Marine Meteorology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rare Astronomical Sights and Sounds
Jonathan Powell Rare Astronomical Sights and Sounds The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 Rare Astronomical Sights and Sounds Jonathan Powell Jonathan Powell Ebbw Vale, United Kingdom ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-97700-3 ISBN 978-3-319-97701-0 (eBook) https://doi.org/10.1007/978-3-319-97701-0 Library of Congress Control Number: 2018953700 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
National Weather Service Glossary Page 1 of 254 03/15/08 05:23:27 PM National Weather Service Glossary
National Weather Service Glossary Page 1 of 254 03/15/08 05:23:27 PM National Weather Service Glossary Source:http://www.weather.gov/glossary/ Table of Contents National Weather Service Glossary............................................................................................................2 #.............................................................................................................................................................2 A............................................................................................................................................................3 B..........................................................................................................................................................19 C..........................................................................................................................................................31 D..........................................................................................................................................................51 E...........................................................................................................................................................63 F...........................................................................................................................................................72 G..........................................................................................................................................................86 -
Atmospheric Halos
Atmospheric halos Auteurs : 16-07-2019 Encyclopédie de l'environnement 1/10 Généré le 01/10/2021 In the Earth's atmosphere, light often offers a spectacle that can be appreciated simply by looking at the sky with the naked eye. In a generic way, atmospheric light phenomena are called photometeors, from the Greek words "photo" and "meteora" which mean respectively "light" and "which is in the air" [1]. The rainbow and the glory (read the focuses Spectacular Rainbows and Brocken's Amazing Spectrum), which result from the interaction of light with water drops, are well known examples. Ice crystals also produce photometeors called atmospheric halos. Etymologically, the term "halo" refers to an aureole [2], viz., here, a luminous circle surrounding the Sun, the Moon or, possibly, any other light source. Broadly speaking, an atmospheric halo is a more or less strong accumulation of light, appearing in the sky as a spot, a circle, or an arc, which is mainly due to the refraction and/or reflection of light by ice crystals. There is a wide variety of halos, some of them are frequent, while others are much rarer and often only predicted. Sometimes coloured, their observation informs us about the properties of ice crystals in the atmosphere. The first observations of halos date back to Antiquity, but it was not until the 17th century that a scientific approach (synthetic, explanatory and predictive) is developed with the work on Optics by Descartes [3] and Huygens [4]. A boost is then given in the 18th and 19th centuries with more and more precise observations and thanks to detailed studies by physicists such as Arago, Babinet, Bravais, Mariotte, Venturi and Young. -
MSE3 Ch22 Atmospheric Optics
Chapter 22 Copyright © 2011, 2015 by Roland Stull. Meteorology for Scientists and Engineers, 3rd Ed. OptiCs COntents Light can be considered as photon particles or electromagnetic waves, ei- Ray Geometry 833 ther of which travel along paths called Reflection 833 22 rays. To first order, light rays are straight lines Refraction 834 within a uniform transparent medium such as air Huygens’ Principle 837 or water, but can reflect (bounce back) or refract Critical Angle 837 (bend) at an interface between two media. Gradual Liquid-Drop Optics 837 refraction (curved ray paths) can also occur within Primary Rainbow 839 a single medium containing a smooth variation of Secondary Rainbow 840 optical properties. Alexander’s Dark Band 841 Other Rainbow Phenomena 841 The beauty of nature and the utility of physics come together in the explanation of rainbows, halos, Ice Crystal Optics 842 and myriad other atmospheric optical phenomena. Parhelic Circle 844 Subsun 844 22° Halo 845 46° Halo 846 Halos Associated with Pyramid Crystals 847 ray GeOmetry Circumzenith & Circumhorizon Arcs 848 Sun Dogs (Parhelia) 850 Subsun Dogs (Subparhelia) 851 When a monochromatic (single color) light ray Tangent Arcs 851 reaches an interface between two media such as air Other Halos 853 and water, a portion of the incident light from the Scattering 856 air can be reflected back into the air, some can be re- Background 856 fracted as it enters the water (Fig. 22.1), and some can Rayleigh Scattering 857 be absorbed and changed into heat (not sketched). Geometric Scattering 857 Similar processes occur across an air-ice interface. -
Atmospheric Halos
Atmospheric Halos Rings around the sun and moon and related apparitions in the sky are caused by myriad crystals of ice. Precisely how they are formed is st11l a challenge to modern physics by David K. Lynch }tyone who spends a fair amount of halo and is bilaterally symmetrical with different length and is perpendicular to time outdoors and keeps an eye it. At the top and bottom the two are the plane of the a axes. on the sky is likely to see occa tangent. The circumzenith arc appears Although many forms of ice can oc sionally a misty ring or halo around the as an inverted rainbow centered on the cur. only about four are important in sun or the moon. The phenomenon is zenith. facing the sun. meteorological optics. The others are well established in folklore as a sign that Many other phenomena of this kind either too rare or do not have smooth. a storm is coming. Actually the halo is have been identified. and I shall describe regular optical faces. The important only one of a number of optical effects a number of them. As the optical effects forms are the plate. which resembles a that arise from the same cause. which is of atmospheric ice crystals are enumer hexagonal bathroom tile. the column. the reflection and refraction of light by ated. however. a point is reached where the capped column and the bullet (a col crystals of ice in the air. Whenever cir their existence and properties become umn with one pyramidal end). rus clouds or ice fogs form. -
Atmospheric Optics
Copyright © 2015 by Roland Stull. Practical Meteorology: An Algebra-based Survey of Atmospheric Science. 22 ATMOSPHERIC OPTICS Contents Light can be considered as photon particles or electromagnetic waves, either of which travel along Ray Geometry 833 paths called rays. To first order, light rays are Reflection 833 straight lines within a uniform transparent medium Refraction 834 such as air or water, but can reflect (bounce back) or Huygens’ Principle 837 refract (bend) at an interface between two media. Critical Angle 837 Gradual refraction (curved ray paths) can also occur Liquid-Drop Optics 837 within a single medium containing a smooth varia- Primary Rainbow 839 tion of optical properties. Secondary Rainbow 840 The beauty of nature and the utility of physics Alexander’s Dark Band 841 come together in the explanation of rainbows, halos, Other Rainbow Phenomena 841 and myriad other atmospheric optical phenomena. Ice Crystal Optics 842 Parhelic Circle 844 Subsun 844 22° Halo 845 46° Halo 846 Ray GeometRy Halos Associated with Pyramid Crystals 847 Circumzenith & Circumhorizon Arcs 848 When a monochromatic (single color) light ray Sun Dogs (Parhelia) 850 reaches an interface between two media such as air Subsun Dogs (Subparhelia) 851 Tangent Arcs 851 and water, a portion of the incident light from the Other Halos 853 air can be reflected back into the air, some can be re- fracted as it enters the water (Fig. 22.1), and some can Scattering 856 Background 856 be absorbed and changed into heat (not sketched). Rayleigh Scattering 857 Similar -
Meteorological Glossary
FOR LOAN Met. O. 985 METEOROLOGICAL OFFICE Meteorological Glossary Sixth edition LONDON: HMSO UDC 551.6(02): 551.501.1 3 8078 0001 4455 2 ) Crown copyright 1991 Applications for reproduction should be made to HMSO First published 1916 Sixth edition 1991 ISBN 0 11 400363 7 HMSO publications are available from: HMSO Publications Centre (Mail and telephone orders only) PO Box 276, London, SW8 5DT Telephone orders 071-873 9090 General enquiries 071-873 0011 (queuing system in operation for both numbers) HMSO Bookshops 49 High Holborn, London, WC1V 6HB 071-873 0011 (Counter service only) 258 Broad Street, Birmingham, Bl 2HE 021-643 3740 Southey House, 33 Wine Street, Bristol, BS1 2BQ (0272) 264306 9-21 Princess Street, Manchester, M60 8AS 061-834 7201 80 Chichester Street, Belfast, BT1 4JY (0232) 238451 71 Lothian Road, Edinburgh, EH3 9AZ 031-228 4181 HMSO's Accredited Agents (see Yellow Pages) and through good booksellers FOREWORD In preparing this new addition I have attempted to correct all the misprints and other minor errors in the last printing of the fifth edition, to revise entries in the light of recent advances where this seemed appropriate, and to include the new terms introduced since the last edition that a meteorologist might encounter in the scientific and technical meteorological and climatological literature, apart from those used only by a handful of expert specialists. In the execution of this task I am glad to acknowledge the generous help of many of my former colleagues at Bracknell and the outstations who have provided critical comments on the entries in the old edition and suggested many new items for inclusion (often supplied with suitable wording). -
Chapter 34 Weather Elements
CHAPTER 34 WEATHER ELEMENTS GENERAL DESCRIPTION OF THE ATMOSPHERE 3400. Introduction latitudes to about 10 miles at low latitudes. The standard atmosphere is a conventional vertical Weather is the state of the Earth’s atmosphere with structure of the atmosphere characterized by a standard sea- respect to temperature, humidity, precipitation, visibility, level pressure of 1013.25 hectopascals of mercury (29.92 cloudiness, and other factors. Climate refers to the average inches) and a sea-level air temperature of 15° C (59° F). long-term meteorological conditions of a place or region. The temperature decreases with height at the standard All weather may be traced to the effect of the Sun on lapse rate, a uniform 2° C (3.6° F) per thousand feet to 11 the Earth. Most changes in weather involve large-scale kilometers (36,089 feet), and above that remains constant at horizontal motion of air. Air in motion is called wind. This –56.5° C (-69.7° F). motion is produced by differences of atmospheric pressure, The jet stream refers to relatively strong (greater than which are attributable both to differences of temperature 60 knots) quasi-horizontal winds, usually concentrated and the nature of the motion itself. within a restricted layer of the atmosphere. Research has Weather is of vital importance to the mariner. The indicated that the jet stream is important in relation to the wind and state of the sea affect dead reckoning. Reduced sequence of weather. There are two commonly known jet visibility limits piloting. The state of the atmosphere affects streams. The sub-tropical jet stream (STJ) occurs in the electronic navigation and radio communication. -
Chapter 6 Splashing Colors Everywhere, Like a Rainbow (Optics)
Optics 1 Chapter 6 Splashing colors everywhere, like a rainbow (optics) Here are the references and web links for the stories in the book. Recently added references are highlighted. For updates to those stories and for all the new stories, go to http://www.flyingcircusofphysics.com/News/NewsDetail.aspx?NewsID=42 Jan 2015 6.1 Rainbows This item is discussed in the book The Flying Circus of Physics, second edition, by Jearl Walker, published by John Wiley & Sons, June 2006, ISBN 0-471-76273-3. The material here is located at www.flyingcircusofphysics.com and will be updated periodically. Photos and discussions http://www.atoptics.co.uk/ Many photos and explanations of atmospheric optics http://atmospherical.blogspot.com/search?updated-min=2006-01-01T00%3A00%3A00Z&updated- max=2007-01-01T00%3A00%3A00Z&max-results=50 Blog devoted to photos of atmospheric phenomena http://atmospherical.blogspot.com Way cool blog site with lots of photos and descriptions. Go through the archived blogs by clicking on the button at the bottom of the page. The blog started in April 2006. Videos: http://www.youtube.com/watch?v=z3iOjTqFGWY&mode=related&search= Double rainbows plus lightning http://www.youtube.com/watch?v=ZmVuO-qQOn8 Primary rainbow plus faint secondary bow http://www.youtube.com/watch?v=cylV9Lp9fuM&mode=related&search= Double rainbow References Dots through indicate level of difficulty Journal reference style: author, journal, volume, pages (date) Book reference style: author, title, publisher, date, pages Neuberger, N., "A rainbow in a cirrus sky in winter," Bulletin of the American Meteorological Society, 26, 211 (1945) Boyer, C. -
1963: Optical Phenomena in Planetary Meteorology
Visibility Laboratory- University of California Scripps Institution of Oceanography San Diego 52, California OPTICAL PHENOMENA IN PLANETARY METEOROLOGY •:,:,-.:.-t p: •..-/.L.-. pr.-'Orio Ejj-"--Mye£s•'-'"''•"'" August 1963 SIO Ref. 63-4 Approved: S. Q. Duntley, Director VJ '••. Visibility Laboratory Optical Phenomena in Planetary Meteorology It has recently been suggested by Professor John D, Isaacs, of the Scripps Institution of Oceanography, University of California, San Diego, that significant information concerning the atmospheres of Venus, Mars, and Jupiter might be wrested from terrestrial observa tion of their anti-corona, halo, and rainbow phenomena. This report is a compilation, in the form of an annotated bibliography, of avail able information concerning what is now known of planetary atmospheres, pertinent optical phenomena in terrestrial meteorology, and the means for acquisition of further data concerning terrestrial and extra terrestrial atmospheres. In its outline of a general approach to planetary atmospheric research, the National Research Council Committee on Atmospheric Sciences (NRS-1962) states: "Firstly, it is cheaper to make an observation from the earth, or from a balloon, than it is from a space vehicle. Therefore, during the early phase, every effort should be made to gain knowledge with the aid of suitable terrestrial observations," (Vol. 1, Section 3.4.1) "As observations become available, there will develop an increasing need for experimental and theoretical studies of physical as well as dynamical phenomena and for com parisons with results gained from research on our own atmosphere." (Vol. 1, Section 3.4.4) Thus the potential value of further thought and research along these lines is recognized. -
Atmospheric Science Introduction, 2011 (PDF)
Introduction to Atmospheric Science Summary of notes and materials related to University of Washington introductory course Atm S 301, taught Fall 2010 by Professor Robert A. Houze (RAH), and compiled by Michael C. McGoodwin (MCM). Content last updated 1/4/2011 Table of Contents Introduction ................................................................................................................................................. 3 Useful Web Links and Abbreviations Encountered ........................................................................................ 4 Abbreviations, Acronyms, and Symbols ..................................................................................................... 4 Global/Planetary or Synoptic Scale Earth Weather .................................................................................... 6 Washington, North America, and Eastern Pacific Ocean Weather ............................................................... 6 Tropics ..................................................................................................................................................... 7 General Atmospheric Science, Weather, and Climate ................................................................................. 7 Space Weather (Earth–Solar Interactions) .................................................................................................. 7 Mathematical Symbols; Meteorological Coordinate Systems .......................................................................... 7 Basic Facts -
SHB Halo Key Key Structure
SHB Halo Key key structure: KKOJJ MMTTg ZZZZd DDNCc EEHFV fzzGG 8HHHH special group / remarks appendix 3: special group group key explanation/remark The full halo circle is cut into 8 segments as shown in the figure below. Segments in which the halo or parts of it appear are to be added at the end of the report (see examples). This special group is only to be applied for the 22°, 46° and circumscribed halos. KKOJJ KK identification number of the observer, which will be assigned by the data centre. ............................................... is registered as KK ............ d c e O which object caused the halo: 1 Sun 4 a bright star b f 2 Moon 5 an earthbound light source a g 3 a planet (e.g. a street lamp) h c-d-e b-c-d-e-f a-b-c-d-e-f-g-h c-d-e / g-h-a JJ year of observation (for example 1999 = 99) MMTTg MM months of observation from 01 - 12 (for example March = 03) Further comments to the halo key and the computation of monthly reports: TT date of observation from 01 - 31 Since all observations are stored with the HALO program it is very important to use only the uniform report format. • please send in your monthly reports only in the halo key format definition of the observing place: • report the group 8HHHH only for Sun pillars g 0 observation at the primary observing site (home) or not farther away than 5 km • the special group (appendix 3) should only be applied for the 22°, 46° and circumscribed halo 1 observation at neither primary nor secondary observing site • group , element : Please report changes in your secondary observing site immediately to the data centre MMTTg g 2 observation at the secondary observing site (work place) or not farther away than 5 km.