The R Journal Volume 4/1, June 2012

Total Page:16

File Type:pdf, Size:1020Kb

The R Journal Volume 4/1, June 2012 The Journal Volume 4/1, June 2012 A peer-reviewed, open-access publication of the R Foundation for Statistical Computing Contents Editorial . .3 Contributed Research Articles Analysing Seasonal Data . .5 MARSS: Multivariate Autoregressive State-space Models for Analyzing Time-series Data . 11 openair – Data Analysis Tools for the Air Quality Community . 20 Foreign Library Interface . 30 Vdgraph: A Package for Creating Variance Dispersion Graphs . 41 xgrid and R: Parallel Distributed Processing Using Heterogeneous Groups of Apple Com- puters . 45 maxent: An R Package for Low-memory Multinomial Logistic Regression with Support for Semi-automated Text Classification . 56 Sumo: An Authenticating Web Application with an Embedded R Session . 60 From the Core Who Did What? The Roles of R Package Authors and How to Refer to Them . 64 News and Notes Changes in R . 70 Changes on CRAN . 80 R Foundation News . 96 2 The Journal is a peer-reviewed publication of the R Foun- dation for Statistical Computing. Communications regarding this pub- lication should be addressed to the editors. All articles are licensed un- der the Creative Commons Attribution 3.0 Unported license (CC BY 3.0, http://creativecommons.org/licenses/by/3.0/). Prospective authors will find detailed and up-to-date submission in- structions on the Journal’s homepage. Editor-in-Chief: Martyn Plummer Editorial Board: Heather Turner, Hadley Wickham, and Deepayan Sarkar Editor Programmer’s Niche: Bill Venables Editor Help Desk: Uwe Ligges Editor Book Reviews: G. Jay Kerns Department of Mathematics and Statistics Youngstown State University Youngstown, Ohio 44555-0002 USA [email protected] R Journal Homepage: http://journal.r-project.org/ Email of editors and editorial board: [email protected] The R Journal is indexed/abstracted by EBSCO, DOAJ. The R Journal Vol. 4/1, June 2012 ISSN 2073-4859 3 Editorial by Martyn Plummer Interface for R to call arbitrary native functions with- out the need for C wrapper code. There is also an ar- Earlier this week I was at the “Premières Rencontres ticle from our occasional series “From the Core”, de- R” in Bordeaux, the first francophone meeting of R signed to highlight ideas and methods in the words users (although I confess that I gave my talk in En- of R development core team members. This article glish). This was a very enjoyable experience, and by Kurt Hornik, Duncan Murdoch and Achim Zeilies not just because it coincided with the Bordeaux wine explains the new facilities for handling bibliographic festival. The breadth and quality of the talks were information introduced in R 2.12.0 and R 2.14.0. I both comparable with the International UseR! con- strongly encourage package authors to read this ar- ferences. It was another demonstration of the extent ticle and implement the changes to their packages. to which R is used in diverse disciplines. Doing so will greatly facilitate the bibliometric anal- As R continues to expand into new areas, we yses and investigations of the social structure of the see the development of packages designed to ad- R community. dress the specific needs of different user communi- Elsewhere in this issue, we have articles describ- ties. This issue of The R Journal contains articles on ing the season package for displaying and analyz- two such packages. Karl Ropkins and David Carslaw ing seasonal data, which is a companion to the book describe how the design of the openair package was Analysing Seasonal Data by Adrian Barnett and An- influenced by the need to make an accessible set of nette Dobson; the Vdgraph package for drawing tools available for people in the air quality commu- variance dispersion graphs; and the maxent pack- nity who are not experts in R. Elizabeth Holmes and age which allows fast multinomial logistic regression colleagues introduce the MARSS package for mul- with a low memory footprint, and is designed for ap- tivariate autoregressive state-space models. Such plications in text classification. models are used in many fields, but the MARSS package was motivated by the particular needs of re- The R Journal continues to be the journal of searchers in the natural and environmental sciences, record for the R project. The usual end matter sum- There are two articles on the use of R outside the marizes recent changes to R itself and on CRAN. It desktop computing environment. Sarah Anoke and is worth spending some time browsing these sec- colleagues describe the use of the Apple Xgrid sys- tions in order to catch up on changes you may have tem to do distributed computing on Mac OS X com- missed, such as the new CRAN Task View on dif- puters, and Timothy Bergsma and Michael Smith ferential equations. Peter Dalgaard highlighted the demonstrate the Sumo web application, which in- importance of this area in his editorial for volume 2, cludes an embedded R session. issue 2. Two articles are of particular interest to develop- On behalf of the editorial board I hope you enjoy ers. Daniel Adler demonstrates a Foreign Function this issue. The R Journal Vol. 4/1, June 2012 ISSN 2073-4859 4 The R Journal Vol. 4/1, June 2012 ISSN 2073-4859 CONTRIBUTED RESEARCH ARTICLES 5 Analysing Seasonal Data by Adrian G Barnett, Peter Baker and Annette J Dobson but often very effective analyses, as we describe be- low. Abstract Many common diseases, such as the flu More complex seasonal analyses examine non- and cardiovascular disease, increase markedly stationary seasonal patterns that change over time. in winter and dip in summer. These seasonal Changing seasonal patterns in health are currently patterns have been part of life for millennia and of great interest as global warming is predicted to were first noted in ancient Greece by both Hip- make seasonal changes in the weather more extreme. pocrates and Herodotus. Recent interest has fo- Hence there is a need for statistical tools that can es- cused on climate change, and the concern that timate whether a seasonal pattern has become more seasons will become more extreme with harsher extreme over time or whether its phase has changed. winter and summer weather. We describe a set Ours is also the first R package that includes the of R functions designed to model seasonal pat- case-crossover, a useful method for controlling for terns in disease. We illustrate some simple de- seasonality. scriptive and graphical methods, a more com- This paper illustrates just some of the functions of plex method that is able to model non-stationary the season package. We show some descriptive func- patterns, and the case-crossover to control for tions that give simple means or plots, and functions seasonal confounding. whose goal is inference based on generalised linear models. The package was written as a companion to In this paper we illustrate some of the functions a book on seasonal analysis by Barnett and Dobson of the season package (Barnett et al., 2012), which (2010), which contains further details on the statisti- contains a range of functions for analysing seasonal cal methods and R code. health data. We were motivated by the great inter- est in seasonality found in the health literature, and the relatively small number of seasonal tools in R (or Analysing monthly seasonal pat- other software packages). The existing seasonal tools terns in R are: Seasonal time series are often based on data collected baysea • the function of the timsac package and every month. An example that we use here is the decompose stl the and functions of the stats monthly number of cardiovascular disease deaths in package for decomposing a time series into a people aged ≥ 75 years in Los Angeles for the years trend and season; 1987–2000 (Samet et al., 2000). Before we examine • the dynlm function of the dynlm package and or plot the monthly death rates we need to make the ssm function of the sspir package for fitting them more comparable by adjusting them to a com- dynamic linear models with optional seasonal mon month length (Barnett and Dobson, 2010, Sec- components; tion 2.2.1). Otherwise January (with 31 days) will likely have more deaths than February (with 28 or • the arima function of the stats package and the 29). Arima function of the forecast package for fit- In the example below the monthmean function ting seasonal components as part of an autore- is used to create the variable mmean which is the gressive integrated moving average (ARIMA) monthly average rate of cardiovascular disease model; and deaths standardised to a month length of 30 days. As the data set contains the population size (pop) we can • the bfast package for detecting breaks in a sea- also standardise the rates to the number of deaths sonal pattern. per 100,000 people. The highest death rate is in Jan- uary (397 per 100,000) and the lowest in July (278 per These tools are all useful, but most concern decom- 100,000). posing equally spaced time series data. Our package includes models that can be applied to seasonal pat- > data(CVD) terns in unequally spaced data. Such data are com- > mmean = monthmean(data = CVD, mon in observational studies when the timing of re- resp = CVD$cvd, adjmonth = "thirty", sponses cannot be controlled (e.g. for a postal sur- pop = pop/100000) vey). > mmean In the health literature much of the analysis of Month Mean seasonal data uses simple methods such as compar- January 396.8 ing rates of disease by month or using a cosinor re- February 360.8 gression model, which assumes a sinusoidal seasonal March 327.3 pattern. We have created functions for these simple, April 311.9 The R Journal Vol.
Recommended publications
  • Navigating the R Package Universe by Julia Silge, John C
    CONTRIBUTED RESEARCH ARTICLES 558 Navigating the R Package Universe by Julia Silge, John C. Nash, and Spencer Graves Abstract Today, the enormous number of contributed packages available to R users outstrips any given user’s ability to understand how these packages work, their relative merits, or how they are related to each other. We organized a plenary session at useR!2017 in Brussels for the R community to think through these issues and ways forward. This session considered three key points of discussion. Users can navigate the universe of R packages with (1) capabilities for directly searching for R packages, (2) guidance for which packages to use, e.g., from CRAN Task Views and other sources, and (3) access to common interfaces for alternative approaches to essentially the same problem. Introduction As of our writing, there are over 13,000 packages on CRAN. R users must approach this abundance of packages with effective strategies to find what they need and choose which packages to invest time in learning how to use. At useR!2017 in Brussels, we organized a plenary session on this issue, with three themes: search, guidance, and unification. Here, we summarize these important themes, the discussion in our community both at useR!2017 and in the intervening months, and where we can go from here. Users need options to search R packages, perhaps the content of DESCRIPTION files, documenta- tion files, or other components of R packages. One author (SG) has worked on the issue of searching for R functions from within R itself in the sos package (Graves et al., 2017).
    [Show full text]
  • Supplementary Materials
    Tomic et al, SIMON, an automated machine learning system reveals immune signatures of influenza vaccine responses 1 Supplementary Materials: 2 3 Figure S1. Staining profiles and gating scheme of immune cell subsets analyzed using mass 4 cytometry. Representative gating strategy for phenotype analysis of different blood- 5 derived immune cell subsets analyzed using mass cytometry in the sample from one donor 6 acquired before vaccination. In total PBMC from healthy 187 donors were analyzed using 7 same gating scheme. Text above plots indicates parent population, while arrows show 8 gating strategy defining major immune cell subsets (CD4+ T cells, CD8+ T cells, B cells, 9 NK cells, Tregs, NKT cells, etc.). 10 2 11 12 Figure S2. Distribution of high and low responders included in the initial dataset. Distribution 13 of individuals in groups of high (red, n=64) and low (grey, n=123) responders regarding the 14 (A) CMV status, gender and study year. (B) Age distribution between high and low 15 responders. Age is indicated in years. 16 3 17 18 Figure S3. Assays performed across different clinical studies and study years. Data from 5 19 different clinical studies (Study 15, 17, 18, 21 and 29) were included in the analysis. Flow 20 cytometry was performed only in year 2009, in other years phenotype of immune cells was 21 determined by mass cytometry. Luminex (either 51/63-plex) was performed from 2008 to 22 2014. Finally, signaling capacity of immune cells was analyzed by phosphorylation 23 cytometry (PhosphoFlow) on mass cytometer in 2013 and flow cytometer in all other years.
    [Show full text]
  • The Rockerverse: Packages and Applications for Containerisation
    PREPRINT 1 The Rockerverse: Packages and Applications for Containerisation with R by Daniel Nüst, Dirk Eddelbuettel, Dom Bennett, Robrecht Cannoodt, Dav Clark, Gergely Daróczi, Mark Edmondson, Colin Fay, Ellis Hughes, Lars Kjeldgaard, Sean Lopp, Ben Marwick, Heather Nolis, Jacqueline Nolis, Hong Ooi, Karthik Ram, Noam Ross, Lori Shepherd, Péter Sólymos, Tyson Lee Swetnam, Nitesh Turaga, Charlotte Van Petegem, Jason Williams, Craig Willis, Nan Xiao Abstract The Rocker Project provides widely used Docker images for R across different application scenarios. This article surveys downstream projects that build upon the Rocker Project images and presents the current state of R packages for managing Docker images and controlling containers. These use cases cover diverse topics such as package development, reproducible research, collaborative work, cloud-based data processing, and production deployment of services. The variety of applications demonstrates the power of the Rocker Project specifically and containerisation in general. Across the diverse ways to use containers, we identified common themes: reproducible environments, scalability and efficiency, and portability across clouds. We conclude that the current growth and diversification of use cases is likely to continue its positive impact, but see the need for consolidating the Rockerverse ecosystem of packages, developing common practices for applications, and exploring alternative containerisation software. Introduction The R community continues to grow. This can be seen in the number of new packages on CRAN, which is still on growing exponentially (Hornik et al., 2019), but also in the numbers of conferences, open educational resources, meetups, unconferences, and companies that are adopting R, as exemplified by the useR! conference series1, the global growth of the R and R-Ladies user groups2, or the foundation and impact of the R Consortium3.
    [Show full text]
  • A Word from Our 2006 Section Chairs
    VOLUME 17, NO 1, JUNE 2006 A joint newsletter of the Statistical Computing & Statistical Graphics Sections of the American Statistical Association A Word from our 2006 Section Chairs PAUL MURRELL STEPHAN R. SAIN GRAPHICS COMPUTING I would like to begin by When Carey Priebe asked me highlighting a couple of to run for one of the section interesting recent offices a couple of years ago, I developments in the area of wasn’t exactly sure what I was Statistical Graphics. getting into. Now that I have There has been a lot of been chair for a couple of activity on the GGobi project months, I’m still not totally lately, with an updated web sure what I’ve gotten into. site, new versions, and The one thing I do know, improved links to R. I though, is that I’m very happy encourage you to (re)visit www.ggobi.org and see what to be involved in the section. they’ve been up to. There are a lot of very interesting things going on and, as always, a lot of opportunity for people who have an The third volume of the Handbook of Computational interest in statistical computing. Statistics, which is focused on Data Visualization, is scheduled for publication at the end of this year and Continues on Page 2.......... there will be a workshop as a satellite of Compstat 2006. This important volume will contain over 30 contributions and will provide a comprehensive overview of all areas of data visualization. Information about this project is available at gap.stat.sinica.edu.tw/ HBCSC.
    [Show full text]
  • The Rattle Package September 30, 2007
    The rattle Package September 30, 2007 Type Package Title A graphical user interface for data mining in R using GTK Version 2.2.64 Date 2007-09-29 Author Graham Williams <[email protected]> Maintainer Graham Williams <[email protected]> Depends R (>= 2.2.0) Suggests RGtk2, ada, amap, arules, bitops, cairoDevice, cba, combinat, doBy, e1071, ellipse, fEcofin, fCalendar, fBasics, foreign, fpc, gdata, gtools, gplots, Hmisc, kernlab, MASS, Matrix, mice, network, pmml, randomForest, rggobi, ROCR, RODBC, rpart, RSvgDevice, XML Description Rattle provides a Gnome (RGtk2) based interface to R functionality for data mining. The aim is to provide a simple and intuitive interface that allows a user to quickly load data from a CSV file (or via ODBC), transform and explore the data, and build and evaluate models, and export models as PMML (predictive modelling markup language). All of this with knowing little about R. All R commands are logged and available for the user, as a tool to then begin interacting directly with R itself, if so desired. Rattle also exports a number of utility functions and the graphical user interface does not need to be run to deploy these. License GPL version 2 or newer URL http://rattle.togaware.com/ R topics documented: audit . 2 calcInitialDigitDistr . 3 calculateAUC . 3 centers.hclust . 4 drawTreeNodes . 5 drawTreesAda . 6 evaluateRisk . 7 1 2 audit genPlotTitleCmd . 8 rattle_gui . 9 listRPartRules . 9 listTreesAda . 10 plotBenfordsLaw . 11 plotNetwork . 11 plotOptimalLine . 12 plotRisk . 14 printRandomForests . 16 randomForest2Rules . 17 rattle . 18 savePlotToFile . 19 treeset.randomForest . 19 Index 21 audit Sample dataset for illustration Rattle functionality.
    [Show full text]
  • R Generation [1] 25
    IN DETAIL > y <- 25 > y R generation [1] 25 14 SIGNIFICANCE August 2018 The story of a statistical programming they shared an interest in what Ihaka calls “playing academic fun language that became a subcultural and games” with statistical computing languages. phenomenon. By Nick Thieme Each had questions about programming languages they wanted to answer. In particular, both Ihaka and Gentleman shared a common knowledge of the language called eyond the age of 5, very few people would profess “Scheme”, and both found the language useful in a variety to have a favourite letter. But if you have ever been of ways. Scheme, however, was unwieldy to type and lacked to a statistics or data science conference, you may desired functionality. Again, convenience brought good have seen more than a few grown adults wearing fortune. Each was familiar with another language, called “S”, Bbadges or stickers with the phrase “I love R!”. and S provided the kind of syntax they wanted. With no blend To these proud badge-wearers, R is much more than the of the two languages commercially available, Gentleman eighteenth letter of the modern English alphabet. The R suggested building something themselves. they love is a programming language that provides a robust Around that time, the University of Auckland needed environment for tabulating, analysing and visualising data, one a programming language to use in its undergraduate statistics powered by a community of millions of users collaborating courses as the school’s current tool had reached the end of its in ways large and small to make statistical computing more useful life.
    [Show full text]
  • Data Analysis in R
    Data Analysis in R Course at a Glance This course will provide an introduction to reproducible data analysis with R (see Syllabus). Instructor Gabriel Baud-Bovy ([email protected] ) Credits: 5 Synopsis This course aims at giving to the student a methodology to analyze experimental results, from how to organize data to the writing of a report. It includes: an introduction to R an introduction to reproducible research with R examples of statistical analysis with R During this course, the student will have to analyze his own data and is expected to read before each course the material that will be made available on this page. The final grade will consist in the evaluation of a report demonstrating familiarity with the concepts and methods presented in the course. As an editor, the instructor will use Notepad++ (together with NppToR) on a Windows Machines but the student might use other ones (e.g., R studio, EMACS+ESS, Lyx, TexWork). The course will use Mardown as typesetting language. For those desirous to work with Latex and/or generate pdf, you will need to install also MikeTex. Syllabus Total of 15 hours Class 1: Case study, Reproducible research Class 2: R fundamental Class 3: Exploratory data analysis and graphical methods in R Class 4: Basic statistics Class 5: To be determined There will be a final examination decided by the instructor. Prerequisites The course assumes some familiarity with programming concepts and data structures (MATLAB, C/C++, Java or any other programming language). Contact the instructor if you have never programmed anything.
    [Show full text]
  • A History of R (In 15 Minutes… and Mostly in Pictures)
    A history of R (in 15 minutes… and mostly in pictures) JULY 23, 2020 Andrew Zief!ler Lunch & Learn Department of Educational Psychology RMCC University of Minnesota LATIS Who am I and Some Caveats Andy Zie!ler • I teach statistics courses in the Department of Educational Psychology • I have been using R since 2005, when I couldn’t put Me (on the EPSY faculty board) SAS on my computer (it didn’t run natively on a Me Mac), and even if I could have gotten it to run, I (everywhere else) couldn’t afford it. Some caveats • Although I was alive during much of the era I will be talking about, I was not working as a statistician at that time (not even as an elementary student for some of it). • My knowledge is second-hand, from other people and sources. Statistical Computing in the 1970s Bell Labs In 1976, scientists from the Statistics Research Group were actively discussing how to design a language for statistical computing that allowed interactive access to routines in their FORTRAN library. John Chambers John Tukey Home to Statistics Research Group Rick Becker Jean Mc Rae Judy Schilling Doug Dunn Introducing…`S` An Interactive Language for Data Analysis and Graphics Chambers sketch of the interface made on May 5, 1976. The GE-635, a 36-bit system that ran at a 0.5MIPS, starting at $2M in 1964 dollars or leasing at $45K/month. ’S’ was introduced to Bell Labs in November, but at the time it did not actually have a name. The Impact of UNIX on ’S' Tom London Ken Thompson and Dennis Ritchie, creators of John Reiser the UNIX operating system at a PDP-11.
    [Show full text]
  • Changes on CRAN 2014-07-01 to 2014-12-31
    NEWS AND NOTES 192 Changes on CRAN 2014-07-01 to 2014-12-31 by Kurt Hornik and Achim Zeileis New packages in CRAN task views Bayesian BayesTree. Cluster fclust, funFEM, funHDDC, pgmm, tclust. Distributions FatTailsR, RTDE, STAR, predfinitepop, statmod. Econometrics LinRegInteractive, MSBVAR, nonnest2, phtt. Environmetrics siplab. Finance GCPM, MSBVAR, OptionPricing, financial, fractal, riskSimul. HighPerformanceComputing GUIProfiler, PGICA, aprof. MachineLearning BayesTree, LogicForest, hdi, mlr, randomForestSRC, stabs, vcrpart. MetaAnalysis MAVIS, ecoreg, ipdmeta, metaplus. NumericalMathematics RootsExtremaInflections, Rserve, SimplicialCubature, fastGHQuad, optR. OfficialStatistics CoImp, RecordLinkage, rworldmap, tmap, vardpoor. Optimization RCEIM, blowtorch, globalOptTests, irace, isotone, lbfgs. Phylogenetics BAMMtools, BoSSA, DiscML, HyPhy, MPSEM, OutbreakTools, PBD, PCPS, PHYLOGR, RADami, RNeXML, Reol, Rphylip, adhoc, betapart, dendextend, ex- pands, expoTree, jaatha, kdetrees, mvMORPH, outbreaker, pastis, pegas, phyloTop, phyloland, rdryad, rphast, strap, surface, taxize. Psychometrics IRTShiny, PP, WrightMap, mirtCAT, pairwise. ReproducibleResearch NMOF. Robust TEEReg, WRS2, robeth, robustDA, robustgam, robustloggamma, robustreg, ror, rorutadis. Spatial PReMiuM. SpatioTemporal BayesianAnimalTracker, TrackReconstruction, fishmove, mkde, wildlifeDI. Survival DStree, ICsurv, IDPSurvival, MIICD, MST, MicSim, PHeval, PReMiuM, aft- gee, bshazard, bujar, coxinterval, gamboostMSM, imputeYn, invGauss, lsmeans, multipleNCC, paf, penMSM, spBayesSurv,
    [Show full text]
  • Uros2018.Pdf
    Use of R in O cial Statistics 6th International Conference 2018 2018OV010 Eventbanner uRos2018 Rolbanner 100x200_DEF OPTIES .indd 1 23-7-2018 09:58:34 Eventbanner uRos2018 1920x400.jpg Eventbanner uRos2018 1920x400.bb Welcome The global community of R users is growing, and the number of Naonal and Interna- onal Stascal Offices that are adopng R is growing as well. About five years ago, when this conference was organized as an internaonal conference for the first me in Romania, we felt a bit like outlaws using Free and Open Source Soware (FOSS) in an area where commercial packages rule the land. How mes have changed: in the mean me FOSS, and in parcular R is considered a driving force of innovaon in academia, industry and government. The popularity of R is demonstrated by the hundreds of local R user groups, the thousands of R packages, and the RConsorum. The current conference, at Stascs Netherlands, marks the first occasion outside of the place where it was conceived: Romania. We are therefore especially pleased that our keynote speakers have roots in both countries. Alina Matei is a professor of stascs in Switzerland with Romanian roots. She will talk about opmal sample coordinaon using R. An important topic in mes where the reducon of response burden and increasing nonresponse rates force us to use smaller, more complex sampling methods. Not many R users are aware that there is a ‘touch of Dutch’ in R. Since 2017, Jeroen Ooms (UC Berkeley) is the maintainer of both Rtools and R for Windows. He will tell us about what it takes to compile, release, and modernize a system on which more than 12,500 R packages and millions of users rely every day.
    [Show full text]
  • Statcharrms R Version Installation Guide
    StatCharrms R Version Installation Guide 2014-07-14 Written and Programmed By: Joe Swintek, BTS Based off StatCharrms SAS version developed by: Dr. John Green, DuPont Applied Statistics Group, Stine-Haskell Research Center Additional Testing By: Kevin Flynn, USEPA Jon Haselman, USEPA Funded By: USEPA Under Contract EP-D-13-052 Installation StatCharrms is a graphical user interface front end for R, designed for ease of operation that performs the recommended statistical procedure used in the Medaka Extended One Generation Test (MEOGRT) and Larval Amphibian Growth and Development Assay (LAGDA). The statistical procedures implemented within StatCharrms are; the Rao-Scott adjusted Cochran-Armitage trend test by slices (RSCABS), a repeated measures ANVOA using time and treatment as fixed effects, Jonckheere-Terpstra trend test, Dunnett test, Kruskal Wallis, Dunns Test, one way ANOVA, weighted one way ANOVA, mixed effect ANOVA for imbalanced replicate structures, and a mixed effect Cox proportional model for imbalanced replicate structures. StatCharrms is implemented as an R workspace preloaded with the required functions. To Start StatCharrms double click on the R icon labeled StatCharrms-V##.RData. Now the installation of the required packages can begin by typing : Install.StatCharrms() into the R console and then hitting enter. R is case sensitive so you will need to type the command exactly as it is above. Figure one shows what is should look like. Executing the installation command will, by default, create a folder on the C drive called “RLib” that will contain the libraries needed for StatCharrms to run. Figure 1: Next a window asking to select CRAN (Comprehensive R Archive Network) mirror will popup.
    [Show full text]
  • August 12-14, Dortmund, Germany
    AASC Austrian Association for Statistical Computing 2008 Program August 12-14, Dortmund, Germany useR! 2008, Dortmund, Germany 1 Contents Greetings and Miscellaneous 2 Maps 5 Social Program 8 Program 9 Tutorials 9 Schedule 10 List of Talks 14 2 useR! 2008, Dortmund, Germany Dear useRs, the following pages provide you with some useful information about useR! 2008, the R user con- ference, taking place at the Fakultät Statistik, Technische Universität Dortmund, Germany from 2008-08-12 to 2008-08-14. Pre-conference tutorials will take place on August 11. The confer- ence is organized by the Fakultät Statistik, Technische Universität Dortmund and the Austrian Association for Statistical Computing (AASC). Apart from challenging and likewise exciting scientific contributions we hope to offer you an attractive conference site and a pleasant social program. With best regards from the organizing team: Uwe Ligges (conference), Achim Zeileis (program), Claus Weihs, Gerd Kopp (local organiza- tion), Friedrich Leisch, and Torsten Hothorn Address / Contact Address: Uwe Ligges Fakultät Statistik Technische Universität Dortmund 44221 Dortmund Germany Phone: +49 231 755 4353 Fax: +49 231 755 4387 e-mail: [email protected] URL: http://www.R-Project.org/useR-2008/ Program Committee Micah Altman, Roger Bivand, Peter Dalgaard, Jan de Leeuw, Ramón Díaz-Uriarte, Spencer Graves, Leonhard Held, Torsten Hothorn, François Husson, Christian Kleiber, Friedrich Leisch, Andy Liaw, Martin Mächler, Kate Mullen, Ei-ji Nakama, Thomas Petzoldt, Martin Theus, and Heather Turner Conference Location Technische Universität Dortmund Campus Nord Mathematikgebäude / Audimax Vogelpothsweg 87 44227 Dortmund Conference Office Opening hours: Monday, August 11: 08:30–19:30 Tuesday, August 12: 08:30–18:30 Wednesday, August 13: 08:30–18:30 Thursday, August 14: 08:30–15:30 useR! 2008, Dortmund, Germany 3 Public Transport The conference site at the university campus and the city hall are best to be reached by public transport.
    [Show full text]