Material Choice for a Rotor in a Switched Reluctance High Speed Motor
Total Page:16
File Type:pdf, Size:1020Kb
Material choice for a rotor in a switched reluctance high speed motor Materialval för rotor i en variabel reluktans höghastighetsmotor Christoffer Christiansen Faculty of Health, Science and Technology Degree project for master of science in engineering, mechanical engineering 30 credit points Supervisor: Pavel Krakhmalev and Johan Fjällman Examiner: Jens Bergström Date: Spring semester 2017, 2017-05-24 I Abstract With the increasing environmental impact from the automotive industry, electric vehicles become more and more popular. This combined with the great breakthroughs in fast electronics the switched reluctance motor (SRM) has again gained popularity in recent years. Due to its cheap and rugged construction it is a good alternative to the permanent magnet motors and to the induction motor. The ´two main problems holding the SRM back are torque ripple and the acoustic noise generated from it. A lot of research is currently being performed in order to find a solution to these issues. This thesis has investigated different materials for the rotor in a high speed SRM. Different materials have been evaluated based on both mechanical and magnetic properties. This is done through simulations of the forces acting on the rotor combined with simulations of the magnetic field. The forces are simulate in the DASSULT SYSTEMS ABAQUS program and the magnetic field is simulate using AVL FIRE. Three different kinds of alloys are investigated, two different cobalt alloys are simulated as well as a silicon alloy with pure iron as a reference. The results show that the material needs to have a yield strength of at least 349 MPa to withstand the forces affecting the rotor. And that by using the high purity cobalt-iron alloy the generated torque could be increased with up to 20.9%, but with a cost increase of 3151.9% compared to the silicon alloy. II Sammanfattning Med den ökande miljöpåverkan från fordonssektorn växer intresset för elektriska fordon. Det ökande intresset kombinerat med stora framgångar inom elektronik har väckt ett stort intresse för den variabla reluktansmotorn. Tack till dess pålitliga och billiga konstruktion är det en bra kandidat att ersätta permanent magnet motorn och induktionsmotorn. Det som tidigare hållit tillbaka den variabla reluktansmotor är fluktuationer i de genererade vridmomentet och de ljud som genereras ifrån detta. Mycket forskning pågår för att hitta lösningar till dessa problem. Detta examensarbete har fokuserat på att undersöka olika material för att använda i rotorn för en variabel reluktanshöghastighetsmotor. Olika material har utvärderats med avseende på både mekaniska och magnetiska egenskaper. Detta har genomförts genom simuleringar av de krafter som påverkar rotorn kombinerat med simuleringar av magnetfälten i rotorn. Spänningarna i materialet har simulerats i DASSULT SYSTEMS ABAQUS och magnetfältet har simulerats i AVL FIRE. Tre olika legeringar testades, två kobolt legeringar och en kisel legering. Rent järn simulerades också för att agera som referens. Resultaten visar att sträckgränsen för materialen måste vara över 349 MPa för att klara de påfrestningar som rotorn utsätts för. Genom att använda kobolt järn legeringen kunde vridmomentet ökas med 20.9%, med en ökad kostnad av 3151.9% jämfört med kisel järn legeringen. III Acknowledgments I would firstly like to thank Jonas Modin for giving me the opportunity to perform this thesis at AVL. I would also like to extend my gratitude to Dr. Johan Fjällman for his valuable supervision and guidance throughout the entire project. On Karlstad University I would like to thank my supervisor Professor Pavel Krakhmalev for always answering my questions, and helping me develop the idea for this thesis. Lastly I would like to thank my friends and family for supporting me and always keeping me motivated. Christoffer Christiansen 30th of June 13, 2017 IV Content 1 INTRODUCTION ___________________________________________________________ 1 1.1 BACKGROUND ___________________________________________________________ 1 1.1.1 Switched reluctance motor _______________________________________________ 1 1.2 PROBLEM STATEMENT _____________________________________________________ 3 2 THEORY OF MATERIAL ____________________________________________________ 4 2.1 MAGNETISM _____________________________________________________________ 4 2.1.1 Ferromagnetism ________________________________________________________ 4 2.1.2 Hysteresis loop ________________________________________________________ 5 2.1.2.1 Hysteresis losses ____________________________________________________________________ 5 2.1.3 Hard vs soft ___________________________________________________________ 6 2.1.4 Magnetic flux density ____________________________________________________ 7 2.2 ELECTRICAL STEEL________________________________________________________ 7 2.2.1 Composition ___________________________________________________________ 7 2.2.2 Grain orientation _______________________________________________________ 8 2.2.3 Lamination thickness ____________________________________________________ 8 2.2.4 Effect of stresses _______________________________________________________ 9 2.2.5 Heat treatment _________________________________________________________ 9 2.3 DIFFERENT ALLOYS USED TODAY ___________________________________________ 10 2.3.1 Low carbon steel ______________________________________________________ 11 2.3.2 Silicon steel __________________________________________________________ 11 2.3.3 Nickel alloys _________________________________________________________ 11 2.3.4 Cobalt alloys _________________________________________________________ 11 2.3.5 Density ______________________________________________________________ 12 2.3.6 Price _______________________________________________________________ 13 3 METHOD _________________________________________________________________ 14 3.1 DESIGN OF MOTOR _______________________________________________________ 14 3.1.1 Calculations of aimed torque_____________________________________________ 14 3.1.2 Rotor type ___________________________________________________________ 16 3.1.3 Calculations of rotor poles ______________________________________________ 16 3.1.4 Rotor diameter ________________________________________________________ 17 3.1.5 Rotor pole arc/pitch ____________________________________________________ 18 3.1.6 Stator pole arc/pitch ___________________________________________________ 19 3.1.7 Rotor inner diameter and axis diameter ____________________________________ 19 3.1.8 Air gap ______________________________________________________________ 19 3.1.9 Axis mounting ________________________________________________________ 19 3.1.10 Final rotor design ___________________________________________________ 20 3.2 SIMULATIONS ___________________________________________________________ 21 3.2.1 Abaqus ______________________________________________________________ 21 3.2.1.1 Mesh ____________________________________________________________________________ 21 3.2.1.2 Boundary conditions and load ________________________________________________________ 21 3.2.1.3 Von Mises Stress __________________________________________________________________ 22 3.2.1.4 Isotropic material __________________________________________________________________ 22 3.2.2 AVL FIRE ___________________________________________________________ 23 3.2.2.1 Maxwell stress tensor _______________________________________________________________ 23 3.2.2.2 Mesh ____________________________________________________________________________ 23 V 3.2.2.2.1 Mesh refinement______________________________________________________________ 23 3.2.2.2.2 Cell selections and faces __________________________________________________________ 25 3.2.2.3 Time step ________________________________________________________________________ 26 3.2.2.4 Control strategy ___________________________________________________________________ 26 3.2.2.5 Fill factor ________________________________________________________________________ 27 3.2.2.6 Current density ____________________________________________________________________ 27 3.2.2.7 B (H) curve _______________________________________________________________________ 27 3.2.2.8 Lamination thickness _______________________________________________________________ 28 4 RESULTS _________________________________________________________________ 29 4.1 ABAQUS 1 ______________________________________________________________ 29 4.2 AVL FIRE _____________________________________________________________ 34 4.3 ABAQUS 2 ______________________________________________________________ 37 5 DISCUSSION ______________________________________________________________ 40 5.1 FUTURE WORK __________________________________________________________ 42 6 CONCLUSION _____________________________________________________________ 43 7 REFERENCES _____________________________________________________________ 44 VI LIST OF TABLES Table 1.1 - Typical motor configurations ................................................................................... 3 Table 2.1 - Relative properties for differant alloys [21] .......................................................... 10 Table 3.1 - Motor specifications for various personal EV ....................................................... 15 Table 3.2 - Base speed vs max speed of different SRM .......................................................... 16 Table 4.1 – Results from calculation of discretization error ...................................................