Send Orders for Reprints to
[email protected] 712 Current Genomics, 2018, 19, 712-722 REVIEW ARTICLE Metabolic Modeling of Microbial Community Interactions for Health, En- vironmental and Biotechnological Applications Kok Siong Ang1, Meiyappan Lakshmanan1, Na-Rae Lee2 and Dong-Yup Lee1,2,3,* 1Bioprocessing Technology Institute (BTI), A*STAR, Singapore 138668, Singapore; 2Department of Chemical and Bio- molecular Engineering, and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National Uni- versity of Singapore, Singapore 117585, Singapore; 3School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea Abstract: In nature, microbes do not exist in isolation but co-exist in a variety of ecological and bio- logical environments and on various host organisms. Due to their close proximity, these microbes in- teract among themselves, and also with the hosts in both positive and negative manners. Moreover, these interactions may modulate dynamically upon external stimulus as well as internal community changes. This demands systematic techniques such as mathematical modeling to understand the intrin- sic community behavior. Here, we reviewed various approaches for metabolic modeling of microbial A R T I C L E H I S T O R Y communities. If detailed species-specific information is available, segregated models of individual or- Received: June 25, 2017 ganisms can be constructed and connected via metabolite exchanges; otherwise, the community may Revised: November 08, 2017 be represented as a lumped network of metabolic reactions. The constructed models can then be simu- Accepted: November 11, 2017 lated to help fill knowledge gaps, and generate testable hypotheses for designing new experiments.