Adaptive Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecology and Evolution of Metabolic Cross-Feeding Interactions in Bacteria† Cite This: Nat
Natural Product Reports View Article Online REVIEW View Journal | View Issue Ecology and evolution of metabolic cross-feeding interactions in bacteria† Cite this: Nat. Prod. Rep.,2018,35,455 Glen D'Souza, ab Shraddha Shitut, ce Daniel Preussger,c Ghada Yousif,cde Silvio Waschina f and Christian Kost *ce Literature covered: early 2000s to late 2017 Bacteria frequently exchange metabolites with other micro- and macro-organisms. In these often obligate cross-feeding interactions, primary metabolites such as vitamins, amino acids, nucleotides, or growth factors are exchanged. The widespread distribution of this type of metabolic interactions, however, is at odds with evolutionary theory: why should an organism invest costly resources to benefit other individuals rather than using these metabolites to maximize its own fitness? Recent empirical work has fi fi Creative Commons Attribution 3.0 Unported Licence. shown that bacterial genotypes can signi cantly bene t from trading metabolites with other bacteria relative to cells not engaging in such interactions. Here, we will provide a comprehensive overview over the ecological factors and evolutionary mechanisms that have been identified to explain the evolution Received 25th January 2018 and maintenance of metabolic mutualisms among microorganisms. Furthermore, we will highlight DOI: 10.1039/c8np00009c general principles that underlie the adaptive evolution of interconnected microbial metabolic networks rsc.li/npr as well as the evolutionary consequences that result for cells living in such communities. 1 Introduction 2.5 Mechanisms of metabolite transfer This article is licensed under a 2 Metabolic cross-feeding interactions 2.5.1 Contact-independent mechanisms 2.1 Historical account 2.5.1.1 Passive diffusion 2.2 Classication of cross-feeding interactions 2.5.1.2 Active transport 2.2.1 Unidirectional by-product cross-feeding 2.5.1.3 Vesicle-mediated transport Open Access Article. -
Natural Selection on Phenotypes
Conner and Hartl – p. 6-1 From: Conner, J. and D. Hartl, A Primer of Ecological Genetics. In prep. for Sinauer Chapter 6: Natural selection on phenotypes Natural selection and adaptation have been recurring themes throughout this book, from the very beginning of chapter 1. We discussed selection on genotypes (and discrete phenotypes) in chapter 3, and now that we have a good understanding of the genetics of continuously distributed traits we turn to selection on these common and ecologically important phenotypes. We discuss the very general and widely used regression-based approaches to measuring selection, and cover ways to identify the phenotypic traits that are the direct targets of selection, as well as ways to determine the environmental agents that are causing selection. Identifying selective agents and targets is a powerful approach to understanding adaptation. Finally, we integrate this material with the concepts covered in chapters 4 and 5 to show how short-term phenotypic evolution can be modeled and predicted, and how this undertaking sheds light on constraints on adaptive evolution. Throughout the chapter the effects of genetic and phenotypic correlations among traits are highlighted. Evolution by natural selection has three parts (Figure 6.1; Endler 1986): 1. There is phenotypic variation for the trait of interest. 2. There is some consistent relationship between this phenotypic variation and variation in fitness. 3. A significant proportion of the phenotypic variation is caused by additive genetic variance, that is, the trait is heritable. Numbers 1 and 2 represent selection on phenotypes, which occurs within a generation and can be quantified using the selection differential (S) just as with artificial selection. -
New Insights Into the Co-Occurrences of Glycoside Hydrolase Genes Among Prokaryotic Genomes Through Network Analysis
microorganisms Article New Insights into the Co-Occurrences of Glycoside Hydrolase Genes among Prokaryotic Genomes through Network Analysis Alei Geng * , Meng Jin, Nana Li, Daochen Zhu , Rongrong Xie, Qianqian Wang, Huaxing Lin and Jianzhong Sun * Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] (M.J.); [email protected] (N.L.); [email protected] (D.Z.); [email protected] (R.X.); [email protected] (Q.W.); [email protected] (H.L.) * Correspondence: [email protected] (A.G.); [email protected] (J.S.) Abstract: Glycoside hydrolase (GH) represents a crucial category of enzymes for carbohydrate uti- lization in most organisms. A series of glycoside hydrolase families (GHFs) have been classified, with relevant information deposited in the CAZy database. Statistical analysis indicated that most GHFs (134 out of 154) were prone to exist in bacteria rather than archaea, in terms of both occurrence frequencies and average gene numbers. Co-occurrence analysis suggested the existence of strong or moderate-strong correlations among 63 GHFs. A combination of network analysis by Gephi and functional classification among these GHFs demonstrated the presence of 12 functional categories (from group A to L), with which the corresponding microbial collections were subsequently labeled, respectively. Interestingly, a progressive enrichment of particular GHFs was found among several types of microbes, and type-L as well as type-E microbes were deemed as functional intensified Citation: Geng, A.; Jin, M.; Li, N.; species which formed during the microbial evolution process toward efficient decomposition of Zhu, D.; Xie, R.; Wang, Q.; Lin, H.; lignocellulose as well as pectin, respectively. -
Patterns and Power of Phenotypic Selection in Nature
Articles Patterns and Power of Phenotypic Selection in Nature JOEL G. KINGSOLVER AND DAVID W. PFENNIG Phenotypic selection occurs when individuals with certain characteristics produce more surviving offspring than individuals with other characteristics. Although selection is regarded as the chief engine of evolutionary change, scientists have only recently begun to measure its action in the wild. These studies raise numerous questions: How strong is selection, and do different types of traits experience different patterns of selection? Is selection on traits that affect mating success as strong as selection on traits that affect survival? Does selection tend to favor larger body size, and, if so, what are its consequences? We explore these questions and discuss the pitfalls and future prospects of measuring selection in natural populations. Keywords: adaptive landscape, Cope’s rule, natural selection, rapid evolution, sexual selection henotypic selection occurs when individuals with selection on traits that affect survival stronger than on those Pdifferent characteristics (i.e., different phenotypes) that affect only mating success? In this article, we explore these differ in their survival, fecundity, or mating success. The idea and other questions about the patterns and power of phe- of phenotypic selection traces back to Darwin and Wallace notypic selection in nature. (1858), and selection is widely accepted as the primary cause of adaptive evolution within natural populations.Yet Darwin What is selection, and how does it work? never attempted to measure selection in nature, and in the Selection is the nonrandom differential survival or repro- century following the publication of On the Origin of Species duction of phenotypically different individuals. -
Understanding Microbial Cooperation
Journal of Theoretical Biology 299 (2012) 31–41 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/yjtbi Understanding microbial cooperation James A. Damore, Jeff Gore à Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, United States article info abstract Available online 17 March 2011 The field of microbial cooperation has grown enormously over the last decade, leading to improved Keywords: experimental techniques and a growing awareness of collective behavior in microbes. Unfortunately, Evolutionary game theory many of our theoretical tools and concepts for understanding cooperation fail to take into account the Kin selection peculiarities of the microbial world, namely strong selection strengths, unique population structure, Hamilton’s rule and non-linear dynamics. Worse yet, common verbal arguments are often far removed from the math Multilevel selection involved, leading to confusion and mistakes. Here, we review the general mathematical forms of Price’s Price’s equation equation, Hamilton’s rule, and multilevel selection as they are applied to microbes and provide some intuition on these otherwise abstract formulas. However, these sometimes overly general equations can lack specificity and predictive power, ultimately forcing us to advocate for more direct modeling techniques. & 2011 Elsevier Ltd. All rights reserved. 1. Introduction do not hold, both methods resort to abstract generalities, making application difficult and prone to error. Cooperation presents a fundamental challenge to customary Microbes present a unique opportunity for scientists interested in evolutionary thinking. If only the fittest organisms survive, why the evolution of cooperation because of their well-characterized and would an individual ever pay a fitness cost for another organism simple genetics, fast generation times, and easily manipulated and to benefit? Traditionally, kin selection and group selection have measured interactions. -
Ecological and Evolutionary Dynamics of Interconnectedness and Modularity
Ecological and evolutionary dynamics of interconnectedness and modularity Jan M. Nordbottena,b, Simon A. Levinc, Eörs Szathmáryd,e,f, and Nils C. Stensethg,1 aDepartment of Mathematics, University of Bergen, N-5020 Bergen, Norway; bDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544; cDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; dParmenides Center for the Conceptual Foundations of Science, D-82049 Pullach, Germany; eMTA-ELTE (Hungarian Academy of Sciences—Eötvös University), Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, H-1117 Hungary; fEvolutionary Systems Research Group, MTA (Hungarian Academy of Sciences) Ecological Research Centre, Tihany, H-8237 Hungary; and gCentre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, N-0316 Oslo, Norway Contributed by Nils C. Stenseth, December 1, 2017 (sent for review September 12, 2017; reviewed by David C. Krakauer and Günter P. Wagner) In this contribution, we develop a theoretical framework for linking refinement of this inquiry is to look for compartmentalization (i.e., microprocesses (i.e., population dynamics and evolution through modularity) in ecosystems. In food webs, for example, compartments natural selection) with macrophenomena (such as interconnectedness (which are subgroups of taxa with many strong interactions in each and modularity within an -
What Genomic Data Can Reveal About Eco-Evolutionary Dynamics
PERSPECTIVE https://doi.org/10.1038/s41559-017-0385-2 What genomic data can reveal about eco-evolutionary dynamics Seth M. Rudman 1*, Matthew A. Barbour2, Katalin Csilléry3, Phillip Gienapp4, Frederic Guillaume2, Nelson G. Hairston Jr5, Andrew P. Hendry6, Jesse R. Lasky7, Marina Rafajlović8,9, Katja Räsänen10, Paul S. Schmidt1, Ole Seehausen 11,12, Nina O. Therkildsen13, Martin M. Turcotte3,14 and Jonathan M. Levine15 Recognition that evolution operates on the same timescale as ecological processes has motivated growing interest in eco-evo- lutionary dynamics. Nonetheless, generating sufficient data to test predictions about eco-evolutionary dynamics has proved challenging, particularly in natural contexts. Here we argue that genomic data can be integrated into the study of eco-evo- lutionary dynamics in ways that deepen our understanding of the interplay between ecology and evolution. Specifically, we outline five major questions in the study of eco-evolutionary dynamics for which genomic data may provide answers. Although genomic data alone will not be sufficient to resolve these challenges, integrating genomic data can provide a more mechanistic understanding of the causes of phenotypic change, help elucidate the mechanisms driving eco-evolutionary dynamics, and lead to more accurate evolutionary predictions of eco-evolutionary dynamics in nature. vidence that the ways in which organisms interact with their evolution plays a central role in regulating such dynamics. environment can evolve fast enough to alter ecological dynam- Particularly relevant is information gleaned from efforts to under- Eics has forged a new link between ecology and evolution1–5. A stand the genomic basis of adaptation, a burgeoning field in evolu- growing area of study, termed eco-evolutionary dynamics, centres tionary biology that investigates the specific genomic underpinnings on understanding when rapid evolutionary change is a meaningful of phenotypic variation, its response to natural selection and effects driver of ecological dynamics in natural ecosystems6–8. -
Martin A. Nowak
EVOLUTIONARY DYNAMICS EXPLORING THE EQUATIONS OF LIFE MARTIN A. NOWAK THE BELKNAP PRESS OF HARVARD UNIVERSITY PRESS CAMBRIDGE, MASSACHUSETTS, AND LONDON, ENGLAND 2006 Copyright © 2006 by the President and Fellows of Harvard College All rights reserved Printed in Canada Library of Congress Cataloging-in-Publication Data Nowak, M. A. (Martin A.) Evolutionary dynamics : exploring the equations of life / Martin A. Nowak. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-674-02338-3 (alk. paper) ISBN-10: 0-674-02338-2 (alk. paper) 1. Evolution (Biology)—Mathematical models. I. Title. QH371.3.M37N69 2006 576.8015118—dc22 2006042693 Designed by Gwen Nefsky Frankfeldt CONTENTS Preface ix 1 Introduction 1 2 What Evolution Is 9 3 Fitness Landscapes and Sequence Spaces 27 4 Evolutionary Games 45 5 Prisoners of the Dilemma 71 6 Finite Populations 93 7 Games in Finite Populations 107 8 Evolutionary Graph Theory 123 9 Spatial Games 145 10 HIV Infection 167 11 Evolution of Virulence 189 12 Evolutionary Dynamics of Cancer 209 13 Language Evolution 249 14 Conclusion 287 Further Reading 295 References 311 Index 349 PREFACE Evolutionary Dynamics presents those mathematical principles according to which life has evolved and continues to evolve. Since the 1950s biology, and with it the study of evolution, has grown enormously, driven by the quest to understand the world we live in and the stuff we are made of. Evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Because of the tremendous advances over the last half century, evolution has become a dis- cipline that is based on precise mathematical foundations. -
Metabolic Modeling of Microbial Community Interactions for Health, En- Vironmental and Biotechnological Applications
Send Orders for Reprints to [email protected] 712 Current Genomics, 2018, 19, 712-722 REVIEW ARTICLE Metabolic Modeling of Microbial Community Interactions for Health, En- vironmental and Biotechnological Applications Kok Siong Ang1, Meiyappan Lakshmanan1, Na-Rae Lee2 and Dong-Yup Lee1,2,3,* 1Bioprocessing Technology Institute (BTI), A*STAR, Singapore 138668, Singapore; 2Department of Chemical and Bio- molecular Engineering, and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National Uni- versity of Singapore, Singapore 117585, Singapore; 3School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea Abstract: In nature, microbes do not exist in isolation but co-exist in a variety of ecological and bio- logical environments and on various host organisms. Due to their close proximity, these microbes in- teract among themselves, and also with the hosts in both positive and negative manners. Moreover, these interactions may modulate dynamically upon external stimulus as well as internal community changes. This demands systematic techniques such as mathematical modeling to understand the intrin- sic community behavior. Here, we reviewed various approaches for metabolic modeling of microbial A R T I C L E H I S T O R Y communities. If detailed species-specific information is available, segregated models of individual or- Received: June 25, 2017 ganisms can be constructed and connected via metabolite exchanges; otherwise, the community may Revised: November 08, 2017 be represented as a lumped network of metabolic reactions. The constructed models can then be simu- Accepted: November 11, 2017 lated to help fill knowledge gaps, and generate testable hypotheses for designing new experiments. -
Cooperation in Microbial Populations: Theory and Experimental Model Systems
Review Cooperation in Microbial Populations: Theory and Experimental Model Systems J. Cremer 1,A.Melbinger3,K.Wienand3,T.Henriquez2, H. Jung 2 and E. Frey 3 1 - Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands 2 - Microbiology, Department of Biology I, Ludwig-Maximilians-Universitat€ München, Grosshaderner Strasse 2-4, Martinsried, Germany 3 - Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universitat€ München, Theresienstrasse 37, D-80333 Munich, Germany Correspondence to E. Frey and H. Jung: [email protected], [email protected] https://doi.org/10.1016/j.jmb.2019.09.023 Edited by Ulrich Gerland Abstract Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. -
Eco-Evolutionary Dynamics of Decomposition: Scaling up From
1 Eco-evolutionary dynamics of decomposition: scaling up from 2 microbial cooperation to ecosystem function 1,2* 3,4 2,5,6 3 Elsa Abs , H´el`eneLeman , and R´egisFerri`ere 1 4 Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 5 92697, USA. 2 6 Interdisciplinary Center for Interdisciplinary Global Environmental Studies (iGLOBES), 7 CNRS, Ecole Normale Sup´erieure, Paris Sciences & Lettres University, University of 8 Arizona, Tucson AZ 85721, USA. 3 9 Numed Inria team, UMPA UMR 5669, Ecole Normale Sup´erieure, 69364 Lyon, France. 4 10 Centro de Investigaci´onen Matem´aticas, 36240 Guanajuato, M´exico. 5 11 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, 12 USA. 6 13 Institut de Biologie (IBENS), Ecole Normale Sup´erieure, Paris Sciences & Lettres 14 University, CNRS, INSERM, 75005 Paris, France. 15 16 Keywords: Degradative exoenzyme, Evolutionary stability, Spatial structure, Scaling limits, Soil 17 carbon stock, Eco-evolutionary feedback, Adaptive dynamics. 18 Type of Article: Article 19 Number of words in the abstract: 165 20 Number of words in the main text: 2883 21 Number of references: 48 22 Number of figures: 5 23 Corresponding author: Elsa Abs. Phone: (520) 208-1112. Email address: [email protected] Elsa Abs: [email protected]: Corresponding author H´el`eneLeman: [email protected] R´egisFerri`ere:[email protected] 24 The decomposition of soil organic matter (SOM) is a critically important process in 25 global terrestrial ecosystems. SOM decomposition is driven by micro-organisms that 26 cooperate by secreting costly extracellular enzymes. This raises a basic puzzle: the 27 stability of microbial decomposition in spite of its evolutionary vulnerability to 28 `cheaters'|mutant strains that reap the benefits of cooperation while paying a lower 29 cost. -
Evolutionary Dynamics on Any Population Structure
Evolutionary dynamics on any population structure Benjamin Allen1,2,3, Gabor Lippner4, Yu-Ting Chen5, Babak Fotouhi1,6, Naghmeh Momeni1,7, Shing-Tung Yau3,8, and Martin A. Nowak1,8,9 1Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA 2Department of Mathematics, Emmanuel College, Boston, MA, USA 3Center for Mathematical Sciences and Applications, Harvard University, Cambridge, MA, USA 4Department of Mathematics, Northeastern University, Boston, MA, USA 5Department of Mathematics, University of Tennessee, Knoxville, TN, USA 6Institute for Quantitative Social Sciences, Harvard University, Cambridge, MA, USA 7Department of Electrical and Computer Engineering, McGill University, Montreal, Canada 8Department of Mathematics, Harvard University, Cambridge, MA, USA 9Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA December 23, 2016 Abstract Evolution occurs in populations of reproducing individuals. The structure of a biological population affects which traits evolve [1, 2]. Understanding evolutionary game dynamics in structured populations is difficult. Precise results have been absent for a long time, but have recently emerged for special structures where all individuals have the arXiv:1605.06530v2 [q-bio.PE] 22 Dec 2016 same number of neighbors [3, 4, 5, 6, 7]. But the problem of deter- mining which trait is favored by selection in the natural case where the number of neighbors can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class which suggests there is no efficient algorithm [8]. Whether there exists a simple solution for weak selection was unanswered. Here we provide, surprisingly, a general formula for weak selection that applies to any graph or social network.