PATHWAYS of DISCOVERY "Science Wars"
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA
GENES AND PROTEINS THAT CONTROL THE SECRETORY PATHWAY Nobel Lecture, 7 December 2013 by RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA. Introduction George Palade shared the 1974 Nobel Prize with Albert Claude and Christian de Duve for their pioneering work in the characterization of organelles interrelated by the process of secretion in mammalian cells and tissues. These three scholars established the modern field of cell biology and the tools of cell fractionation and thin section transmission electron microscopy. It was Palade’s genius in particular that revealed the organization of the secretory pathway. He discovered the ribosome and showed that it was poised on the surface of the endoplasmic reticulum (ER) where it engaged in the vectorial translocation of newly synthesized secretory polypeptides (1). And in a most elegant and technically challenging investigation, his group employed radioactive amino acids in a pulse-chase regimen to show by autoradiograpic exposure of thin sections on a photographic emulsion that secretory proteins progress in sequence from the ER through the Golgi apparatus into secretory granules, which then discharge their cargo by membrane fusion at the cell surface (1). He documented the role of vesicles as carriers of cargo between compartments and he formulated the hypothesis that membranes template their own production rather than form by a process of de novo biogenesis (1). As a university student I was ignorant of the important developments in cell biology; however, I learned of Palade’s work during my first year of graduate school in the Stanford biochemistry department. -
Unrestricted Immigration and the Foreign Dominance Of
Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of -
The Creation of Neuroscience
The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits. -
Randy W. Schekman, Phd
Randy W. Schekman, PhD Current Position Professor of molecular and cell biology at the University of California, Berkeley Investigator at the Howard Hughes Medical Institute Editor-in-Chief, eLIFE Journal Education BA, molecular biology, University of California, Los Angeles PhD, biochemistry, Stanford University Awards Nobel Prize in Physiology or Medicine 2013 (shared with James E. Rothman and Thomas C. Südhof ) Albert Lasker Award for Basic Medical Research Eli Lilly Research Award in Microbiology and Immunology Lewis S. Rosenstiel Award in Basic Biomedical Science, Brandeis University Gairdner Foundation International Award Louisa Gross Horwitz Prize, Columbia University 2008 Dickson Prize in Medicine, University of Pittsburgh E.B. Wilson Medal, American Society for Cell Biology Memberships US National Academy of Sciences American Academy of Arts and Sciences American Society of Cell Biology American Association for the Advancement of Science American Philosophical Society Biography Traffic inside a cell is as complicated as rush hour near any metropolitan area. But drivers know how to follow the signs and roadways to reach their destinations. How do different cellular proteins "read" molecular signposts to find their way inside or outside of a cell? For the past three decades, Randy Schekman has been characterizing the traffic drivers that shuttle cellular proteins as they move in membrane-bound sacs, or vesicles, within a cell. His detailed elucidation of cellular travel patterns has provided fundamental knowledge about cells and has enhanced understanding of diseases that arise when bottlenecks impede some of the protein flow. His work earned him one of the most prestigious prizes in science, the 2002 Albert Lasker Award for Basic Medical Research, which he shared with James Rothman. -
Download Ps Nobel Prizes for Site BEE 11.18.16 Revised 11.30.17.Pdf
Nobel Laureates at the College of Physicians and Surgeons For years, College of Physicians and Surgeons alumni, faculty, and researchers have led groundbreaking clinical and basic scientific studies that have transformed our understanding of human biology and advanced the practice of medicine. On many occasions, this work has been honored with the Nobel Prize. The scope of research led by P&S Nobel laureates is tremendous. Although most of our prizewinners were honored for work in physiology or medicine, a few also received the prize for chemistry. Their research has fundamentally shaped the course of numerous fields, including cardiology, neuroscience, genetics, pharmaceutical development, and more. Our Nobel laureates include: André Cournand and Dickinson Richards (P&S’23), whose work at P&S on cardiac catheterization—a method of inserting a tiny tube into the heart—provided the basis for open-heart surgery and interventional cardiology Baruch Blumberg (P&S’51), who discovered the hepatitis B virus and helped develop a test and a vaccine for the virus Joshua Lederberg, a Columbia College and P&S graduate student who showed that bacteria can exchange genes when they reproduce, creating a way to model and study genetics in higher organisms Harold Varmus (P&S’66), who demonstrated how genes in normal human and animal cells can mutate to cause cancer, leading to a new generation of research on the genetic origins of cancer Eric Kandel, current University Professor, who showed how memories are stored in nerve cells, greatly enhancing -
Making Your Mind: Molecules, Motion, and Memory Lecture One – Mapping Memory in the Brain Eric R
Making Your Mind: Molecules, Motion, and Memory Lecture One – Mapping Memory in the Brain Eric R. Kandel, M.D. 1. Start of Lecture I (0:15) [ANNOUNCER:] From the Howard Hughes Medical Institute. The 2008 Holiday Lectures on Science. This year's lectures, "Making Your Mind: Molecules, Motion, and Memory," will be given by Dr. Eric Kandel, Howard Hughes Medical Institute investigator at Columbia University, and Dr. Thomas Jessell, Howard Hughes Medical Institute investigator also at Columbia University. The first lecture is titled "Mapping Memory in the Brain." And now to introduce our program, the President of the Howard Hughes Medical Institute, Dr. Thomas Cech. 2. Welcome by HHMI President Dr. Thomas Cech (1:08) [DR. CECH] Welcome to the Howard Hughes Medical Institute and the 2008 Holiday Lectures on Science. The Institute initiated this series in 1993. In 1995 I had the pleasure of coming here and delivering the lectures on catalytic RNA, and since I've been President of the Institute it's been a great pleasure to be involved in choosing 18 terrific scientists to talk to students here in the auditorium. The Holiday Lectures are one of more than 30 research and education programs of the Institute and please visit our website www.hhmi.org to learn more about all of our activities. This lecture series focuses on the most complex organ in our body and arguably the one that most is responsible for making us human. Clearly without this organ you wouldn't be able to find this auditorium, and even if you got here you wouldn't understand a word that was being said. -
Meeting Program SID 2019 ANNUAL MEETING
Meeting Program SID 2019 ANNUAL MEETING 2019 Annual Meeting Scientific 2019 Annual Meeting Program Chairs, Committee Committee on Education Members, and Reviewers Chairs and Committee CHAIRS Members Dan Kaplan, MD/PhD, University of Pittsburgh CHAIRS Ethan Lerner, MD/PhD, Mass General Hospital Heidi Kong, MD, National Insitutes of Health Todd Ridky, MD/PhD, University of Pennsylvania COMMITTEE MEMBERS Lloyd Miller, MD/PhD, Johns Hopkins University COMMITTEE MEMBERS Kevin Wang, MD/PhD, Stanford University My Mahoney, PhD, Thomas Jefferson University Spiro Getsios, PhD, Aspect Biosystems Alexander Marneros, MD/PhD, Harvard University Peggy Myung, MD/PhD, Yale University Robert Dellavalle, MD/PhD, University of Colorado Marjana Tomic-Canic PhD, University of Miami Amanda MacLeod, MD, Duke University Vladimir Botchkarev, MD/PhD, Boston University Cristina de Guzman Strong, PhD, Washington University-St. Louis Tissa Hata, MD, University of California, San Diego Maryam Asgari, MD, Massachusetts General Hospital Ken Tsai, MD/PhD, Moffitt Cancer Center and Paul Nghiem, MD/PhD, University of Washington Research Institute Richard Granstein, MD, Weill Cornell Medical School Sarah Millar, PhD, Mt. Sinai Medical School Matthew Vesley, MD/PhD, Yale University REVIEWERS Anna Di Nardo, MD/PhD Jennifer Gill, MD/PhD, University of Texas Southwestern Carolyn Lee, MD/PhD Jonathan Silverberg, MD/PhD ACKNOWLEDGEMENTS Bogi Andersen, MD The organizers of the 2019 SID Annual Meeting gratefully Kavita Sarin, MD/PhD acknowledge the sponsors, exhibitors, and participants whose Peter Koch, PhD Tiffany C. Scharschmidt, MD attendance has helped to make this meeting possible. Joseph Merola, MD Sakeen Kashem, MD/PhD Thomas Hultsch, MD Amanda MacLeod, MD Liang Deng, MD/PhD Ya-Chieh Hsu, PhD Crystal Aguh, MD Katherine Radek, PhD Paul Nghiem, MD/PhD Alicia Mathers, PhD Raymond Cho, MD Zelma Chiesa, MD Anna Mandinova, MD/PhD Brian Capell, MD/PhD Ryan R. -
Dynamics of Excitatory-Inhibitory Neuronal Networks With
I (X;Y) = S(X) - S(X|Y) in c ≈ p + N r V(t) = V 0 + ∫ dτZ 1(τ)I(t-τ) P(N) = 1 V= R I N! λ N e -λ www.cosyne.org R j = R = P( Ψ, υ) + Mγ (Ψ, υ) σ n D +∑ j n k D k n MAIN MEETING Salt Lake City, UT Feb 27 - Mar 2 ................................................................................................................................................................................................................. Program Summary Thursday, 27 February 4:00 pm Registration opens 5:30 pm Welcome reception 6:20 pm Opening remarks 6:30 pm Session 1: Keynote Invited speaker: Thomas Jessell 7:30 pm Poster Session I Friday, 28 February 7:30 am Breakfast 8:30 am Session 2: Circuits I: From wiring to function Invited speaker: Thomas Mrsic-Flogel; 3 accepted talks 10:30 am Session 3: Circuits II: Population recording Invited speaker: Elad Schneidman; 3 accepted talks 12:00 pm Lunch break 2:00 pm Session 4: Circuits III: Network models 5 accepted talks 3:45 pm Session 5: Navigation: From phenomenon to mechanism Invited speakers: Nachum Ulanovsky, Jeffrey Magee; 1 accepted talk 5:30 pm Dinner break 7:30 pm Poster Session II Saturday, 1 March 7:30 am Breakfast 8:30 am Session 6: Behavior I: Dissecting innate movement Invited speaker: Hopi Hoekstra; 3 accepted talks 10:30 am Session 7: Behavior II: Motor learning Invited speaker: Rui Costa; 2 accepted talks 11:45 am Lunch break 2:00 pm Session 8: Behavior III: Motor performance Invited speaker: John Krakauer; 2 accepted talks 3:45 pm Session 9: Reward: Learning and prediction Invited speaker: Yael -
As the Year 2008 Draws To
FROM THE EDITORS s the year 2008 draws to a close, excitement and an expectation of change hang in the air, and not least in the field of neuroscience. “We have recently had a decade of the brain, and there is a sense that this will be a century of Aneuroscience,” says Pasko Rakic, one of three winners of this year’s Kavli prize for neuroscience, in an interview on page 893. Pasko Rakic, Sten Grillner and Thomas Jessell were recognized for their pioneering work and outstanding contributions to elucidating the development and function of neural circuits. This highly prestigious prize, which will be given biannually in the fields of nanoscience, neuroscience and astrophysics, was awarded ▶ cover: ‘Winter action’ by Kirsten Lee, inspired for the first time this year. The interviews highlight the milestones in the by the Perspective on p957. careers of the awardees, their outlook on neuroscience and their advice for young neuroscientists. This issue also marks the start of a new article series that will cover different aspects of sleep. On page 910, Krueger and colleagues review the accumulated evidence for the hypothesis that sleep is regulated locally through the induction of sleep-like states in individual cortical cLaudia wiedeMann katherine whaLLey columns and that synchronization of these states might lead to whole-animal sleep. Another timely subject, which we cover in this issue’s Science and Society article (page 957), is the rising rate of ADHD diagnosis in children. Ilina Singh discusses the science behind the current diagnostic criteria and Leonie weLberg Monica hoyoS fLight the ethical and social issues that arise from medicating young children. -
Long-Term Potentiation: What’S Learning Got to Do with It?
BEHAVIORAL AND BRAIN SCIENCES (1997) 20, 597±655 Printed in the United States of America Long-term potentiation: What's learning got to do with it? Tracey J. Shors Department of Psychology and Program in Neuroscience, Princeton University, Princeton, NJ 08544 Electronic mail: shors࠾princeton.edu Louis D. Matzel Department of Psychology, Program in Biopsychology and Behavioral Neuroscience, Rutgers University, New Brunswick, NJ 08903 Electronic mail: matzel࠾rci.rutgers.edu Abstract: Long-term potentiation (LTP) is operationally defined as a long-lasting increase in synaptic efficacy following high-frequency stimulation of afferent fibers. Since the first full description of the phenomenon in 1973, exploration of the mechanisms underlying LTP induction has been one of the most active areas of research in neuroscience. Of principal interest to those who study LTP, particularly in the mammalian hippocampus, is its presumed role in the establishment of stable memories, a role consistent with ªHebbianº descriptions of memory formation. Other characteristics of LTP, including its rapid induction, persistence, and correlation with natural brain rhythms, provide circumstantial support for this connection to memory storage. Nonetheless, there is little empirical evidence that directly links LTP to the storage of memories. In this target article we review a range of cellular and behavioral characteristics of LTP and evaluate whether they are consistent with the purported role of hippocampal LTP in memory formation. We suggest that much of the present focus on LTP reflects a preconception that LTP is a learning mechanism, although the empirical evidence often suggests that LTP is unsuitable for such a role. As an alternative to serving as a memory storage device, we propose that LTP may serve as a neural equivalent to an arousal or attention device in the brain. -
Front Matter (PDF)
When moving ahead means not momng at all. When you're probing or recording at Because accidents hap- the single-cell level, there's no room for pen, our exclusive CleanTop error, or vibration. surface design safely con- That's why leading researchers world- tains spills of water and other wide specify TMC vibration corrosive liquids. And it also isolation systems: laboratory maintains the highest level of structural damping and The 1-inch long welded tables, optical tables, and steel cups in our patented table-top and floor platforms. stiffness needed for the most CleanTop honeycomb top Our patented Gimbal Piston ®Air critical applications, safely contain spills. Isolator System effectively eliminates So when you absolutely need to move ahead, both vertical and horizontal floor vibra- move up to TMC, the world's most intelligent Ouroil-free Gimbal tion. When it's combined with our vibration solution. Contact our Technical Sales Piston provides isolation unique, highly damped, stainless steel in all directions, for even Group today. I the lowest input levels, laminate top or all-steel, spillproof CleanTop,~ iM you are assured of unequalled Technical Manufacturing Corporatlon 15 Centennial Drive • Peabody, MA 01960, USA performance, guaranteed. Our stainless steel laminated top is ideal Tel: 508-532-6330 • 800-542-9725 Fax: 508-531-8682 if mounting holes are not required. Vibmlion Solutions NG Editors Ronald Davis (Houston) Richard Morris (Edinburgh) Larry Squire (San Diego) Eric Kandel (New York) Carla Shatz (Berkeley) Charles Stevens (La Jolla) Managing Editor Judy Cuddihy (Cold Spring Harbor) Editorial Board Per Anderson (Oslo) Martin Heisenberg (Wurzburg) Philippe Ascher (Paris) Susan Hockfleld (New Haven) Man D. -
The Neuro Nobels
NEURO NOBELS Richard J. Barohn, MD Gertrude and Dewey Ziegler Professor of Neurology University Distinguished Professor Vice Chancellor for Research President Research Institute Research & Discovery Director, Frontiers: The University of Kansas Clinical and Translational Science Grand Rounds Institute February 14, 2018 1 Alfred Nobel 1833-1896 • Born Stockholm, Sweden • Father involved in machine tools and explosives • Family moved to St. Petersburg when Alfred was young • Father worked on armaments for Russians in the Crimean War… successful business/ naval mines (Also steam engines and eventually oil).. made and lost fortunes • Alfred and brothers educated by private teachers; never attended university or got a degree • Sent to Sweden, Germany, France and USA to study chemical engineering • In Paris met the inventor of nitroglycerin Ascanio Sobrero • 1863- Moved back to Stockholm and worked on nitro but too dangerous.. brother killed in an explosion • To make it safer to use he experimented with different additives and mixed nitro with kieselguhr, turning liquid into paste which could be shaped into rods that could be inserted into drilling holes • 1867- Patented this under name of DYNAMITE • Also invented the blasting cap detonator • These inventions and advances in drilling changed construction • 1875-Invented gelignite, more stable than dynamite and in 1887, ballistics, predecessor of cordite • Overall had over 350 patents 2 Alfred Nobel 1833-1896 The Merchant of Death • Traveled much of his business life, companies throughout Europe and America • Called " Europe's Richest Vagabond" • Solitary man / depressive / never married but had several love relationships • No children • This prompted him to rethink how he would be • Wrote poetry in English, was considered remembered scandalous/blasphemous.