Atmospheric Science Introduction, 2011 (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Science Introduction, 2011 (PDF) Introduction to Atmospheric Science Summary of notes and materials related to University of Washington introductory course Atm S 301, taught Fall 2010 by Professor Robert A. Houze (RAH), and compiled by Michael C. McGoodwin (MCM). Content last updated 1/4/2011 Table of Contents Introduction ................................................................................................................................................. 3 Useful Web Links and Abbreviations Encountered ........................................................................................ 4 Abbreviations, Acronyms, and Symbols ..................................................................................................... 4 Global/Planetary or Synoptic Scale Earth Weather .................................................................................... 6 Washington, North America, and Eastern Pacific Ocean Weather ............................................................... 6 Tropics ..................................................................................................................................................... 7 General Atmospheric Science, Weather, and Climate ................................................................................. 7 Space Weather (Earth–Solar Interactions) .................................................................................................. 7 Mathematical Symbols; Meteorological Coordinate Systems .......................................................................... 7 Basic Facts about the Sun Compared to the Earth ................................................................................ 9 Atmospheric Sciences Introduction ............................................................................................................. 11 Scope of Atmospheric Sciences⊙ ................................⊕................................................................................ 11 Major Subdivisions of Atmospheric Sciences ............................................................................................ 11 Meteorology and Forecasting ................................................................................................................... 11 Weather and Climate .............................................................................................................................. 13 Chemical Composition of Air (Fixed and Variable Components): ............................................................... 14 Atmospheric Scales ................................................................................................................................. 16 Atmospheric Layers and Relation to Temperature .................................................................................... 17 Global Air Circulation and Winds ............................................................................................................ 18 Jet Streams ............................................................................................................................................ 20 Pressure, Flows, and Fronts ....................................................................................................................... 21 Atmospheric Pressure Variation with Altitude (Geopotential Height) ......................................................... 22 Atmospheric Pressure Variation with Latitude, Longitude, and Season ..................................................... 24 Upper Level Atmospheric Pressures and Flows; Atmospheric Tides ........................................................... 27 Fronts and Their Relation to Baroclinic Waves ......................................................................................... 29 Thermodynamics, Physics of Gases, Water Vapor, Lifting, and Misc. ........................................................... 32 Skew-T, Log-P diagram (STLPD) and Other Thermodynamic Diagrams ..................................................... 32 Symbols and Constants Employed in Equations ...................................................................................... 33 Gas Laws, Equation of State (Ideal Gas Law), Boyle’s and Charles’s Laws ................................................. 35 Virtual Temperature and Equations of State for Dry and Moist Air ........................................................... 35 Hydrostatic Equation, Geopotential Φ(z) and Height Z, Hypsometric Equation .......................................... 36 Reduction of Pressure to Sea Level .......................................................................................................... 36 First Law of Thermodynamics (FLT) and Specific Heats ............................................................................ 37 Dry Adiabatic Processes and Potential Temperature ................................................................................. 37 Moist Air Processes ................................................................................................................................. 39 Lifted Moist Air Parcels, LCL, and LFC ..................................................................................................... 40 Stability of Air Parcels With Respect to Convection: U, CU, and S ............................................................. 41 Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) .......................................... 43 Clouds (Unit 3) ........................................................................................................................................... 45 Cloud Classification by Atmosphere Étages ............................................................................................. 45 Selected Cloud Terminology: ................................................................................................................... 45 Droplet and Ice Crystal Formation ........................................................................................................... 50 Thunderstorms (Unit 4) .............................................................................................................................. 54 Atmospheric Kinematics and Dynamics (Unit 5) .......................................................................................... 55 Kinematics of Fluid Flow ......................................................................................................................... 55 Dynamics ............................................................................................................................................... 56 Weather Prediction (Unit 6) ........................................................................................................................ 64 Radiation and Climate Change (Unit 7) ....................................................................................................... 67 Page 1 of 120 AtmScienceSummary_AtmS301_MCM_Fall2010.docx 4 Jan 2011 Basic Properties of Light .......................................................................................................................... 69 Radiation Quantitation (Radiometry) ....................................................................................................... 70 Total Solar Irradiance (TSI) of Earth; Relation to Sunspots; Local Irradiance Pattern ................................. 74 Blackbody Radiation ............................................................................................................................... 76 Radiation for Non-Black Bodies ............................................................................................................... 79 Climate Change; The Greenhouse Effect and Factors Which Can Modify It ............................................... 79 Stratospheric Ozone Depletion and the “Ozone Hole” Centered Over Antarctica ........................................ 83 Pacific NW Weather (Unit 8) ........................................................................................................................ 86 Precipitation, Rain Shadow, and Chinook Föhn Wind .............................................................................. 86 Washington Storms ................................................................................................................................. 87 Seattle Area Rainfall and Temperatures ................................................................................................... 95 Tropical Meteorology (Unit 9) ...................................................................................................................... 96 Intertropical Convergence Zone (ITCZ) ..................................................................................................... 96 Thermocline, Walker Circulation, ENSO .................................................................................................. 97 Monsoons and Deserts .......................................................................................................................... 100 Tropical Cyclones, Typhoons, and Hurricanes........................................................................................ 101 Glossary and Miscellaneous Mini-Topics ................................................................................................... 107 Atmosphere Layers and Their Mean Temperatures: “Standardized Temperature Profile: An average temperature profile through the lower layers
Recommended publications
  • Diffractive Properties of Blue Morpho Butterfly Wings
    Diffractive Properties of Blue Morpho Butterfly Wings Mary Lalak and Paul Brackman Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (Dated: October 24, 2014) Many species of butterflies are known to produce beautiful iridescent colors when exposed to light from different angles. These affects can be attributed to a few different optical phenomena combined, the most prominent being reflective diffraction. Using common household items and with a budget of 50 dollars, we attempt to confirm the theory that the collection of ridges on the individual scales on the wing act as transmission gratings, as well as reflective. These results are quantified by the calculation of the ridge separation and comparing this distance to those observed by a scanning electron microscope photo. I. INTRODUCTION In studying the optical property of iridescence, three distinct mechanisms must be discussed. Thin film inter- ference, structured coloring, and reflective diffraction all contribute to the iridescent qualities of a surface. Thin film interference occurs when light strikes a film, some of it enters the film, and the rest is reflected off. The light transmitted through reflects off the bottom of the film and exits the film to interfere with the light that FIG. 1: Up-Close View of Scales from an Optical Microscope originally reflected off the surface of the film. This inter- ference pattern causes a spectrum of color to be visible from white light. Examples of thin film interference in- clude oil slicks and soap bubbles. Structural coloring oc- curs when the structure of the object itself (with various reflective surfaces) produces an interference resulting in vibrant colors.
    [Show full text]
  • E-Region Auroral Ionosphere Model
    atmosphere Article AIM-E: E-Region Auroral Ionosphere Model Vera Nikolaeva 1,* , Evgeny Gordeev 2 , Tima Sergienko 3, Ludmila Makarova 1 and Andrey Kotikov 4 1 Arctic and Antarctic Research Institute, 199397 Saint Petersburg, Russia; [email protected] 2 Earth’s Physics Department, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] 3 Swedish Institute of Space Physics, 981 28 Kiruna, Sweden; [email protected] 4 Saint Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN), 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: The auroral oval is the high-latitude region of the ionosphere characterized by strong vari- ability of its chemical composition due to precipitation of energetic particles from the magnetosphere. The complex nature of magnetospheric processes cause a wide range of dynamic variations in the auroral zone, which are difficult to forecast. Knowledge of electron concentrations in this highly turbulent region is of particular importance because it determines the propagation conditions for the radio waves. In this work we introduce the numerical model of the auroral E-region, which evaluates density variations of the 10 ionospheric species and 39 reactions initiated by both the solar extreme UV radiation and the magnetospheric electron precipitation. The chemical reaction rates differ in more than ten orders of magnitude, resulting in the high stiffness of the ordinary differential equations system considered, which was solved using the high-performance Gear method. The AIM-E model allowed us to calculate the concentration of the neutrals NO, N(4S), and N(2D), ions + + + + + 4 + 2 + 2 N ,N2 , NO ,O2 ,O ( S), O ( D), and O ( P), and electrons Ne, in the whole auroral zone in the Citation: Nikolaeva, V.; Gordeev, E.; 90-150 km altitude range in real time.
    [Show full text]
  • Appendix I Glossary
    Appendix I Glossary Editor: A.P.M. Baede A → indicates that the following term is also contained in this Glossary. Adjustment time centrimetric precision. Altimetry has the advantage of being a See: →Lifetime; see also: →Response time. measurement relative to a geocentric reference frame, rather than relative to land level as for a →tide gauge, and of affording quasi- Aerosols global coverage. A collection of airborne solid or liquid particles, with a typical size between 0.01 and 10 µm and residing in the atmosphere for Anthropogenic at least several hours. Aerosols may be of either natural or Resulting from or produced by human beings. anthropogenic origin. Aerosols may influence climate in two ways: directly through scattering and absorbing radiation, and Atmosphere indirectly through acting as condensation nuclei for cloud The gaseous envelope surrounding the Earth. The dry formation or modifying the optical properties and lifetime of atmosphere consists almost entirely of nitrogen (78.1% volume clouds. See: →Indirect aerosol effect. mixing ratio) and oxygen (20.9% volume mixing ratio), The term has also come to be associated, erroneously, with together with a number of trace gases, such as argon (0.93% the propellant used in “aerosol sprays”. volume mixing ratio), helium, and radiatively active →greenhouse gases such as →carbon dioxide (0.035% volume Afforestation mixing ratio), and ozone. In addition the atmosphere contains Planting of new forests on lands that historically have not water vapour, whose amount is highly variable but typically 1% contained forests. For a discussion of the term →forest and volume mixing ratio. The atmosphere also contains clouds and related terms such as afforestation, →reforestation, and →aerosols.
    [Show full text]
  • Geography and Atmospheric Science 1
    Geography and Atmospheric Science 1 Undergraduate Research Center is another great resource. The center Geography and aids undergraduates interested in doing research, offers funding opportunities, and provides step-by-step workshops which provide Atmospheric Science students the skills necessary to explore, investigate, and excel. Atmospheric Science labs include a Meteorology and Climate Hub Geography as an academic discipline studies the spatial dimensions of, (MACH) with state-of-the-art AWIPS II software used by the National and links between, culture, society, and environmental processes. The Weather Service and computer lab and collaborative space dedicated study of Atmospheric Science involves weather and climate and how to students doing research. Students also get hands-on experience, those affect human activity and life on earth. At the University of Kansas, from forecasting and providing reports to university radio (KJHK 90.7 our department's programs work to understand human activity and the FM) and television (KUJH-TV) to research project opportunities through physical world. our department and the University of Kansas Undergraduate Research Center. Why study geography? . Because people, places, and environments interact and evolve in a changing world. From conservation to soil science to the power of Undergraduate Programs geographic information science data and more, the study of geography at the University of Kansas prepares future leaders. The study of geography Geography encompasses landscape and physical features of the planet and human activity, the environment and resources, migration, and more. Our Geography integrates information from a variety of sources to study program (http://geog.ku.edu/degrees/) has a unique cross-disciplinary the nature of culture areas, the emergence of physical and human nature with pathway options (http://geog.ku.edu/geography-pathways/) landscapes, and problems of interaction between people and the and diverse faculty (http://geog.ku.edu/faculty/) who are passionate about environment.
    [Show full text]
  • Atmospheric Tidal Waves in the Troposphere and Lower Stratosphere Observed by Wuhan MST Radar
    2nd URSI AT-RASC, Gran Canaria, 28 May – 1 June 2018 Atmospheric tidal waves in the troposphere and lower stratosphere observed by Wuhan MST radar Haiyin Qing School of Physics and Electronic Engineering, Leshan Normal University, 614000, China Abstract 2. Data and Method In this paper, the observation data of the Wuhan MST radar in the whole 2012 are used making a statistical analysis on This paper mainly deals with the observation data of the low stratospheric and troposphere tidal waves. The Wuhan MST radar in 2012. The months of 12, 1, 2 are results show that: (1) the diurnal tide is the strongest and divided into winter; the months of 3, 4, 5 are divided into most of the time at low levels of Sunday tide is stronger spring; the months of 6, 7, 8 are divided into summer; and than the high tide of Sunday. (2) the amplitude of the tidal the months of 9,10,11 are divided into autumn. Then wave is not modulated by the fluctuation with a smaller choose the most complete data in the strength of 50 days to time scale than their periods, and only these waves with a carry out different tidal wave components in the four longer time scale than their periods can affect the variation seasons. The time resolution of the data is 0.5 h, and the of the amplitude of the tidal waves. slip time length is 4 days. Fitting time series of wind field data in time window by least square method, the fitting Keywords: MST radar; Atmospheric tidal waves; model is as follows: troposphere; stratosphere; planetary waves (1) 2 () =0+( +) 1.
    [Show full text]
  • Air Quality in North America's Most Populous City
    Atmos. Chem. Phys., 7, 2447–2473, 2007 www.atmos-chem-phys.net/7/2447/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics Air quality in North America’s most populous city – overview of the MCMA-2003 campaign L. T. Molina1,2, C. E. Kolb3, B. de Foy1,2,4, B. K. Lamb5, W. H. Brune6, J. L. Jimenez7,8, R. Ramos-Villegas9, J. Sarmiento9, V. H. Paramo-Figueroa9, B. Cardenas10, V. Gutierrez-Avedoy10, and M. J. Molina1,11 1Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA 2Molina Center for Energy and Environment, La Jolla, CA, USA 3Aerodyne Research, Inc., Billerica, MA, USA 4Saint Louis University, St. Louis, MO, USA 5Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA 6Department of Meteorology, Pennsylvania State University, University Park, PA, USA 7Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA 8Cooperative Institute for Research in the Environmental Sciences (CIRES), Univ. of Colorado at Boulder, Boulder, CO, USA 9Secretary of Environment, Government of the Federal District, Mexico, DF, Mexico 10National Center for Environmental Research and Training, National Institute of Ecology, Mexico, DF, Mexico 11Department of Chemistry and Biochemistry, University of California at San Diego, San Diego, CA, USA Received: 22 February 2007 – Published in Atmos. Chem. Phys. Discuss.: 27 February 2007 Revised: 10 May 2007 – Accepted: 10 May 2007 – Published: 14 May 2007 Abstract. Exploratory field measurements in the Mexico 1 Introduction City Metropolitan Area (MCMA) in February 2002 set the stage for a major air quality field measurement campaign in 1.1 Air pollution in megacities the spring of 2003 (MCMA-2003).
    [Show full text]
  • THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
    GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P.
    [Show full text]
  • Tidal Wind Oscillations in the Tropical Lower Atmosphere As Observed by Indian MST Radar
    Annales Geophysicae (2001) 19: 991–999 c European Geophysical Society 2001 Annales Geophysicae Tidal wind oscillations in the tropical lower atmosphere as observed by Indian MST Radar M. N. Sasi, G. Ramkumar, and V. Deepa Space Physics Laboratory Vikram Sarabhai Space Centre, Trivandrum 695 022, India Received: 7 November 2000 – Revised: 17 May 2001 – Accepted: 18 May 2001 Abstract. Diurnal tidal components in horizontal winds marised the salient features of the classical theory of tides measured by MST radar in the troposphere and lower strato- under various simplifying assumptions, such as motionless sphere over a tropical station Gadanki (13.5◦ N, 79.2◦ E) are atmosphere, zonal symmetry of the heat sources, etc. and presented for the autumn equinox, winter, vernal equinox and this classical theory is successful in explaining the major summer seasons. For this purpose radar data obtained over features of tidal oscillations in the upper atmosphere. How- many diurnal cycles from September 1995 to August 1996 ever, if the water vapour and ozone distribution have zonal are used. The results obtained show that although the sea- asymmetry, solar thermal excitation of these constituents will sonal variation of the diurnal tidal amplitudes in zonal and generate tidal modes with zonal wave numbers not equal to meridional winds is not strong, vertical phase propagation 1. This means that solar thermal excitation will not be able characteristics show significant seasonal variation. An at- to follow the apparent westward motion of the Sun. These tempt is made to simulate the diurnal tidal amplitudes and Sun-asynchronous tidal modes are known as nonmigrating phases in the lower atmosphere over Gadanki using classical modes.
    [Show full text]
  • Iridescence in Cooked Venison – an Optical Phenomenon
    Journal of Nutritional Health & Food Engineering Research Article Open Access Iridescence in cooked venison – an optical phenomenon Abstract Volume 8 Issue 2 - 2018 Iridescence in single myofibers from roast venison resembled multilayer interference in having multiple spectral peaks that were easily visible under water. The relationship HJ Swatland of iridescence to light scattering in roast venison was explored using the weighted- University of Guelph, Canada ordinate method of colorimetry. In iridescent myofibers, a reflectance ratio (400/700 nm) showing wavelength-dependent light scattering was correlated with HJ Swatland, Designation Professor CIE (Commission International de l’Éclairage) Y%, a measure of overall paleness Correspondence: Emeritus, University of Guelph, 33 Robinson Ave, Guelph, (r=0.48, P< 0.01). Hence, meat iridescence is an optical phenomenon. The underlying Ontario N1H 2Y8, Canada, Tel 519-821-7513, mechanism, subsurface multilayer interference, may be important for meat colorimetry. Email [email protected] venison, iridescence, interference, reflectance, meat color Keywords: Received: August 23, 2017 | Published: March 14, 2018 Introduction balanced pixel hues that have tricked your eyes to appear white; and when we perceive interference colors, complex interference spectra Iridescence is an enigmatic aspect of meat color with some practical trick our eyes again. As the order of interference increases, the colors 1–4 importance for consumers concerned about green colors in meat. appear to change from metallic
    [Show full text]
  • Rare Astronomical Sights and Sounds
    Jonathan Powell Rare Astronomical Sights and Sounds The Patrick Moore The Patrick Moore Practical Astronomy Series More information about this series at http://www.springer.com/series/3192 Rare Astronomical Sights and Sounds Jonathan Powell Jonathan Powell Ebbw Vale, United Kingdom ISSN 1431-9756 ISSN 2197-6562 (electronic) The Patrick Moore Practical Astronomy Series ISBN 978-3-319-97700-3 ISBN 978-3-319-97701-0 (eBook) https://doi.org/10.1007/978-3-319-97701-0 Library of Congress Control Number: 2018953700 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • 2013 Washington State Enhanced Hazard Mitigation Plan Severe Storm Hazard Profile
    Final - Hazard Profile – Severe Storm Severe Storm Frequency 50+ yrs 10-50 yrs 1-10 yrs Annually People <1,000 1,000-10,000 10,000-50,000 50,000+ Economy 1% GDP 1-2% GDP 2-3% GDP 3%+ GDP Environment <10% 10-15% 15%-20% 20%+ Property <$100M $100M-$500M $500M-$1B $1B+ Severe Storm Risk Level Hazard scale < Low to High > Frequency – Severe storms, which include any or a combination of: thunderstorms, hail, wind storms, lightning, or a tornado, happen annually in Washington. People – Looking at past history of injuries and deaths due to severe storms in Washington, the minimum threshold of a thousand injuries for this category is not met. Economy – According to the National Oceanic and Atmospheric Administration’s (NOAA) National Climatic Data Center, Washington has not experienced a severe weather event that totaled losses that met or exceeded the minimum dollar amount /percentage for this category.1 Environment – Severe storms do affect the environmental landscape of Washington, but their effect does not meet the minimum threshold for this category. Property – Severe storms can have a large impact on the property of the state, both residential and commercial. The December 2006 windstorm affected all 39 counties and the estimate for damage is still being tallied and is greater than $50 million. Total property damage from the greatest windstorm to hit Washington is estimated at $235 million (1962 dollars). This was the Columbus Day Storm of October 1962, which was the strongest non-tropical storm to ever hit the contiguous 48 states. Figure 5.7-1 and Figure 5.7-2 below show previous occurrences of tornado and hail events, respectively, from 1960 to 2012 as reported by the National Climatic Data Center.
    [Show full text]
  • Chinook Vol. 9 No. 3
    .+ Learning Weather • • • A resource study kit suitable for students grade seven and up, prepared by the Atmospheric Environment Service of Environment Canada Includes new revised poster·size cloud chart Decouvrons la meteO ... Pochettes destinees aux eleves du secondaire et du collegial, preparees par Ie service de I'environnement atmos heri ue d'Environnement Canada Incluant un tableau revise descriptif des nuages Learning Weather Decouvrons la meteo A resource study kit, contains: Pochette documentaire comprenant: 1. Mapping Weather 1. Cartographie de la meteo A series of maps with exercises. Teaches how Serie de cartes accompagnees d'exercices. Oecrit weather moves. Includes climatic data for 50 Cana­ les fluctuations du temps et fournit des donnees dian locations. climatologiques pour 50 localites canadiennes. 2. Knowing Weather 2. Apprenons a connaitre la meteo Booklet discusses weather events, weather facts Brochure traitant d'evenements, de faits et de legen· and folklore, measurement of weather and several des meteorologiques. Techniques de I'observation et student projects to study weather. de la prevision de la met eo. Projets scolaires sur la 3. Knowing Clouds meteorologie. A cloud chart to help students identify various cloud 3. Apprenons a connaitre les nuages formations. Tableau descriptif des nuages aidant les elilves a identifier differentes formations. Cat. No. EN56·5311983·E Each kit $4.95 Cat. N° EN56·5311983F Chaque pochette: 4,95 $ Order kits from: Commandez les pochettes au : CANADIAN GOVERNMENT PUBLISHING CENTRE CENTRE D'EDITION DU GOUVERNEMENT DU OTTAWA, CANADA CANADA, K1A OS9 OTTAWA (CANADA) K1A OS9 Order Form (please print) Bon de commande Veuillez m'ex pedier _ _ exemplaire(s) de la pochette Please send me _ _ copy(ies) of Learning Weather at $4.95 "Decouvrons la meteo" it 4.95 $ la co pie.
    [Show full text]