Insights Into Early Development from Genetic and Epigenetic Data Across Tissue Types

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into Early Development from Genetic and Epigenetic Data Across Tissue Types INSIGHTS INTO EARLY DEVELOPMENT FROM GENETIC AND EPIGENETIC DATA ACROSS TISSUE TYPES By Shan V. Andrews A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland April, 2018 © 2018 Shan V. Andrews All Rights Reserved ABSTRACT The etiology of autism spectrum disorder (ASD) remains largely undiscovered. Common genetic variants are increasingly being realized, but the functional biology implicated by these SNPs has yet to be elucidated. Integrating epigenetic data, particularly DNA methylation (DNAm), with ASD SNP data is warranted, given its success in schizophrenia and bipolar disorder and the evidence for an epigenetic basis to ASD. Given that DNAm is tissue-specific, it is of interest to consider DNAm from brain, the main tissue of interest for ASD, and peripheral tissues simultaneously so that SNP and CpG-based insights can be compared across tissues. One peripheral tissue, the placenta, is understudied in an ASD context, despite being the critical organ regulating the gestational period, a key window of interest for ASD etiology. Given this role, the placenta also “programs” early and later life phenotypes, and sex-biased ratios in many phenotypes, including ASD, may be driven by sex-specific placenta functions. In Chapter 1, we first describe the current literature on ASD etiology, and then review placenta structure and function, role in fetal brain development, and known differences by fetal sex. Next we use DNAm data across tissues in conjunction with paired genotype data to find that, across blood and brain, ASD-associated SNPs are enriched for methylation quantitative trait loci (meQTLs), or SNPs that are associated with DNAm, and that the DNAm sites controlled by ASD-related SNPs are engaged in immune response pathways (Chapter 2). We then focus on studies of the placenta, first demonstrating the additional enrichment of ASD-associated SNPs with placenta meQTLs (Chapter 3), and conducting queries for differentially methylated regions (DMRs) and global methylation differences related to ASD (Chapter 4). Finally, we discover a genome-wide significant DMR for fetal sex in placenta near ZNF300. DNAm levels in this region are related to placenta morphology, demonstrating a mechanism by which sex-specific placenta structure, and subsequent sex-biased vulnerability to disease, may occur (Chapter 5). This dissertation ii contributes to our understanding of how epigenetics mechanisms, particularly acting in conjunction with genetic variation, contributes to understanding of ASD etiology across tissues, and govern placental functions to create sex-specific gestational environments. Thesis Readers: Christine Ladd-Acosta, PhD (Advisor) M. Daniele Fallin, PhD (Advisor) Dan Arking, PhD Debashree Ray, PhD Alternates: Alden Gross, PhD and Xiaobin Wang, ScD iii ACKNOWLEDGEMENTS First I would like to thank my advisors, Chris Ladd-Acosta and Dani Fallin. I am extremely grateful for your mentorship for the past 6 years during my master’s degree and then of course my PhD. Thank you for always being open to new ideas, no matter at what stage in development you heard them, and for teaching me how to blend epidemiology, genomics, and bioinformatics in the right ways to lead to meaningful work. I know I am the researcher I am today due to both of your guidance. I am proud of the work we have accomplished together and I will miss working with you both. Next I would like to thank Kasper Hansen, who has been a great additional mentor to me. I always appreciated your frank criticism and I always felt that I walked out of your office with a very tangible improvement in my ability as a scientist. I would like to also thank you specifically for improving my ability to write R code; I greatly appreciated your insights into how to best write concise, user-friendly functions and I know you have given my knowledge that I will carry with me for years to come. I have additional mentors I would like to thank as well. First, to Dan Arking, thank you for all of your advice over the years. I always marveled at your ability to be able to give great insights and helpful next steps after looking at my results for only a few minutes. Next, to Andy Feinberg, thank you for all your insights, I always felt very lucky to gain your perspective on my work. To Kelly Bakulski, thank you for your friendship, support and guidance over the years. It is often said in academia that it is important to have someone at the stage ahead of you who you can look up to and who can serve as a role model, and you were undoubtedly that person for me. Finally I would like to thank Kelly Benke and Brion Maher, who I started my first research project with in iv the fall of 2012. Thank you setting me off on the right foot and easing me in to the research process. To Shannon Ellis – thank you being a wonderful collaborator and friend. I learned so much in our meetings together figuring out how to do our various meQTL analyses and I will always be very grateful for that time we spent working together. I need to give a special thanks to all the study staff and participants for the Study to Explore Early Development and the Early Autism Risk Longitudinal Investigation. In particular I would like to thank Jamie Kaczaniuk and Michelle Landrum, who always made navigating study requirements and logistics very easy and who are some of the friendliest faces at the School of Public Health. Thank you to the Maryland Genetics, Epidemiology, and Medicine Training program and all of the faculty behind it, in particular Priya Duggal, Dave Valle, Dani Fallin, and Jennifer Deal. I have gained numerous experiences I would not have had otherwise through this program and I know I am a more well-rounded researcher because of it. Thank you to the JHSPH Epidemiology department, in particular the genetic epidemiology faculty who have taught me and who I have TA’d for, including Priya Duggal, Terri Beaty, Robert Wojciechowski, and Linda Kao. To Ali Abraham and Bryan Lau, thank you for giving me the opportunity to TA for you for several years. I learned so much about the best ways to teach students and I always enjoyed your company. Thank you to all of my friends for their support during this process, in particular John, Robby, and Chet, and all of my roommates during my time in Baltimore. Many of you could relate to my v experiences first hand, and even if you didn’t, I always felt privileged to have you in my life as an outlet during the more difficult times. Thank you to my sisters for your love and support throughout my life and especially in this PhD process. You two have always been wonderful role models for me. I respect you both so much and am proud of everything you have accomplished. I must say a very deep thank you to my parents, to whom I don’t say that nearly enough. Thank you for immigrating to this country and giving me opportunities and experiences I would not have had otherwise. Thank you for all of your hard work during my childhood and for fostering a supporting environment. I am grateful for all you have given me and I hope to now start repaying the favor. And finally thank you to my dearest Brooke, my future wife and my best friend. I can’t describe what a joy it is to have you in my life and how lucky I was throughout this process to know that no matter what happened during the day, I could always come home to you. Thank you for all of your support and, of course, for bringing Leonard into my life. As I’ve always said, I’m not sure if I’m a dog person now, but I’m definitely a Leonard person. vi TABLE OF CONTENTS Abstract……………………………………………………………………………………………ii Acknowledgements……………………………………………………………………………….iv Table of contents………………………………………………………………………………....vii List of Tables……………………………………………………………………………………..ix List of Figures…………………………………………………………………………………......x Chapter 1: Introduction…………………………………………………………………………....1 1.1 Autism spectrum disorder………………………………………………………..……1 1.1.1 Definition………………………………………………………….………1 1.1.2 ASD heritability estimates………………………………………………...1 1.1.3 Environmental risk factors associated with ASD…………………………2 1.1.4 Genetic risk factors associated with ASD ………………………………...4 1.2 Epigenetics and ASD…………………………………………..……………………...6 1.2.1 Description of epigenetics………………………………………………....6 1.2.2 The relevance of epigenetics in ASD etiology……………………………7 1.2.3 Framework for understanding epigenetic involvement in ASD………..…9 1.2.4 Challenges with studying epigenetics in autism: tissue availability………9 1.2.5 Challenges with studying epigenetics in autism: measurement platforms…………………………………………………………………10 1.2.6 Importance of integrating genetic and epigenetic data in ASD………….11 1.3 The placenta……………………………………………………………….…………13 1.3.1 General structure and function………………………………...................13 1.3.2 The role of the placenta in fetal brain development…………………..…14 1.3.3 Differences in disease prevalence by sex and sexual dimorphism in the placenta …………………………………………………...……………..16 1.3.4 Placenta epigenetics……………………………………………………...18 1.4 Focus of this dissertation………………………………………………………….....21 1.5 References……………………………………………………………………………23 Chapter 2: Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder………………………………………………………………………………...38 2.1 Abstract………………………………………………………………………………40 2.2 Introduction………………………………………………………………………..…41 2.3 Methods………………………………………………………………………………43 2.4 Results………………………………………………………………………………..55 2.5 Discussion……………………………………………………………………………59
Recommended publications
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
    www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • High-Resolution Analysis of Chromosomal Breakpoints and Genomic Instability Identifies PTPRD As a Candidate Tumor Suppressor Gene in Neuroblastoma
    Research Article High-Resolution Analysis of Chromosomal Breakpoints and Genomic Instability Identifies PTPRD as a Candidate Tumor Suppressor Gene in Neuroblastoma Raymond L. Stallings,1 Prakash Nair,1 John M. Maris,2 Daniel Catchpoole,3 Michael McDermott,4 Anne O’Meara,5 and Fin Breatnach5 1Children’s Cancer Research Institute and Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas; 2Division of Oncology, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; 3The Tumor Bank, Children’s Hospital at Westmead, Sydney, New South Wales, Australia; and Departments of 4Pathology and 5Oncology, Our Lady’s Hospital for Sick Children, Dublin, Ireland Abstract and death from disease. Patient age, tumor stage, and several Although neuroblastoma is characterized by numerous different genetic abnormalities are important factors that influence clinical outcome. Loss of 1p and 11q, gain of 17q, and amplification recurrent, large-scale chromosomal imbalances, the genes MYCN targeted by such imbalances have remained elusive. We have of the oncogene are particularly strong genetic indicators of poor disease outcome (2–5). Two of these abnormalities, loss of 11q applied whole-genome oligonucleotide array comparative MYCN genomic hybridization (median probe spacing 6 kb) to 56 and amplification, form the basis for dividing advanced- stage neuroblastomas into genetic subtypes due to their rather neuroblastoma tumors and cell lines to identify genes involved with disease pathogenesis. This set oftumors was selected for striking inverse distribution in tumors (6, 7). Many other recurrent having either 11q loss or MYCN amplification, abnormalities partial chromosomal imbalances, including loss of 3p, 4p, 9p, and that define the two most common genetic subtypes of 14q and gain of 1q, 2p, 7q, and 11p, have been identified by metastatic neuroblastoma.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Genome-Wide Methylation Sequencing Identifies Progression
    Zhou et al. Cell Death and Disease (2020) 11:997 https://doi.org/10.1038/s41419-020-03213-2 Cell Death & Disease ARTICLE Open Access Genome-wide methylation sequencing identifies progression-related epigenetic drivers in myelodysplastic syndromes Jing-dong Zhou1,2,3, Ting-juan Zhang1,2,3, Zi-jun Xu2,3,4,Zhao-qunDeng2,3,4,YuGu1,2,3,Ji-chunMa2,3,4, Xiang-mei Wen2,3,4, Jia-yan Leng1,2,3,JiangLin2,3,4, Su-ning Chen5,6 and Jun Qian1,2,3 Abstract The potential mechanism of myelodysplastic syndromes (MDS) progressing to acute myeloid leukemia (AML) remains poorly elucidated. It has been proved that epigenetic alterations play crucial roles in the pathogenesis of cancer progression including MDS. However, fewer studies explored the whole-genome methylation alterations during MDS progression. Reduced representation bisulfite sequencing was conducted in four paired MDS/secondary AML (MDS/ sAML) patients and intended to explore the underlying methylation-associated epigenetic drivers in MDS progression. In four paired MDS/sAML patients, cases at sAML stage exhibited significantly increased methylation level as compared with the matched MDS stage. A total of 1090 differentially methylated fragments (DMFs) (441 hypermethylated and 649 hypomethylated) were identified involving in MDS pathogenesis, whereas 103 DMFs (96 hypermethylated and 7 hypomethylated) were involved in MDS progression. Targeted bisulfite sequencing further identified that aberrant GFRA1, IRX1, NPY, and ZNF300 methylation were frequent events in an additional group of de novo MDS and AML patients, of which only ZNF300 methylation was associated with ZNF300 expression. Subsequently, ZNF300 fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; hypermethylation in larger cohorts of de novo MDS and AML patients was con rmed by real-time quantitative methylation-specific PCR.
    [Show full text]
  • Get.Com Oncotarget, 2018, Vol
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 35), pp: 24122-24139 Research Paper Etoposide-induced DNA damage affects multiple cellular pathways in addition to DNA damage response Fengxiang Wei1, Peng Hao2, Xiangzhong Zhang3, Haiyan Hu4, Dan Jiang5, Aihua Yin6, Lijuan Wen1,7, Lihong Zheng8, Jeffrey Zheru He9, Wenjuan Mei10,12, Hui Zeng11,12 and Damu Tang12 1The Genetics Laboratory, Shenzhen Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, PR China 2Division of Nephrology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, PR China 3Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, PR China 4Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, PR China 5Shenzhen Hua Da Clinical Laboratory Center Co., Ltd., Shenzhen, Guangdong, PR China 6Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, PR China 7Zunyi Medical University, Zunyi, Guizhou, PR China 8Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang, PR China 9Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA 10Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China 11Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei, PR China 12Division of Nephrology, Department of Medicine, McMaster
    [Show full text]
  • Most Variable Genes and Transcription Factors in Acute Lymphoblastic Leukemia Patients
    Interdisciplinary Sciences: Computational Life Sciences https://doi.org/10.1007/s12539-019-00325-y ORIGINAL RESEARCH ARTICLE Most Variable Genes and Transcription Factors in Acute Lymphoblastic Leukemia Patients Anil Kumar Tomar1 · Rahul Agarwal2 · Bishwajit Kundu1 Received: 24 September 2018 / Revised: 21 January 2019 / Accepted: 26 February 2019 © International Association of Scientists in the Interdisciplinary Areas 2019 Abstract Acute lymphoblastic leukemia (ALL) is a hematologic tumor caused by cell cycle aberrations due to accumulating genetic disturbances in the expression of transcription factors (TFs), signaling oncogenes and tumor suppressors. Though survival rate in childhood ALL patients is increased up to 80% with recent medical advances, treatment of adults and childhood relapse cases still remains challenging. Here, we have performed bioinformatics analysis of 207 ALL patients’ mRNA expression data retrieved from the ICGC data portal with an objective to mark out the decisive genes and pathways responsible for ALL pathogenesis and aggression. For analysis, 3361 most variable genes, including 276 transcription factors (out of 16,807 genes) were sorted based on the coefcient of variance. Silhouette width analysis classifed 207 ALL patients into 6 subtypes and heat map analysis suggests a need of large and multicenter dataset for non-overlapping subtype classifcation. Overall, 265 GO terms and 32 KEGG pathways were enriched. The lists were dominated by cancer-associated entries and highlight crucial genes and pathways that can be targeted for designing more specifc ALL therapeutics. Diferential gene expression analysis identifed upregulation of two important genes, JCHAIN and CRLF2 in dead patients’ cohort suggesting their pos- sible involvement in diferent clinical outcomes in ALL patients undergoing the same treatment.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • Deletions of Chromosome 7Q Affect Nuclear Organization And
    cancers Article Deletions of Chromosome 7q Affect Nuclear Organization and HLXB9Gene Expression in Hematological Disorders Concetta Federico 1 , Temitayo Owoka 2, Denise Ragusa 2, Valentina Sturiale 1, Domenica Caponnetto 1, Claudia Giovanna Leotta 1, Francesca Bruno 1 , Helen A. Foster 3,5, Silvia Rigamonti 4, Giovanni Giudici 4, Giovanni Cazzaniga 4, Joanna M. Bridger 2, Cristina Sisu 5 , Salvatore Saccone 1,* and Sabrina Tosi 2,* 1 Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy; [email protected] (C.F.); [email protected] (V.S.); [email protected] (D.C.); [email protected] (C.G.L.); [email protected] (F.B.) 2 Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK; [email protected] (T.O.); [email protected] (D.R.); [email protected] (J.M.B.) 3 Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; [email protected] 4 Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy; [email protected] (S.R.); [email protected] (G.G.); [email protected] (G.C.) 5 College of Health and Life Science, Brunel University London, Kingston Lane UB8 3PH, UK; [email protected] * Correspondence: [email protected] (S.S.); [email protected] (S.T.) Received: 12 March 2019; Accepted: 19 April 2019; Published: 25 April 2019 Abstract: The radial spatial positioning of individual gene loci within interphase nuclei has been associated with up- and downregulation of their expression.
    [Show full text]
  • Placenta DNA Methylation at ZNF300 Is Associated with Fetal Sex and Placental Morphology
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.05.433992; this version posted March 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Placenta DNA methylation at ZNF300 is associated with fetal sex and placental morphology Christine Ladd-Acosta1,2,*,‡, Shan V. Andrews1,2,‡, Kelly M. Bakulski3, Jason I. Feinberg2,4, Rakel Tryggvadottir5, Ruofan Yao6, Lisa A. Croen7, Irva Hertz-Picciotto8,9, Craig J. Newschaffer10,11, Carolyn M. Salafia12, Andrew P. Feinberg4,5,13, Kasper D. Hansen14,15, M. Daniele Fallin2,4,5 1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA 2Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA 3Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA 4Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA 5Center for Epigenetics, Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA 6Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, 11234 Anderson St, Loma Linda, CA 92354, USA 7Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, USA 8Department of Public Health Sciences, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA 9MIND Institute, University of California Davis, 2825 50th St, Sacramento, CA 95817, USA 10AJ Drexel Autism Institute, Drexel University, 3020 Market St #560, Philadelphia, PA 19104, USA.
    [Show full text]
  • Discovery of Biased Orientation of Human DNA Motif Sequences
    bioRxiv preprint doi: https://doi.org/10.1101/290825; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Discovery of biased orientation of human DNA motif sequences 2 affecting enhancer-promoter interactions and transcription of genes 3 4 Naoki Osato1* 5 6 1Department of Bioinformatic Engineering, Graduate School of Information Science 7 and Technology, Osaka University, Osaka 565-0871, Japan 8 *Corresponding author 9 E-mail address: [email protected], [email protected] 10 1 bioRxiv preprint doi: https://doi.org/10.1101/290825; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Chromatin interactions have important roles for enhancer-promoter interactions 13 (EPI) and regulating the transcription of genes. CTCF and cohesin proteins are located 14 at the anchors of chromatin interactions, forming their loop structures. CTCF has 15 insulator function limiting the activity of enhancers into the loops. DNA binding 16 sequences of CTCF indicate their orientation bias at chromatin interaction anchors – 17 forward-reverse (FR) orientation is frequently observed. DNA binding sequences of 18 CTCF were found in open chromatin regions at about 40% - 80% of chromatin 19 interaction anchors in Hi-C and in situ Hi-C experimental data.
    [Show full text]