Mate Choice and Sexual Selection: What Have We Learned Since Darwin?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Benefit of Polyandry in a Monandrous Species When Females Mate with Already Mated Males
King, BH. 2018. Benefit of polyandry in a monandrous species when females mate with already mated males. Behavioral Ecology and Sociobiology For additional accessible full text of publications by BH King, go to http://niu.edu/biology/about/faculty/bking/bking-publications.shtml This is a post-peer-review, pre-copyedit version of an article published in Behavioral Ecology and Sociobiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00265-018-2508-4 Benefit of polyandry in a highly monandrous species when females mate with already mated males B. H. King Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA e-mail: [email protected] ORCID 0000-0003-0435-5928 Abstract Female mating frequency varies among animal taxa. A benefit to females of remating has usually been found, but almost all tests have been with polyandrous species. A species being monandrous does not guarantee that mating only once benefits the female, instead the monandry may result from sexual conflict, where her failure to remate benefits her mate, but not her. The parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae) is highly monandrous. Females do not benefit from either immediate or delayed remating when their first mate is virgin. However, some females are likely to mate with already mated males because sex ratios are female-biased. Here the effect of experimentally-induced polyandry on female fitness was examined for females whose first mate had already mated four times, i.e., for fifth females. Fifth female S. endius produce significantly fewer daughters than first females. Production of daughters, but not sons, requires sperm in hymenopterans. -
Sexual Selection, Sex Roles, and Sexual Conflict
Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press The Sexual Cascade and the Rise of Pre-Ejaculatory (Darwinian) Sexual Selection, Sex Roles, and Sexual Conflict Geoff A. Parker Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Correspondence: [email protected] After brief historic overviews of sexual selection and sexual conflict, I argue that pre-ejacu- latory sexual selection (the form of sexual selection discussed by Darwin) arose at a late stage in an inevitable succession of transitions flowing from the early evolution of syngamy to the evolution of copulation and sex roles. If certain conditions were met, this “sexual cascade” progressed inevitably, if not, sexual strategy remained fixed at a given stage. Prolonged evolutionary history of intense sperm competition/selection under external fertilization preceded the rise of advanced mobility, which generated pre-ejaculatory sexual selection, followed on land by internal fertilization and reduced sperm competition in the form of postcopulatory sexual selection. I develop a prospective model of the early evolution of mobility, which, as Darwin realized, was the catalyst for pre-ejaculatory sexual selection. Stages in the cascade should be regarded as consequential rather than separate phenomena and, as such, invalidate much current opposition to Darwin–Bateman sex roles. Potential for sexual conflict occurs throughout, greatly increasing later in the cascade, reaching its peak under precopulatory sexual selection when sex roles become highly differentiated. exual selection and sexual conflict are vast changed through evolutionary time, from Sfields in evolutionary biology; when possi- mostly gamete competition in early unicellu- ble, here, I refer to reviews. -
Biol B242 - Coevolution
BIOL B242 - COEVOLUTION http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html BIOL B242 - COEVOLUTION So far ... In this course we have mainly discussed evolution within species, and evolution leading to speciation. Evolution by natural selection is caused by the interaction of populations/species with their environments. Today ... However, the environment of a species is always partly biotic. This brings up the possiblity that the "environment" itself may be evolving. Two or more species may in fact coevolve. And coevolution gives rise to some of the most interesting phenomena in nature. What is coevolution? At its most basic, coevolution is defined as evolution in two or more evolutionary entities brought about by reciprocal selective effects between the entities. The term was invented by Paul Ehrlich and Peter Raven in 1964 in a famous article: "Butterflies and plants: a study in coevolution", in which they showed how genera and families of butterflies depended for food on particular phylogenetic groupings of plants. We have already discussed some coevolutionary phenomena: For example, sex and recombination may have evolved because of a coevolutionary arms race between organisms and their parasites; the rate of evolution, and the likelihood of producing resistance to infection (in the hosts) and virulence (in the parasites) is enhanced by sex. We have also discussed sexual selection as a coevolutionary phenomenon between female choice and male secondary sexual traits. In this case, the coevolution is within a single species, but it is a kind of coevolution nonetheless. One of our problem sets involved frequency dependent selection between two types of players in an evolutionary "game". -
Female Mate Choice in Mammals Author(S): by Tim Clutton-Brock and and Katherine Mcauliffe Reviewed Work(S): Source: the Quarterly Review of Biology, Vol
Female Mate Choice in Mammals Author(s): By Tim Clutton-Brock and and Katherine McAuliffe Reviewed work(s): Source: The Quarterly Review of Biology, Vol. 84, No. 1 (March 2009), pp. 3-27 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/596461 . Accessed: 07/09/2012 01:00 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to The Quarterly Review of Biology. http://www.jstor.org Volume 84, No. 1 March 2009 THE QUARTERLY REVIEW of Biology FEMALE MATE CHOICE IN MAMMALS Tim Clutton-Brock Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom e-mail: [email protected] Katherine McAuliffe Department of Anthropology, Harvard University, Cambridge, Massachusetts 02138, USA e-mail: [email protected] keywords sexual selection, mate choice, mammals, mating systems, genetic benefits abstract Studies of mate choice in vertebrates have focused principally on birds, in which male ornaments are often highly developed, and have shown that females commonly select mates on the basis of particular phenotypic characteristics that may reflect their genetic quality. -
Natural Selection on Phenotypes
Conner and Hartl – p. 6-1 From: Conner, J. and D. Hartl, A Primer of Ecological Genetics. In prep. for Sinauer Chapter 6: Natural selection on phenotypes Natural selection and adaptation have been recurring themes throughout this book, from the very beginning of chapter 1. We discussed selection on genotypes (and discrete phenotypes) in chapter 3, and now that we have a good understanding of the genetics of continuously distributed traits we turn to selection on these common and ecologically important phenotypes. We discuss the very general and widely used regression-based approaches to measuring selection, and cover ways to identify the phenotypic traits that are the direct targets of selection, as well as ways to determine the environmental agents that are causing selection. Identifying selective agents and targets is a powerful approach to understanding adaptation. Finally, we integrate this material with the concepts covered in chapters 4 and 5 to show how short-term phenotypic evolution can be modeled and predicted, and how this undertaking sheds light on constraints on adaptive evolution. Throughout the chapter the effects of genetic and phenotypic correlations among traits are highlighted. Evolution by natural selection has three parts (Figure 6.1; Endler 1986): 1. There is phenotypic variation for the trait of interest. 2. There is some consistent relationship between this phenotypic variation and variation in fitness. 3. A significant proportion of the phenotypic variation is caused by additive genetic variance, that is, the trait is heritable. Numbers 1 and 2 represent selection on phenotypes, which occurs within a generation and can be quantified using the selection differential (S) just as with artificial selection. -
Mate Choice and Learning
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 2010 Mate Choice and Learning Eileen Hebets University of Nebraska-Lincoln, [email protected] Laura Sullivan-Beckers University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscihebets Part of the Behavior and Ethology Commons Hebets, Eileen and Sullivan-Beckers, Laura, "Mate Choice and Learning" (2010). Eileen Hebets Publications. 46. https://digitalcommons.unl.edu/bioscihebets/46 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Animal Behavior, edited by Michael D. Breed and Janice Moore. Amsterdam: Elsevier B.V., 2010, vol. 2, pp. 389-393. Copyright © 2010 Elsevier Ltd. Used by permission. Mate Choice and Learning E. A. Hebets and L. Sullivan-Beckers, University of Nebraska–Lincoln, Lincoln, NE, USA Introduction choice learning. For example, the use of public informa- tion relieves an individual from personally gathering While an individual’s genetic framework is a major con- information and could minimize costs typically associ- tributor in determining its eventual mate choice, the role ated with mate assessment such as exposure to preda- of the environment in further influencing mating deci- tors or decreased time devoted to other important ac- sions has long been recognized. Animals gather informa- tivities such as foraging. Mate-choice learning more tion from the environment throughout life, and in some generally permits flexibility in mate choice, which could cases, may apply this information to increase their odds be extremely important in a changing environment. -
Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer
vol. 165, no. 6 the american naturalist june 2005 Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer Don R. Levitan* Department of Biological Science, Florida State University, a very simple way—the timing of gamete release (Levitan Tallahassee, Florida 32306-1100 1998b). This allows for an investigation of how mating behavior can influence mating success without the com- Submitted October 29, 2004; Accepted February 11, 2005; Electronically published April 4, 2005 plications imposed by variation in adult morphological features, interactions within the female reproductive sys- tem, or post-mating (or pollination) investments that can all influence paternal and maternal success (Arnqvist and Rowe 1995; Havens and Delph 1996; Eberhard 1998). It abstract: Identifying the target of sexual selection in externally also provides an avenue for exploring how the evolution fertilizing taxa has been problematic because species in these taxa often lack sexual dimorphism. However, these species often show sex of sexual dimorphism in adult traits may be related to the differences in spawning behavior; males spawn before females. I in- evolutionary transition to internal fertilization. vestigated the consequences of spawning order and time intervals One of the most striking patterns among animals and between male and female spawning in two field experiments. The in particular invertebrate taxa is that, generally, species first involved releasing one female sea urchin’s eggs and one or two that copulate or pseudocopulate exhibit sexual dimor- males’ sperm in discrete puffs from syringes; the second involved phism whereas species that broadcast gametes do not inducing males to spawn at different intervals in situ within a pop- ulation of spawning females. -
Mating Preferences Might Evolve by Natural Selection. If Mating Mate
A GENERAL MODEL OF SEXUAL AND NATURAL SELECTION P. O'DONALD Department of Zoology, University College of North Wales, bangor Received28.xii.66 1.INTRODUCTION FISHERin The Genetical Theory of JVatural Selection (1930) described how mating preferences might evolve by natural selection. If mating behaviour varies among different genotypes, some individuals may have an hereditary disposition to mate with others having particular characteristics. Usually of course it is the females who choose the males and their choice is determined by the likelihood that the males' display will release their mating responses. If some females prefer to mate with those males that have characteristics advantageous in natural selection, then the genotypes that determine such matings will also be selected: the offspring will carry both the advantageous geno- types and the genotypes of the mating preference. Once the mating preference is established, it will itself add to the selective advantage of the preferred genotypes: a "runaway process" as Fisher called it develops. In a paper in Heredity (1963) I described a mathematical model of this type of selection. In the simplest case two loci must be involved: one locus determines the preferred character and the other the mating preference. If there are only two alleles segregating at each locus, ten different genotypes can occur if the loci are linked and nine if they are not. If they are sex-linked, there are i possible genotypes. I derived finite difference equations giving the frequencies of the genotypes in terms of parameters describing the degree of dominance of the preferred genotypes and the recombination fractions of the loci. -
Patterns and Power of Phenotypic Selection in Nature
Articles Patterns and Power of Phenotypic Selection in Nature JOEL G. KINGSOLVER AND DAVID W. PFENNIG Phenotypic selection occurs when individuals with certain characteristics produce more surviving offspring than individuals with other characteristics. Although selection is regarded as the chief engine of evolutionary change, scientists have only recently begun to measure its action in the wild. These studies raise numerous questions: How strong is selection, and do different types of traits experience different patterns of selection? Is selection on traits that affect mating success as strong as selection on traits that affect survival? Does selection tend to favor larger body size, and, if so, what are its consequences? We explore these questions and discuss the pitfalls and future prospects of measuring selection in natural populations. Keywords: adaptive landscape, Cope’s rule, natural selection, rapid evolution, sexual selection henotypic selection occurs when individuals with selection on traits that affect survival stronger than on those Pdifferent characteristics (i.e., different phenotypes) that affect only mating success? In this article, we explore these differ in their survival, fecundity, or mating success. The idea and other questions about the patterns and power of phe- of phenotypic selection traces back to Darwin and Wallace notypic selection in nature. (1858), and selection is widely accepted as the primary cause of adaptive evolution within natural populations.Yet Darwin What is selection, and how does it work? never attempted to measure selection in nature, and in the Selection is the nonrandom differential survival or repro- century following the publication of On the Origin of Species duction of phenotypically different individuals. -
Sexual Conflict in Hermaphrodites
Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Sexual Conflict in Hermaphrodites Lukas Scha¨rer1, Tim Janicke2, and Steven A. Ramm3 1Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland 2Centre d’E´cologie Fonctionnelle et E´volutive, CNRS UMR 5175, 34293 Montpellier Cedex 05, France 3Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany Correspondence: [email protected] Hermaphrodites combine the male and female sex functions into a single individual, either sequentially or simultaneously. This simple fact means that they exhibit both similarities and differences in the way in which they experience, and respond to, sexual conflict compared to separate-sexed organisms. Here, we focus on clarifying how sexual conflict concepts can be adapted to apply to all anisogamous sexual systems and review unique (or especially im- portant) aspects of sexual conflict in hermaphroditic animals. These include conflicts over the timing of sex change in sequential hermaphrodites, and in simultaneous hermaphrodites, over both sex roles and the postmating manipulation of the sperm recipient by the sperm donor. Extending and applying sexual conflict thinking to hermaphrodites can identify general evolutionary principles and help explain some of the unique reproductive diversity found among animals exhibiting this widespread but to date understudied sexual system. onceptual and empirical work on sexual strategy of making more but smaller gam- Cconflict is dominated by studies on gono- etes—driven by (proto)sperm competition— chorists (species with separate sexes) (e.g., Par- likely forced the (proto)female sexual strategy ker 1979, 2006; Rice and Holland 1997; Holland into investing more resources per gamete (Par- and Rice 1998; Rice and Chippindale 2001; ker et al. -
Mate Choice | Principles of Biology from Nature Education
contents Principles of Biology 171 Mate Choice Reproduction underlies many animal behaviors. The greater sage grouse (Centrocercus urophasianus). Female sage grouse evaluate males as sexual partners on the basis of the feather ornaments and the males' elaborate displays. Stephen J. Krasemann/Science Source. Topics Covered in this Module Mating as a Risky Behavior Major Objectives of this Module Describe factors associated with specific patterns of mating and life history strategies of specific mating patterns. Describe how genetics contributes to behavioral phenotypes such as mating. Describe the selection factors influencing behaviors like mate choice. page 882 of 989 3 pages left in this module contents Principles of Biology 171 Mate Choice Mating as a Risky Behavior Different species have different mating patterns. Different species have evolved a range of mating behaviors that vary in the number of individuals involved and the length of time over which their relationships last. The most open type of relationship is promiscuity, in which all members of a community can mate with each other. Within a promiscuous species, an animal of either gender may mate with any other male or female. No permanent relationships develop between mates, and offspring cannot be certain of the identity of their fathers. Promiscuous behavior is common in bonobos (Pan paniscus), as well as their close relatives, the chimpanzee (P. troglodytes). Bonobos also engage in sexual activity for activities other than reproduction: to greet other members of the community, to release social tensions, and to resolve conflicts. Test Yourself How might promiscuous behavior provide an evolutionary advantage for males? Submit Some animals demonstrate polygamous relationships, in which a single individual of one gender mates with multiple individuals of the opposite gender. -
Estimating Genetic Benefits of Polyandry from Experimental Studies
Biol. Rev. (2011), pp. 000–000. 1 doi: 10.1111/j.1469-185X.2011.00182.x Estimating genetic benefits of polyandry from experimental studies: a meta-analysis Rachel A. Slatyer†, Brian S. Mautz†, Patricia R.Y. Backwell and Michael D. Jennions∗ Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia ABSTRACT The consequences of polyandry for female fitness are controversial. Sexual conflict studies and a meta-analysis of mating rates in insects suggest that there is a longevity cost when females mate repeatedly. Even so, compensatory material benefits can elevate egg production and fertility, partly because polyandry ensures an adequate sperm supply. Polyandry can therefore confer direct benefits. The main controversy surrounds genetic benefits. The argument is analogous to that surrounding the evolution of conventional female mate choice, except that with polyandry it is post-copulatory mechanisms that might bias paternity towards males with higher breeding values for fitness. Recent meta-analyses of extra-pair copulations in birds have cast doubt on whether detectable genetic benefits exist. By contrast, another meta-analysis showed that polyandry elevates egg hatching success (possibly due to a fertilization bias towards sperm with paternal genes that elevate embryo survival) in insects. A detailed summary of whether polyandry elevates other components of offspring performance is lacking. Here we present a comprehensive meta-analysis of 232 effect sizes from 46 experimental studies. These experiments were specifically designed to try to quantify the potential genetic benefits of polyandry by controlling fully for the number of matings by females assigned to monandry and polyandry treatments.