10.1016/j.jnca.2016.10.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
    [Show full text]
  • Author Information Only
    Cyber Security Practical considerations for implementing IEC 62351 Frank Hohlbaum, Markus Braendle, Fernando Alvarez ABB [email protected] Switzerland 1. Introduction Two trends are currently changing substation automation systems: IEC 61850 and the need for increased cyber security. IEC 61850 has gained global acceptance by both vendors as well as customers. Cyber security on the other hand has quickly become one of the most dominant topics for control systems in general and electrical utilities in particular. The combination of the two, securing IEC 61850 based communications, has been one of the goals of the recently published technical specification IEC 62351. In the authors‟ view IEC 62351 is overall a good starting point and will be the future standard to help secure IEC 61850 communication. However, there are some shortcomings of the current standard and some challenges that need to be addressed before IEC 62351 can be implemented and gain wide acceptance. This paper will highlight the challenge of addressing secure communication in the substation real-time environment, complying with the IEC 61850 real-time specifications. The major difficulties are to reach the performance defined in IEC 61850 for GOOSE and SV data with today‟s proposed technical specification defined for IEC 62351 part 6. In chapter 2, we will give a short overview about the structure of IEC 61850 as well as the detailed performance requirements for the various data types. Chapter 3 will present an introduction of the IEC 62351 standard including the used methods to secure the IEC 61850 communication. Chapter 4 will then show the major implementation issues of IEC 62351 part 6.
    [Show full text]
  • Preview - Click Here to Buy the Full Publication
    This is a preview - click here to buy the full publication IEC/TR 62351-10 ® Edition 1.0 2012-10 TECHNICAL REPORT colour inside Power systems management and associated information exchange – Data and communications security – Part 10: Security architecture guidelines INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE X ICS 33.200 ISBN 978-2-83220-419-1 Warning! Make sure that you obtained this publication from an authorized distributor. ® Registered trademark of the International Electrotechnical Commission This is a preview - click here to buy the full publication – 2 – TR 62351-10 © IEC:2012(E) CONTENTS FOREWORD ........................................................................................................................... 4 INTRODUCTION ..................................................................................................................... 6 1 Scope ............................................................................................................................... 7 2 Normative references ....................................................................................................... 7 3 Terms, definitions and abbreviations ................................................................................ 7 3.1 Terms and definitions .............................................................................................. 7 3.2 Abbreviations .......................................................................................................... 7 4 Power systems – specifics and related
    [Show full text]
  • IEC 62351 Security Standards for the Power System Information Infrastructure
    IEC TC57 WG15: IEC 62351 Security Standards for the Power System Information Infrastructure Frances Cleveland, WG15 Convenor Xanthus Consulting International Contents 1. OVERVIEW: IEC TC57 WG15 SECURITY FOR POWER SYSTEM COMMUNICATIONS ................... 1 2. DUAL INFRASTRUCTURES: THE POWER SYSTEM AND THE INFORMATION SYSTEM .................. 2 3. WHY CYBERSECURITY? ............................................................................................................ 3 3.1 Legacy Approach: Security by Obscurity .......................................................................... 3 3.2 Smart Grid as Cyber-Physical Systems .............................................................................. 4 4. SECURITY CONCEPTS ............................................................................................................... 5 4.1 Security Threats ............................................................................................................... 5 4.2 Security Purposes ............................................................................................................ 5 4.3 Security Processes ........................................................................................................... 6 4.4 Security Planning ............................................................................................................. 7 4.5 Security Requirements .................................................................................................... 8 4.6 Security Attacks ..............................................................................................................
    [Show full text]
  • Sicherheit Und Datenschutz Im Smart Grid
    Sicherheit und Datenschutz im Smart Grid Bachelor-Thesis im Studiengang Medieninformatik vorgelegt von Kristian Antic Matrikelnummer: 20177 am 8. März 2012 an der Hochschule der Medien Stuttgart Erstprüfer: Prof. Dr. Joachim Charzinski Zweitprüfer: Christoph Lindenmüller Bearbeitungszeitraum: 08. Dezember 2011 bis 8. März 2012 Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich (mit Ausnahme dieser Erklärung) als solches kenntlich gemacht.1 Ort, Datum Unterschrift 1Riekert: Eine Dokumentvorlage für Diplomarbeiten und andere wissenschaftliche Arbeiten (2002), [83], S. 42. Kurzfassung Der vermehrte Einsatz von erneuerbaren Energien, welche nicht ständig verfügbar und nur begrenzt speicherbar sind, erschweren die Steuerung der Stromnetze. Zur Anpassung der Energieerzeugung an den tatsächlichen Bedarf werden Smart Grids („intelligente Stromnetze“) aufgebaut, die eine Steuerung des Energieverbrauchs in Abhängigkeit von der Verfügbarkeit ermöglichen. Die bereits vorhandenen Stromnetzte werden hierzu um Kommunikationsnetze erweitert. Smart Meter („intelligente Stromzähler“) die beim Verbraucher eingesetzt werden, senden über die Kommunikationsnetze Messdaten zyklisch an die jeweiligen Stromnetzbetreiber. In Zukunft soll auch eine Steuerung von Haushaltsgeräten möglich werden. Daraus ergeben sich neue Herausforderungen in Bezug auf Sicherheit und Datenschutz. Die hier vorliegende Arbeit bietet eine kurze Einführung in die Grundlagen zum Thema Smart Grid. Es wird eine Referenzarchitektur definiert und die einzelnen Bestandteile des Smart Grids werden vorgestellt. Eine Auseinandersetzung mit den rechtlichen und regulatorischen Rahmenbedingungen sowie ein Überblick über den Stand der Entwicklungen intelligenter Stromnetze, insbesondere der Verbreitung von Smart Metern, vervollständigt die Grundlagen. Zusätzlich werden wesentliche Aspekte von Sicherheit und Datenschutz angesprochen.
    [Show full text]
  • The Common Information Model CIM Mathias Uslar, Michael Specht, Sebastian Rohjans, Jörn Trefke, and José Manuel Vasquez González
    The Common Information Model CIM Mathias Uslar, Michael Specht, Sebastian Rohjans, Jörn Trefke, and José Manuel Vasquez González The Common Information Model CIM IEC 61968/61970 and 62325 – A Practical Introduction to the CIM ABC Authors Dr.-Ing. Mathias Uslar Dipl.Inf. Jörn Trefke OFFIS - Institut für Informatik OFFIS - Institut für Informatik Escherweg 2 Escherweg 2 26131 Oldenburg 26131 Oldenburg E-mail: uslar@offis.de E-mail: Joern.trefke@offis.de Dipl.-Inf. (FH) Michael Specht Dipl.-Wirt.Inf. José Manuel Vasquez González OFFIS - Institut für Informatik OFFIS - Institut für Informatik Escherweg 2 Escherweg 2 26131 Oldenburg 26131 Oldenburg E-mail: michael.specht@offis.de E-mail: jose.gonzalez@offis.de Dipl.-Inform. Sebastian Rohjans OFFIS - Institut für Informatik Escherweg 2 26131 Oldenburg E-mail: sebastian.rohjans@offis.de ISBN 978-3-642-25214-3 e-ISBN 978-3-642-25215-0 DOI 10.1007/978-3-642-25215-0 Library of Congress Control Number: 2011942873 c 2012 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the mate- rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli- cation of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc.
    [Show full text]
  • Review of Energy Management System Approaches in Microgrids
    energies Review Review of Energy Management System Approaches in Microgrids Amrutha Raju Battula 1 , Sandeep Vuddanti 1 and Surender Reddy Salkuti 2,* 1 Department of Electrical Engineering, National Institute of Technology Andhra Pradesh (NIT-AP), Tadepalligudem, Andhra Pradesh 534101, India; [email protected] (A.R.B.); [email protected] (S.V.) 2 Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Korea * Correspondence: [email protected]; Tel.: +82-10-9674-1985 Abstract: To sustain the complexity of growing demand, the conventional grid (CG) is incorporated with communication technology like advanced metering with sensors, demand response (DR), energy storage systems (ESS), and inclusion of electric vehicles (EV). In order to maintain local area energy balance and reliability, microgrids (MG) are proposed. Microgrids are low or medium voltage distribution systems with a resilient operation, that control the exchange of power between the main grid, locally distributed generators (DGs), and consumers using intelligent energy management techniques. This paper gives a brief introduction to microgrids, their operations, and further, a review of different energy management approaches. In a microgrid control strategy, an energy management system (EMS) is the key component to maintain the balance between energy resources (CG, DG, ESS, and EVs) and loads available while contributing the profit to utility. This article classifies the methodologies used for EMS based on the structure, control, and technique used. The untapped areas which have scope for investigation are also mentioned. Keywords: renewable energy sources; microgrid; energy management system; communication technologies; microgrid standards Citation: Battula, A.R.; Vuddanti, S.; Salkuti, S.R.
    [Show full text]