1 Magnetoelectric Effects in Ferromagnetic Metal-Piezoelectric

Total Page:16

File Type:pdf, Size:1020Kb

1 Magnetoelectric Effects in Ferromagnetic Metal-Piezoelectric 1 Magnetoelectric Effects in Ferromagnetic Metal-Piezoelectric Oxide Layered Structures U. Laletsin1, N. Paddubnaya1, G. Srinivasan2, M.I. Bichurin3 1Institute of Technical Acoustics, National Academy of Sciences of Belarus, 210717 Vitebsk, Belarus 2Physics Department, Oakland University, Rochester, Michigan, USA 3 Department of Engineering Physics, Novgorod State University, Novgorod, Russia ABSTRACT Frequency dependence of magnetoelectric (ME) coupling is investigated in trilayers of ferromagnetic alloy and piezoelectric lead zirconate titanate (PZT). The ferromagnetic phases studied include permendur, a soft magnet with high magnetostriction, iron, nickel, and cobalt. Low frequency data on ME voltage coefficient versus bias magnetic field indicate strong coupling only for trilayers with permendure or Ni. Measurements of frequency dependence of ME voltage reveal a giant ME coupling at electromechanical resonance. The ME interactions for transverse fields is an order of magnitude stronger than for longitudinal fields. The maximum voltage coefficient of 90 V/cm Oe at resonance is measured for samples with nickel or permendure and is three orders of magnitude higher than low-frequency values. 1. INTRODUCTION parallel to magnetic fields (longitudinal ME effect). The measurements were carried out at low Harshe and co-workers proposed a new frequencies (1.0 kHz) and at electromechanical direction in the development of ME composites, i.e., resonance frequency (~330 kHz). The resonance magnetostrictive-piezoelectric layerd structures [1]. frequency was determined by sample size and The primary advantages of such structures are low composite parameters. leakage currents and a high degree of polarization. The d.c magnetic field dependence of ME The use of ferromagnetic metals helps to accomplish voltage coefficient (MEVC) was measured for a very high degree of polarization compared to oxide transverse and longitudinal fields. We measured an ferromagnets [2]. This work is devoted to increase in MEVC with increasing H, followed by a investigations of ME effects in a trilayer metal- drop at high fields. The magnitude of MEVC was piezoelectric-metal structure. We used lead zirconate found to depend on the thickness and nature of the titanate (PZT) for the piezoelectric phase. The bonding medium. The maximum MEVC was thickness of PZT layers varied from 0.3 to 0.8 mm. measured for samples with PZT thickness of 0.4 mm Permendure, a Ni-Fe alloy, Fe, Ni or Co with a and 0.36 mm. Longitudinal ME effect was an order thickness of 0.18 mm was used as the ferromagnetic of magnitude smaller than transverse ME effect. The phase. Trilayers were made by bonding the PZT and maximum ME voltage coefficient obtained at low the metal disks. frequency varied from 0.2 to 0.65 V/cm Oe, The ME voltage coefficient was determined by depending on the nature of ferromagnetic phase. measuring the electric field generated across the Samples with Co yielded the lowest MEVC and the piezoelectric layer when an a.c. magnetic field and a highest are for trilayers with permendur. The d.c. magnetic field were applied to sample. There maximum ME voltage coefficient obtained at were two variants of the experiment. In the first resonance frequency was equal to 90 V/cm Oe. These configuration, the electrical polarization was results are analyzed in terms of recent theoretical perpendicular to magnetic fields (transverse ME models for ME effects in bilayers [3]. effect). In the second, electrical polarization was 2 2. Experiment thickness of 0.36 mm. For the longitudinal fields, as Trilayer structures of ferromagnetic permendur, H is increased from zero, one observes increase in iron, nickel, or cobalt and piezoelectric PZT were αE,33 to a maximum at Hm = 600 Oe. With further synthesized. Permendur (P) is a soft magnetic alloy increase in H, αE,33 decreases rapidly to a minimum. consisting of 49% iron, 49% cobalt and 2% When H is reversed, αE,33 becomes negative (a 180 vanadium. It is an ideal material for studies on ME deg. phase difference between δH and δE), but the composites due to desirable low resistivity and high field dependence remains the same as for positive H. magnetization (23.4 kG), Curie temperature (1213 For transverse fields, Fig.1 shows a similar variation K), permeability and magnetostriction (70 ppm) [4]. in the ME voltage coefficient with H as for the PZT was chosen due to high ferroelectric Curie longitudinal case but with the following departures. temperature and piezoelectric coupling constant. (i) The maximum in αE,31 occurs at a much smaller PZT, 9 mm in diameter, was first poled and then Hm of 150 Oe compared to the longitudinal case. (ii) bonded to metals with 0.01-0.03 mm thick layer of an The peak value of α is an order of magnitude epoxy. Trilayers were made with the central PZT E,31 higher than for α layer bonded to outer metal layers. For P-PZT-P, the E,33. thickness of metal layer was 0.18 mm for all the 800 Permendure-PZT-Permendur samples studied. PZT thickness varied from 0.2 mm f = 1 kHz 600 to 0.8 mm. For samples with transition metals, the ) e Transverse thickness of O m 400 c / metals and PZT was 0.4 mm. V (m 200 t For ME characterization, we measured the n e i electric field produced by an alternating magnetic c 0 ffi Longitudinal field applied to the biased composite. The samples e Co -200 were placed in a shielded 3-terminal holder and e g a t placed between the pole pieces of an electromagnet l -400 o that was used to apply the bias magnetic field H. The V E -600 required ac magnetic field of δH=0.01-1 Oe at 10 Hz M - 1 MHz parallel to H was generated with a pair of -800 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Helmholtz coils. The induced electric field δE perpendicular to the sample plane was estimated from H (kOe) Fig.1: Variations in longitudinal and transverse the voltage δV measured with an oscilloscope. The magnetoelectric (ME) voltage coefficients with the ME voltage coefficient is estimated from α = δE/δH E bias magnetic field H for a trilayer composite of = δV/t δH where t is the thickness of PZT. The Permendur-PZT-Permendur. measurements were done for two different field orientations. With the sample plane represented by Similar measurements were made on trilayers of (1,2), the transverse coefficient αE,31 was measured Fe-PZT-Fe, Co-PZT-Co and Ni-PZT-Ni and the data for the magnetic fields H and δH along direction-1 for transverse MEVC are shown in Fig.2. From the (parallel to the sample plane) and perpendicular to δE data, one infers the presence of strong ME coupling. (direction-3). The longitudinal coefficient αE,33 is The coupling strength, however, varies with the measured for all the fields perpendicular to the nature of ferromagnetic metal, with the weakest sample plane. Magnetoelectric characterization was coupling for Co containing samples and the strongest carried out at room temperature as a function of for trilayers with Ni. One also observes unique frequency of the ac magnetic field and bias magnetic characteristics such as weak ME coupling for low field H. fields and zero-crossing at high fields for Fe-PZT-Fe. Next we compare αE values in Fig.1 and 2 with 3. Results and Discussion results for similar composites. Systems of interest in Figure 1 shows representative data on the H the past were bulk samples of ferrites with barium dependence of the longitudinal and transverse ME titanate or PZT. The αE in Fig.1 are a lot higher than voltage coefficients. The measurements were done at values reported for bulk composites of cobalt ferrite 1 kHz on a P-PZT-P trilayer sample with a PZT 3 (CFO) or nickel ferrite (NFO) with PZT or BaTiO3 [1]. Layered composites studied so far include ferrite- 70 PZT [2,3] lanthanum manganite-PZT [5] and Permendur-PZT-Permendur 60 terfenol-PZT [6]. For comparison, the highest value ) Oe for αE,31 is 60 mV/cm Oe in bilayers of lanthanum m c 50 / V manganites-PZT, 400 mV/cm Oe for NFO–PZT and ( t Transverse 4680 mV/cm Oe for Terfenol-PZT. Thus the results en 40 ci fi f in Fig.1 provide clear evidence for one of the highest e o 30 ME coupling reported for any composites. C e ag t l 20 o ) 500 100 V Ni-PZT-Ni E Oe Longitudinal M 10 m c / Fe-PZT-Fe V m ( t 250 50 0 n e 310 320 330 340 350 360 i c i Co-PZT-Co f f (kHz) ef o C 0 0 e Fig.3: Frequency dependence of transverse and ag t l longitudinal ME voltage coefficients for the P-PZT-P o V E trilayer. The bias field H was set for maximum ME M -250 -50 e s coupling (Fig.1). The resonance frequency r e sv corresponds to the electromechanical (EMR) for PZT n a r T -500 -100 in the composite. -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 H (kOe) We carried out measurements of resonance ME effect in trilayers of Fe-PZT-Fe, Co-PZT-Co and Ni- Fig.2: Similar data as in Fig.1 for Fe-PZT-Fe, Co- PZT-Ni and the results for transverse MEVC are PZT-Co and Ni-PZT-Ni. shown in Fig.4. A sharp resonance with a high Q is evident for all three samples and the resonance value We also performed studies on the frequency of αE,31 follows the trend observed at low dependence of the ME coupling.
Recommended publications
  • A Powerful Force in Precision Strip & Foil
    A Powerful Force in Precision Strip & Foil Rolling Slitting,Heat Treating,Testing & Evaluation of Magnetic & Non-Magnetic Alloys ■ Nickel Iron Alloys: ■ Titanium Alloys: Moly Permalloy, 4750-49 Ni, Invar® 36 Titanium (grades 1 through 4), 3A1-2.5V, 15-3-3-3, Bio-Compatible Alloys ■ Controlled Expansion Alloys: NiSpan-C®,Kovar®-029, Sealmet® 2917, Al 42 ■ Nickel Base and High-Temperature Alloys: Nickel 201, 233 and 290; Inconel® 600, 601, 617, 625, 718 ■ Magnetic and Cobalt Alloys: and X750; Hastelloy® B-2, C-276, C-22 Arnokrome™,Vanadium Cobalt Alloys, Arnon™ and 3% Silicon Steel (Thin; Oriented and Non-Oriented) ■ Spring Alloys: Arnavar™,Havar®, Elgiloy® ■ Copper-Base Alloys: Beryllium Copper Alloy 25, OFHC Copper, ■ Ferrous Based: Phosphor Bronze Carbon and Low Alloy Steels, Stainless Steels, Pure Iron Arnold’s Rolled Products works extensively with these and a number of other magnetic and non-magnetic alloys to exceed your demanding physical and mechanical requirements. Arnold’s own ARNOKROME™ is one example of our capabilities. We can customize the properties of ARNOKROME™ or other alloys to satisfy a variety of mechanical, surface, magnetic, or other requirements. Capabilities: ■ Precision thin gauge alloy foil available in: sheet, strip and continuous coils. Available widths from 16.5" to a minimum of 0.035" (0.9 mm). Minimum thickness of 0.0005" (0.0125 mm) for 4 to 16.5" in width and 0.000085" (2.16 micron) for 4" widths and less. ■ Arnold offers wire, rod and bar stock for selected magnetic alloys such as the ductile ARNOKROME™ III alloy developed by Arnold based on the iron-chrome-cobalt alloy system.
    [Show full text]
  • Title Here Electricity, Magnetism And… Survival
    Electricity,Title Magnetism Here and… Survival Author Steve Constantinides,Venue Director of Technology Arnold Magnetic TechnologiesDate Corporation March 1, 2015 1 © Arnold Magnetic Technologies [email protected] What we do… Performance materials enabling energy efficiency Magnet Permanent High Precision Thin Production & Magnet Performance Metals Fabrication Assemblies Motors •Specialty Alloys from 0.000069” ~1.75 microns • Rare Earth • Precision •Smaller, Faster, •Sheets, Strips, & Coils Samarium Cobalt Component Hotter motors •Milling, Annealing, (RECOMA®) Assembly •Power dense Coating, Slitting • Alnico • Tooling, package •ARNON® Motor • Injection molded Machining, •High RPM magnet Lamination Material • Flexible Rubber Cutting, Grinding containment •Light‐weighting • Balancing •>200°C Operation • Sleeving Engineering | Consulting | Testing Stabilization & Calibration | Distribution 2 © Arnold Magnetic Technologies • First, a brief introduction to Arnold. • Arnold started largely as a magnetic products manufacturer. • Over the years we have evolved into an integrated producer as shown here – still manufacturing magnets, but increasingly producing assemblies and finished devices that use magnetic materials. Agenda • Energy and Magnetism • Permanent Magnets and Motors • Applications • Soft magnetic materials • Future of magnetic materials 3 © Arnold Magnetic Technologies • Let’s follow the professor through these topics starting with an introduction to what magnetism is and where it originates. Energy in-Efficiency 25.8 65% is waste energy 38.2 60.6% Lost Energy 39.4% “Useful” Delivered Energy Additional losses at end use applications A quad is a unit of energy equal to 1015 (a short-scale quadrillion) BTU, or 1.055 × 1018 joules (1.055 exajoules or EJ) in SI units. 4 © Arnold Magnetic Technologies • Lawrence Livermore National Laboratories personnel have produced Sankey plots of energy production and use for over a hundred countries.
    [Show full text]
  • Determination of the Structure-Processing-Properties Relationship of Fe-6.5Wt%Si
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Determination of the structure-processing-properties relationship of Fe-6.5wt%Si Chad Richard Macziewski Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Materials Science and Engineering Commons, and the Mechanics of Materials Commons Recommended Citation Macziewski, Chad Richard, "Determination of the structure-processing-properties relationship of Fe-6.5wt%Si" (2019). Graduate Theses and Dissertations. 17737. https://lib.dr.iastate.edu/etd/17737 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Determination of the structure-processing-properties relationship of Fe-6.5wt%Si by Chad Macziewski A dissertation submitted to the graduate faculty in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Materials Science and Engineering Program of Study Committee: Jun Cui, Major Professor Iver Anderson Scott Chumbley Matthew Kramer Frank Peters The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 ii DEDICATION I would like to dedicate this dissertation to my wife Brittany and my son Rowan without whose support I would not have been able to accomplish my dream of obtaining my doctorate.
    [Show full text]
  • Attainment of High Magnetostriction in Vanadium Permendur by Mechanical Thermal Treatmeant Peter Joseph Moroz Jr
    Lehigh University Lehigh Preserve Theses and Dissertations 1964 Attainment of high magnetostriction in vanadium permendur by mechanical thermal treatmeant Peter Joseph Moroz Jr. Lehigh University Follow this and additional works at: https://preserve.lehigh.edu/etd Part of the Materials Science and Engineering Commons Recommended Citation Moroz, Peter Joseph Jr., "Attainment of high magnetostriction in vanadium permendur by mechanical thermal treatmeant" (1964). Theses and Dissertations. 3271. https://preserve.lehigh.edu/etd/3271 This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact [email protected]. J; · ....... ,o": Attainment of. :Hi······· g_ ·h· .. -.-· .. · ·. ·.:. ·• ..-. Magnetostriction i;q V:artad.lum. Permendur by Mechanic.al Th ..ett~ai. T,t:_eatments ~-. ;by. A .th:e·s.fs \ :rJ:::e-s:.e-n·.t.e:d to :.·tJ1~:. ·Graduate Facult·y: o··f .L.e:I-r:tgh University ·'s .~ ., Mast:et: o.-f Sc:i·en.c;er L~h·f·g11 .Un1versity· . ~ 19:64. .. ,...,,•t;:1:,;.t,..-,.--~·:,,,.,,~.·,.<111,--:',~-,i.,~u,_.,.t~.,.,--rn,;,::··'"· ·• ....... , · • · '"''· \ ~·- ,,.., •. ~,.,,,~..... ,.t, .....,-,,•' ""•-·st· .... JM< •"•••·••••,··u,.•, ·-· '"••·•-~ ·•,.,....... ·· ' . I l ·.~. : \'J ),. ' C.ert:i.f·ic=ate of- Approval- ' ····.·······--. - i .. .. ' .. ··• ·-;-·· -:,.. ....... ,, ... -·,-~·-·--;.-"·"';··-·.. ,~,,"."-~ ... ............. ',--' .. · . _- ~ ·- ~-- j • ·'J.'h:i'.S thesis ts· :~qce.pt.ed and approved in partial· fulf.illµi~nt i . ,, o:f 't::.he r_e_:qu:ir-emertts fat· the de·gree of Mas.ter of Science· .. ""- 1-2 (date) G. P. Conard, II Professor in Charge .. .,. J. Lib Head of Department J::i: ...... '! • \ ' • . ', ),1,., ,. .... , •• ,,.,<oj,_.. 'l,a..~.i,.,.,.h ........
    [Show full text]
  • Direct & Pulse Current Electrodeposition of Iron Group
    Technical Article Direct & Pulse Current Electrodeposition Of Iron Group Thin Film Alloys Containing Vanadium by M. Schwartz, C. Arcos & K. Nobe* Direct current (DC) and pulse current (PC) electrode- tion (Bs), low coercivity (Hc), near zero magnetostriction position of binary and ternary alloys of the iron group (λ) and high permeability (µ).3 (IG) metals and vanadium are discussed. 90 Co/10 Fe Electrodeposited Permalloy (80 Ni/20 Fe) fi lms have alloy compositions with substitutional additions of such desirable magnetic properties and have been used desirable small amounts of V (~2%) were obtained; exclusively as pole material in thin fi lm heads for digital Co-Ni-V and Ni-Fe-V alloys were also deposited. recording.4 However, projections of higher storage density The effects of complexer, pH and current density on and output performance for recording applications show deposit composition and cathode current effi ciency that soft magnetic materials superior to Permalloy are (CCE) are discussed and compared to deposition of required.2 Thus, considerable effort has been directed to binary alloys of the iron group only. Impedance mea- the development of materials similar to Permalloy but with surements indicate greater corrosion resistance for higher magnetic saturation, higher permeability and higher ternary Co-Fe-V alloys than for binary Co-Fe alloys. resistivity.5,6 Crude magnetic measurements show approximately Since the discovery of the giant magnetoresistance two times greater “relative magnetic moments” for (GMR) effect in 1988, i.e., the change in electrical resis- Co-Fe-V deposits than for deposits from typical Ni-Fe tance in response to an applied magnetic fi eld, it has (Permalloy) solutions.
    [Show full text]
  • Electrical and Magnetic Properties of Metals
    \ 396-4 V) PUBLICATION a NBS SPECIAL / / National Bureau of Standards U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (I) a basis lor the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and 14) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement: coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center " for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics — Cryogenics - — Electromagnetics - — Time and Frequency '-'. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • Study on Magnetic Materials Used in Power Transformer and Inductor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE 2006 2nd International Conference on Power Electronics Systems and Applicationsprovided by PolyU Institutional Repository Study on Magnetic Materials Used in Power Transformer and Inductor H. L. Chan, K. W. E. Cheng, T. K. Cheung and C. K. Cheung Digipower Technology Limited, Hong Kong Department of Electrical Engineering, The Hong Kong Polytechnic University ABSTRACT: Power electronics system is generally saturate itself, and leads to a larger magnetizing current. comprised of electrical and magnetic circuits. Nowadays, Short-circuit occurred in the winding as a result of there were a lot of research works on circuit topologies diminishing inductance and thermal runaway. ranging from single switch converter to soft-switching topologies, but the most difficult problems encountered 500 by many design engineers were magnetic issues, such as construction of transformer or inductor, application of Material R 400 air-gap, under- or over-estimated power rating of the Material P magnetic components, selection of magnetic core and so Material F on. [mT] Bsat 300 Material J The overall performance of any power converters Material W depend on not only the circuit design, but also the Material H application of magnetic components, this paper will 200 20 40 60 80 100 120 address some common problems related to the Temperature [degree C] applications of magnetic components, and some critical Figure 1: Flux Density vs. Temperature factors involved into development of such components for power converters. Power losses in transformers or inductors come A brief summary of some major magnetic materials, from core losses and copper losses.
    [Show full text]
  • Cobalt – Essential to High Performance Magnetics
    COBALT Essential to High Performance Magnetics Robert Baylis Steve Constantinides Manager – Industrial Minerals Research Director of Technology Roskill Information Services Ltd. Arnold Magnetic Technologies Corp. London, UK Rochester, NY USA Our World Touches Your World Every Day… © Arnold Magnetic Technologies 1 • Magnetic materials range from soft (not retaining its own magnetic field) to hard (retaining a field in the absence of external forces). • Cobalt, as one of the three naturally ferromagnetic elements, has played a crucial role in the development of magnetic materials • And remains, today, essential to some of the highest performing materials – both soft and hard. Agenda • Quick review of basics • Soft magnetic materials • Semi-Hard magnetic materials • Permanent Magnets • Price Issues • New Material R&D Our World Touches Your World Every Day… © Arnold Magnetic Technologies 2 • Let’s begin with a brief explanation of what is meant by soft, semi-hard and hard when speaking of magnetic characteristics. Key Characteristics of Magnetic Materials Units Symbol Name CGS, SI What it means Ms, Js Saturation Magnetization Gauss, Tesla Maximum induced magnetic contribution from the magnet Br Residual Induction Gauss, Tesla Net external field remaining due to the magnet after externally applied fields have been removed 3 (BH)max Maximum Energy Product MGOe, kJ/m Maximum product of B and H along the Normal curve HcB (Normal) Coercivity Value of H on the hysteresis loop where B = 0 HcJ Intrinsic Coercivity Value of H on the hysteresis loop where B-H = 0 μinit Initial Permeability (none) Slope of the hysteresis loop as H is raised from 0 to a small positive value μmax Maximum Permeability (none) Maximum slope of a line drawn from the origin and tangent to the (Normal) hysteresis curve in the first quadrant ρ Resistivity μOhm•cm Resistance to flow of electric current; inverse of conductivity Our World Touches Your World Every Day… © Arnold Magnetic Technologies 3 • These are most of the important characteristics that magnetic materials exhibit.
    [Show full text]
  • Suzhou A-One Special Alloy Co., Ltd
    Suzhou A-one Special Alloy Co., Ltd *Superalloy *Anti-corrosion alloy *Precision alloy *Special stainless steel No.2 Weihua Road, Suzhou Industrial Park, Jiangsu Province, China Tel: +86 512 62518432 Fax: +86 512 65914835 Email: [email protected] 1 Website: www.sz-alloy.com Suzhou A-one Special Alloy Co., Ltd CONTENT 1 Expandable Alloy...........................................................................................................................2 1.1 Alloy 27...............................................................................................................................3 1.2 Alloy 42 & 48 & 52.............................................................................................................5 1.3 Alloy 46 ............................................................................................................................11 1.4 Ceramvar Alloy.................................................................................................................14 1.5 Invar Alloy ........................................................................................................................16 1.6 Kovar Alloy.......................................................................................................................19 2 Elastic Alloy.................................................................................................................................27 2.1 Axle-centre alloy...............................................................................................................27
    [Show full text]
  • Magnetic Properties of Metals and Alloys
    19 Magnetic Properties of Metals and Alloys. 19.1 Magnetic Field Quantities and Properties Survey. 19.1.1 Introduction. This chapter introduces metals and alloys used for soft and hard magnets. Alloy de- velopment illustrates the materials paradigm of synthesis structure properties → → performance relationships. Development is motivated by intrinsic materials prop- → erties, such as saturation induction and Curie temperature. Advancement of alloys for applications involves optimizing extrinsic properties, such as remanent induction and coercivity by processing to achieve suitable microstructures. Magnetic hysteresis is useful in permanentmagnets where we wish to store a large metastable magnetization. For soft magnets, small hysteresis losses per cycle are desirable. Metals and alloys for soft and hard magnetic materials now are ubiquitous in many magnetic applications in bulk, powder, nanocrystal and thin film forms. We begin this chapter by reviewing the magnetic properties which are relevant to soft and hard magnetic materials, respectively. We develop the subject by considering: (i) A summary of technical magnetic properties of importance for soft and hard magnetic materials in the context of a few illustrative examples. (ii) Definitions of important magnetic phenomena which are relevant to the deter- mination of these properties. (iii) A survey of alloys within a historical context as to their development. (iv) An extrapolation to the future to highlight some emerging areas of magnetic metals and alloys relevant to evolving technological needs with an emphasis on materials important to energy applications. The magnetization, M, or magnetic induction, B, is an extensive material property and the field, H, is an intensive variable. These form a set of conjugate variables which define the magnetic work in a thermodynamic analysis.
    [Show full text]
  • Magnetic Materials for Accelerator Electromagnets
    Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences • Vol. 6 (55) No. 2 - 2013 MAGNETIC MATERIALS FOR ACCELERATOR ELECTROMAGNETS V. PRICOP1 Gh. SCUTARU1 E. HELEREA1 Abstract: Accelerator electromagnets are used in synchrotrons for the guidance of particles. For the successful operation of such synchrotrons, high field homogeneity is required to be provided by the electromagnets. Furthermore, the magnetic field characteristics of all electromagnets of one type installed have to be identical. A high field homogeneity and equal performance from electromagnet to electromagnet can only be achieved if great care is taken when the selection of magnetic materials is done, and if a rigorous quality assurance plan is implemented during manufacturing. In this paper a procedure is presented for selecting the magnetic material and mandatory steps during manufacturing are outlined. Key words: magnetic materials, high-energy particles, electromagnet, accelerator. 1. Introduction electromagnet has to decide on the magnetic material based on the field Particle accelerators are used to generate requirements. The first decision considers high-energy particles which are for example the dynamic requirements of the magnetic brought to collision to perform fundamental field. In case of static operation a solid particle research, to generate light with magnetic core can be used. high-brightness, or to produce ions for If the electromagnet will be ramped, the medical treatment. Modern research fields core will have to be laminated to minimize would not be possible without controlled the effects of the magnetic field due to access to these high-energy particles. eddy currents. If the electromagnet will not For the successful operation of such be ramped the magnetic saturation and synchrotrons, electromagnets with high field permeability of the material in the working homogeneity and equal magnetic properties range will be the driving factors.
    [Show full text]
  • Rolled Products Brochure
    Precision Quality Experience Precision The Advantage of Arnold Magnetic Technologies Arnold Magnetics’ Rolled Products Division was established in 1950 to manufacture foil and precision strip alloys for our in-house production of tape-wound magnetic cores. The need for precise thickness and process control required us to develop specialized processes that were capable of achieving necessary characteristics in a variety of alloys. Our experience with these techniques and capabilities earned us a reputation as a premier custom processor of a wide spectrum of alloys. Arnold Magnetics’ foil and precision strip products are preferred by many companies in aerospace, medical electronics, telecommunications, instruments, sensors, electrical, and many metalworking industries. To ensure continued conformance with the quality demanded by today’s competitive environment, Arnold Magnetics has invested in personnel, training, equipment and quality control programs to meet our customers’ requirements. “We judge our performance These processes produce components for such critical applications as springs, strain gauges, shielding, gaskets, brazing, magnetic and on how well we satisfy our electromagnetic sensors, honeycomb structures, implant devices, transformers and motor laminates, and many other precision customers’ needs.” applications. Capabilities ■ Precision thin-gauge alloy foil available in: sheet, strip and continuous coils. Available widths from 16.5" to a minimum of 0.035" (0.9 mm). Minimum thickness of 0.0005" (0.0125 mm) for 4 to 16.5" in width and 0.000085" (2.16 micron) for 4" widths and less. ■ Arnold offers wire, rod and bar stock for selected magnetic alloys such as the ductile ARNOKROME™ III alloy developed by Arnold based on the iron-chrome-cobalt alloy system.
    [Show full text]