Meteorological Glossary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Light Color and Atmospheric Light, Color, and Atmospheric Optics
Light, Color, and Atmospheric Optics Chapter 19 April 28 and 30, 2009 Colors • Sunlight contains all colors (visible spectrum) Wavelength Ranges in µm UV-C: 0.25 - 0.29 UV-B: 0.29 - 0.32 UV-A: 0.32 - 0.38 Visible: 0.38 - 0.75 Near IR: 0.75 - 4 Mid IR: 4 - 8 Longwave IR: 8 - 100 Colors • If object is white then all colors are reflected • If object is red then only red is reflected and all others are absorbed From Malm (1999). Introduction to Visibility Blue Skies and Hazy days • Selective scattering – Scattering depends on wavelength of light • Rayleigh scattering – Very small particles, gases • Mie scattering – Particles the size of wavelength of visible light • Blue haze • Some particles from plants: terpenes, α- pinene Blue Ridge Mountains • Blue haze caused by scattering of blue light by fine particles Creppyuscular Rays • Scattering of sunlight by dust and haze produces white bands Selective Scattering: Sunset • Notice the effects of scattering on color as sunlight penetrates into the atmosphere Twinkling, Twilight, and the Green Flash • Light that travels from a less dense to a more dense medium loses speed and bends toward the normal, while light that enters a less dense medium increase speed and bends away from the normal. • Apparent position, scintillation, and green flash all depend of density variations in the athtmosphere • Scintillation also indicates the amount of turbulence in the atmosphere Bending of Light Paths from Atmosphere Green Flash • Green flash at top may be seen under circumstances of very cold (dense) air near the surface rapidly changing to warmer (less dense) air aloft Mirages •Miraggyges are caused by refraction of light due to strong density differences in atmospheric layers usually caused by strong temperature differences. -
Starry Starry Night Part 1
Starry Starry Night Part 1 DO NOT WRITE ON THIS PORTION OF THE TEST 1. If a lunar eclipse occurs tonight, when is the soonest a solar eclipse can occur? A) Tomorrow B) In two weeks C) In six months D) In one year 2. The visible surface of the Sun is called its A) corona B) photosphere C) chromosphere D) atmosphere 3. Which moon in the Solar System has lakes and rivers on it: A) Triton B) Charon C) Titan D) Europa 4. The sixth planet from the Sun is: A) Mars B) Jupiter C) Saturn D) Uranus 5. The orbits of the planets and dwarf planets around the Sun are in the shape of: A) An eclipse B) A circle C) An ellipse D) None of the above 6. True or False: During the summer and winter solstices, nighttime and daytime are of equal length. 7. The diameter of the observable universe is estimated to be A) 93 billion miles B) 93 billion astronomical units C) 93 billion light years D) 93 trillion miles 8. Asteroids in the same orbit as Jupiter -- in front and behind it -- are called: A) Greeks B) Centaurs C) Trojans D) Kuiper Belt Objects 9. Saturn's rings are made mostly of: A) Methane ice B) Water ice C) Ammonia ice D) Ice cream 10. The highest volcano in the Solar System is on: A) Earth B) Venus C) Mars D) Io 11. The area in the Solar System just beyond the orbit of Neptune populated by icy bodies is called A) The asteroid belt B) The Oort cloud C) The Kuiper Belt D) None of the above 12. -
Conspicuity of High-Visibility Safety Apparel During Civil Twilight
UMTRI-2006-13 JUNE 2006 CONSPICUITY OF HIGH-VISIBILITY SAFETY APPAREL DURING CIVIL TWILIGHT JAMES R. SAYER MARY LYNN MEFFORD CONSPICUITY OF HIGH-VISIBILITY SAFETY APPAREL DURING CIVIL TWILIGHT James R. Sayer Mary Lynn Mefford The University of Michigan Transportation Research Institute Ann Arbor, MI 48109-2150 U.S.A. Report No. UMTRI-2006-13 June 2006 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. UMTRI-2006-13 4. Title and Subtitle 5. Report Date Conspicuity of High-Visibility Safety Apparel During Civil June 2006 Twilight 6. Performing Organization Code 302753 7. Author(s) 8. Performing Organization Report No. Sayer, J.R. and Mefford, M.L. UMTRI-2006-13 9. Performing Organization Name and Address 10. Work Unit no. (TRAIS) The University of Michigan Transportation Research Institute 11. Contract or Grant No. 2901 Baxter Road Ann Arbor, Michigan 48109-2150 U.S.A. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered The University of Michigan Industry Affiliation Program for 14. Sponsoring Agency Code Human Factors in Transportation Safety 15. Supplementary Notes The Affiliation Program currently includes Alps Automotive/Alpine Electronics, Autoliv, Avery Dennison, Bendix, BMW, Bosch, Com-Corp Industries, DaimlerChrysler, DBM Reflex, Decoma Autosystems, Denso, Federal-Mogul, Ford, GE, General Motors, Gentex, Grote Industries, Guide Corporation, Hella, Honda, Ichikoh Industries, Koito Manufacturing, Lang- Mekra North America, Magna Donnelly, Muth, Nissan, North American Lighting, Northrop Grumman, OSRAM Sylvania, Philips Lighting, Renault, Schefenacker International, Sisecam, SL Corporation, Stanley Electric, Toyota Technical Center, USA, Truck-Lite, Valeo, Visteon, 3M Personal Safety Products and 3M Traffic Safety Systems Information about the Affiliation Program is available at: http://www.umich.edu/~industry 16. -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Electricity and Lightning-Cloudburst (Grofe)
Electricity and lightning-Cloudburst (Grofe) Summary Students will connect the concept of positive and negative ions making lightning to the concept of lightning occurring in nature. The will use the music of Grofe' "Cloudburst" to aide the learning. Additional Core Ties Science - 5th Grade Standard 4 Objective 1 Time Frame 1 class periods of 45 minutes each Group Size Large Groups Life Skills Aesthetics, Thinking & Reasoning, Employability Materials A recording of "Cloudburst" from Grand Canyon Suite by Grofe'. Pictures of Grand Canyon Pictures of rainstorms and lightning Listening map http://www.minnesotaorchestra.org/education/curricula/musicnoisesilence/musicnoisesilence_part5.p df Background for Teachers The teacher should know the basic concepts of how lightning is formed.To put it simply, lightning is electricity. It forms in the strong up-and-down air currents inside tall dark cumulonimbus clouds as water droplets, hail, and ice crystals collide with one another. Scientists believe that these collisions build up charges of electricity in a cloud. The positive and negative electrical charges in the cloud separate from one another, the negative charges dropping to the lower part of the cloud and the positive charges staying ins the middle and upper parts. Positive electrical charges also build upon the ground below. When the difference in the charges becomes large enough, a flow of electricity moves from the cloud down to the ground or from one part of the cloud to another, or from one cloud to another cloud. In typical lightning these are down-flowing negative charges, and when the positive charges on the ground leap upward to meet them, the jagged downward path of the negative charges suddenly lights up with a brilliant flash of light. -
Why Doesn't the Sky Turn Green?
Why Doesn't The Sky Turn Green? Rushi Shah 09 November 2015 I was leafing through the US Army Corps of Engineers' Manual on Remote Sensing and learned about how Rayleigh scattering creates blue skies during the day and redish-orange sunsets. Well, everybody knows about blue skies and red sunsets, was the title just click-bait, you ask? No, but I'll get to that. 1 The Basics of Rayleigh Scattering Let's start with this whole Rayleigh scattering thing. Basically the idea is that particles in the atmosphere (like Oxygen and Nitrogen particles) scatter rays of light as they enter the atmosphere. How much the light is scattered is heavily dependent on the wavelength of the light. Remember how ROY-G-BIV represents the colors of the rainbow (and thus the spectrum of visible light)? Well that spectrum of light starts with long wavelength rays (reds, oranges, and yellows) and ends with short wavelength rays (blues, indigos, and violets). 1 The amount of light that is scattered (denoted with the variable I) is highly inversely proportional to the wavelength of the light (denoted with the greek letter ). Put simply, as the wavelength goes down, the light waves are scattered more quickly. 1 I / λ4 When sunlight hits the earth directly during mid-day, it travels through a small amount of atmosphere, and thus we see the wavelengths of light that are immediately scattered. Based on the equation above, the blues, indigos, and violets would be scattered first (and they blend together into the blue sky we see). As the sun sets, it goes through more and more particles to reach us. -
Hunting Hours Time Zone A
WHEN AND WHERE TO HUNT WHEN AND WHERE Hunting Hours Time Zone A. Hunting Hours for Bear, Deer, Fall Wild Turkey, Furbearers, Shown is a map of the hunting-hour time zones. Actual legal hunting hours for and Small Game bear, deer, fall wild turkey, furbearer, and small game for Time Zone A are shown One-half hour before sunrise to one-half hour after sunset (adjusted for in the table at right. Hunting hours for migratory game birds are different and are daylight saving time). For hunt dates not listed in the table, please consult your published in the current-year Waterfowl Digest. local newspaper. 2016 Sept. Oct. Nov. Dec. To determine the opening (a.m.) and closing (p.m.) time for any day in another Note: time zone, add the minutes shown below to the times listed in the Time Zone A • Woodcock and teal Date AM PM AM PM AM PM AM PM Hunting Hours Table. hunting hours are 1 6:28 8:35 7:00 7:43 7:36 6:55 7:12 5:31 The hunting hours listed in the table reflect Eastern Standard Time, with an sunrise to sunset. 2 6:29 8:34 7:01 7:41 7:38 6:54 7:14 5:30 adjustment for daylight saving time. If you are hunting in Gogebic, Iron, Dickinson, • Spring turkey hunting 3 6:30 8:32 7:02 7:39 7:39 6:52 7:15 5:30 or Menominee counties (Central Standard Time), you must make an additional hours are one-half 4 6:31 8:30 7:03 7:38 7:40 6:51 7:16 5:30 adjustment to the printed time by subtracting one hour. -
Daylight Saving Time (DST)
Daylight Saving Time (DST) Updated September 30, 2020 Congressional Research Service https://crsreports.congress.gov R45208 Daylight Saving Time (DST) Summary Daylight Saving Time (DST) is a period of the year between spring and fall when clocks in most parts of the United States are set one hour ahead of standard time. DST begins on the second Sunday in March and ends on the first Sunday in November. The beginning and ending dates are set in statute. Congressional interest in the potential benefits and costs of DST has resulted in changes to DST observance since it was first adopted in the United States in 1918. The United States established standard time zones and DST through the Calder Act, also known as the Standard Time Act of 1918. The issue of consistency in time observance was further clarified by the Uniform Time Act of 1966. These laws as amended allow a state to exempt itself—or parts of the state that lie within a different time zone—from DST observance. These laws as amended also authorize the Department of Transportation (DOT) to regulate standard time zone boundaries and DST. The time period for DST was changed most recently in the Energy Policy Act of 2005 (EPACT 2005; P.L. 109-58). Congress has required several agencies to study the effects of changes in DST observance. In 1974, DOT reported that the potential benefits to energy conservation, traffic safety, and reductions in violent crime were minimal. In 2008, the Department of Energy assessed the effects to national energy consumption of extending DST as changed in EPACT 2005 and found a reduction in total primary energy consumption of 0.02%. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS a Thesis Submitted in Partial Fulfillment of the Re
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Ilya Neyman May 2013 The thesis of Ilya Neyman is approved: _______________________ _________________ Dr. Steve LaDochy Date _______________________ _________________ Dr. Ron Davidson Date _______________________ _________________ Dr. James Hayes, Chair Date California State University, Northridge ii TABLE OF CONTENTS SIGNATURE PAGE ii ABSTRACT iv INTRODUCTION 1 THESIS STATEMENT 12 IMPORTANT TERMS AND DEFINITIONS 13 LITERATURE REVIEW 17 APPROACH AND METHODOLOGY 24 TRADITIONALLY RECOGNIZED TORNADIC PARAMETERS 28 CASE STUDY 1: SEPTEMBER 10, 2011 33 CASE STUDY 2: JULY 29, 2003 48 CASE STUDY 3: JANUARY 19, 2010 62 CASE STUDY 4: MAY 22, 2008 91 CONCLUSIONS 111 REFERENCES 116 iii ABSTRACT FORECASTING CALIFORNIA THUNDERSTORMS By Ilya Neyman Master of Arts in Geography Thunderstorms are a significant forecasting concern for southern California. Even though convection across this region is less frequent than in many other parts of the country significant thunderstorm events and occasional severe weather does occur. It has been found that a further challenge in convective forecasting across southern California is due to the variety of sub-regions that exist including coastal plains, inland valleys, mountains and deserts, each of which is associated with different weather conditions and sometimes drastically different convective parameters. In this paper four recent thunderstorm case studies were conducted, with each one representative of a different category of seasonal and synoptic patterns that are known to affect southern California. In addition to supporting points made in prior literature there were numerous new and unique findings that were discovered during the scope of this research and these are discussed as they are investigated in their respective case study as applicable. -
Weather Numbers Multiple Choices I
Weather Numbers Answer Bank A. 1 B. 2 C. 3 D. 4 E. 5 F. 25 G. 35 H. 36 I. 40 J. 46 K. 54 L. 58 M. 72 N. 74 O. 75 P. 80 Q. 100 R. 910 S. 1000 T. 1010 U. 1013 V. ½ W. ¾ 1. Minimum wind speed for a hurricane in mph N 74 mph 2. Flash-to-bang ratio. For every 10 second between lightning flash and thunder, the storm is this many miles away B 2 miles as flash to bang ratio is 5 seconds per mile 3. Minimum diameter of a hailstone in a severe storm (in inches) A 1 inch (formerly ¾ inches) 4. Standard sea level pressure in millibars U 1013.25 millibars 5. Minimum wind speed for a severe storm in mph L 58 mph 6. Minimum wind speed for a blizzard in mph G 35 mph 7. 22 degrees Celsius converted to Fahrenheit M 72 22 x 9/5 + 32 8. Increments between isobars in millibars D 4mb 9. Minimum water temperature in Fahrenheit for hurricane development P 80 F 10. Station model reports pressure as 100, what is the actual pressure in millibars T 1010 (remember to move decimal to left and then add either 10 or 9 100 become 10.0 910.0mb would be extreme low so logic would tell you it would be 1010.0mb) Multiple Choices I 1. A dry line front is also known as a: a. dew point front b. squall line front c. trough front d. Lemon front e. Kelvin front 2. -
Sky Watch Heard Most Weekdays on WFWM, FSU's Public Supported
Night Highlights – Dec.2014 through Dec.2015 by Dr. Bob Doyle, Frostburg State Planetarium Dr. Doyle’s email is: [email protected]: His office phone number is (301) 687-7799 MOON – Earth’s companion both orbits Earth and rotates in 27.32 E. days so one side of moon always faces Earth (while other side is turned away from us). Moon’s cycle of lighted shapes (phases) lasts 29.53 E. days, as the phases also depend on direction of sun (appears to move 30 degrees eastward each month along zodiac). The moon is seen about 13 days growing in the evening from a slender crescent ( ) ) to Full, followed by an equal time shrinking (mainly seen in the a.m. sky) and then 3 days hidden in sun’s glare. Key Moon Phases (D) moon ½ full in evening (best for crater & mountain viewing ) & (O) full moon (see all lava plains) (Dec. ’14, 6 -O, 28 – D)) // (Jan. ’15, 4 - O, 26 - D), // (Feb. ’15, 3 – O, 25 - D) // (Mar. 5 – O, 27 – D) (Apr. 4 – O, 25 – D), // ( May 3 – O, 25 - D) // (Jun., 2- O, 27 – D)) // (Jul., 1 – O, 24 –D, 31 –O (Blue Moon)) (Aug., 22 – D, 29 – O) // (Sep., 20 – D, 27 – O (Harvest Moon)) // (Oct. 20 – D, 27 – O (Hunters’ Moon)) // (Nov., 19 – D, 25 – O) // (Dec., 18 – D, 25 – O (Long Night Moon)) (D = ½ full, O = full) THE 5 BRIGHT PLANETS (Mercury, Venus, Mars, Jupiter & Saturn): Uranus, Neptune are much dimmer. When high above horizon, planets appear as points of light that shine steadily. -
Rare Astronomical Sights and Sounds
Jonathan Powell Rare Astronomical Sights and Sounds The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 Rare Astronomical Sights and Sounds Jonathan Powell Jonathan Powell Ebbw Vale, United Kingdom ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-97700-3 ISBN 978-3-319-97701-0 (eBook) https://doi.org/10.1007/978-3-319-97701-0 Library of Congress Control Number: 2018953700 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.