The Use of Methanol As a Fuel for Transportation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2017 CADILLAC ATS-V: the Smallest and Lightest V-Series Sedan and Coupe Ever Receive Technology Enhancements and an Available Carbon Black Sport Package
2017 CADILLAC ATS-V: the smallest and lightest V-Series sedan and coupe ever receive technology enhancements and an available Carbon Black sport package New for 2017 • AVAILABLE CARBON BLACK SPORT PACKAGE • CADILLAC CUE ENHANCEMENTS INCLUDING TEEN DRIVER AND COLLECTION The first-generation Cadillac ATS-V introduced class-leading twin-turbocharged performance and a comprehensive suite of design and performance systems to the lightest and smallest V- Series Sedans and Coupe models ever. The 2017 Cadillac ATS-V adds a Carbon Black sport package and upgrades and enhancements for the Cadillac CUE infotainment system improving the ATS-V’s superior connectivity. The enhanced Cadillac CUE includes new standard technologies such as the myCadillac Mobile App, Teen Driver and Cadillac Collection. Since its inception in 2004, Cadillac’s V-Series performance family has driven remarkable power and performance capability into the brand’s growing luxury car range. Building on the strengths of the award-winning Cadillac ATS product line, V-Series adds impressive track capability to what was already the lightest and most agile-driving car in the luxury compact class. The result is a dual-purpose luxury performer – a car with true track capability right from the factory that is also a sophisticated luxury car on the road. Key features include: • The Cadillac Twin Turbo V-6 engine mated to a standard six-speed manual transmission or paddle-shift eight-speed automatic transmission • Standard carbon fiber hood and available carbon fiber package, including -
Assessment of Bio- Ethanol and Biogas Initiatives for Transport in Sweden
Assessment of bio- ethanol and biogas initiatives for transport in Sweden Background information for the EU-project PREMIA EU Contract N° TREN/04/FP6EN/S07.31083/503081 May 2005 2 Abstract This report is the result of an assignment on assessment of bio-ethanol and biogas initiatives for transport in Sweden, granted by VTT Processes, Energy and Environment, Engines and Vehicles, Finland to Atrax Energi AB, Sweden. The report of the assignment is intended to append the literature and other information used in the “PREMIA” project The work has been carried out by Björn Rehnlund, Atrax Energi AB, Sweden, with support from Martijn van Walwijk, France. The report describes the development of the production and use of biobio-ethanol and biogas (biomass based methane) as vehicle fuels in Sweden and gives an overview of today’s situation. Besides data and information about numbers of vehicles and filling stations, the report also gives an overview of: • Stakeholders • The legal framework, including standards, specifications, type approval, taxation etc. • Financial support programs. Public acceptance, side effects and the effect off the introduction of bio-ethanol and biogas as vehicle fuels on climate gases are to some extent also discussed in this report. It can be concluded that since the early 1990’s Sweden has had a perhaps slow but steadily increasing use of bio-ethanol and biogas. Today having the EC directive on promotion of bio bio-fuels and other renewable fuels in place the development and introduction of filling stations and vehicles has started to increase rapidly. From 1994 to 2004 the number of filling stations for bio-ethanol grew from 1 to 100 and during the year 2004 until today to 160 stations. -
The Origins of the SUV
The origins of the SUV IFTY YEARS AGO, farmers, soldiers, hunt- Fers and the odd explorer drove four-wheel drives. Four-wheel drives were listed in most car guides as commercial vehicles, along with pickup trucks and goods vans. The sight of a four-wheel drive on main street simply meant that a farmer had come to town for the day. Three events changed all that. 1 Uncredited images are believed to be in the public domain. Credited images are copyright their respective owners. All other contentAll © content The Dog © &dogandlemon.com Lemon Guide 2016 2016 • All rights reserved In 1963, Jeep produced a vehicle called the Wagoneer. It looked like a family station wagon with fake wooden panelling. However, the Wag- oneer shared most of its DNA with the Jeep Gladiator pickup truck. As such, four-wheel drive versions of the Wagoneer were both tough and capable offroad. A few people have claimed that the Wagoneer was the first modern SUV, although none of these people appear to have actually driven one: the ride is rattly, boneshakingly hard and the handling crudely boat-like. The Wagoneer was also rather poorly built. However, the Wagoneer was gradually im- proved and lasted, amazingly, until 1991. 2 All content © dogandlemon.com 2016 The 1970 Range Rover is a more likely candi- date for the first modern SUV. It was designed from scratch, as a vehicle for Britain’s upper classes. Range Rover owners could effortlessly tow their horse floats up muddy roads while they rode up front in semi-luxury. When Range Rover owners returned to their mansions, their servants could clean out the interior with a hose (carpets weren’t fitted to early models). -
A Study on the Emissions of Butanol Using a Spark Ignition Engine and Their Reduction Using Electrostatically Assisted Injection
A STUDY ON THE EMISSIONS OF BUTANOL USING A SPARK IGNITION ENGINE AND THEIR REDUCTION USING ELECTROSTATICALLY ASSISTED INJECTION BY BENJAMIN R. WIGG THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011 Urbana, Illinois Adviser: Professor Dimitrios C. Kyritsis Abstract Butanol is a potential alternative to ethanol and offers many benefits including a much higher heating value and lower latent heat of vaporization. It also has a higher cetane number than ethanol and improved miscibility in diesel fuel. Additionally, butanol is less corrosive and less prone to water absorption than ethanol, which allows it to be transported using the existing fuel supply pipelines. However, while some previous research on the emissions of butanol-gasoline blends is available, little research exists on the emissions of neat butanol. This thesis focuses on two areas of study. The first area relates to on the comparison of UHC, NOx, and CO emissions of several butanol-gasoline and ethanol-gasoline blended fuels during combustion in an SI engine. The objective was to compare the emissions of butanol combustion to the ones of ethanol and gasoline. The second part of the study relates to the use of electrostatically assisted injection as a means of reducing the UHC emissions of butanol by decreasing the fuel droplet size using a charge electrode and extraction ring designed for a port fuel injector. Emissions measurements taken with and without a charge applied to the injector were used to determine the effect of applying a voltage to the fuel spray on engine emissions. -
Renewable Diesel Fuel
Renewable Diesel Fuel Robert McCormick and Teresa Alleman July 18, 2016 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Diesel Fuel Nomenclature • Renewable diesel goes by many names: o Generic names – Hydrogenated esters and fatty acids (HEFA) diesel – Hydrogenation derived renewable diesel (HDRD) – Green diesel (colloquialism) o Company trademark names – Green Diesel™ (Honeywell/UOP) – NExBTL® (Neste) – SoladieselRD® (Solazyme) – Biofene® (Amyris) – HPR Diesel (Propel branded product) – REG-9000™/RHD • Not the same as biodiesel, may be improperly called second generation biodiesel, paraffinic biodiesel – but it is incorrect and misleading to refer to it as biodiesel 2 RD is a Very Broad Term • Renewable diesel (RD) is essentially any diesel fuel produced from a renewable feedstock that is predominantly hydrocarbon (not oxygenates) and meets the requirements for use in a diesel engine • Today almost all renewable diesel is produced from vegetable oil, animal fat, waste cooking oil, and algal oil o Paraffin/isoparaffin mixture, distribution of chain lengths • One producer ferments sugar to produce a hydrocarbon (Amyris – more economical to sell this hydrocarbon into other markets) o Single molecule isoparaffin product 3 RD and Biodiesel • Biodiesel is solely produced through esterification of fats/oils • RD can be produced through multiple processes o Hydrogenation (hydrotreating) of fats/oils/esters o Fermentation -
Renewable Methanol Report Renewable Methanol Report
In association with: Renewable Methanol Report Renewable Methanol Report Renewable Methanol Report This report has been produced by ATA Markets Intelligence S.L. on behalf of the Methanol Institute. The information and opinions in this report were prepared by ATA Markets Intelligence and its partners. ATA Markets Intelligence has no obligation to tell you when opinions or information in this report change. Publication Date: December 2018 ATA Markets Intelligence makes every effort to use reliable, comprehensive information, but we make no representation that it is accurate or complete. In no event shall ATA Markets Intelligence and its partners be liable for any damages, Authors: losses, expenses, loss of data, loss of opportunity or profit caused by the use of the material or contents of this report. Charlie Hobson ATA Insights is a brand of ATA Markets Intelligence, whose registered office is located in Calle Serrano, 8, 3º izquierda, Carlos Márquez (editor) Post-code 28001, Madrid, Spain. Registered in the Mercantile Registry of Madrid, CIF number B87725198. Design: © Methanol Institute 2018 Henrik Williams www.methanol.org 2 Renewable Methanol Report CONTENTS Executive Summary................................................................................. 5 Why consider renewable methanol? .................................................7 Legislation drives change.....................................................................................7 Report structure ..................................................................................................8 -
Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results
September 1999 • NREL/TP-540-25818 Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results K. Kelly, L. Eudy, and T. Coburn National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 September 1999 • NREL/TP-540-25818 Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results K. Kelly, L. Eudy, and T. Coburn Prepared under Task No. FU905010 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 TP-25818 ACKNOWLEDGMENTS This work was sponsored by the Office of Technology Utilization, which is part of the U.S. Department of Energy’s (DOE) Office of Transportation Technologies in Washington, D.C. Mr. Dana O’Hara is DOE’s program manager for the light-duty vehicle evaluation projects at the National Renewable Energy Laboratory. Appreciation is expressed to the three emissions laboratories that performed the testing: Environmental Research and Development, in Gaithersburg, Maryland; Automotive Testing Laboratory, in East Liberty, Ohio; and ManTech Environmental, in Denver, Colorado. We also thank Phillips Chemical Company and Compressed Gas Technologies for supplying the test fuels for this project. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, appara- tus, product, or process disclosed, or represents that its use would not infringe privately owned rights. -
Move Forward with NEXBTL Renewable Diesel
Move Forward with Did you know that… NEXBTL renewable diesel As a drop-in biofuel, NEXBTL renewable diesel behaves exactly like fossil diesel. Because of its diesel-like behavior, quality-related blending limitations do not apply to NEXBTL renewable diesel. NEXBTL renewable diesel offers 40–90% CO2 reduction compared to fossil diesel. Neste Corporation Keilaranta 21 Cover image: Shutterstock PO Box 95 FI-00095 Neste, Finland Tel. +358 (0)10 45811 www.neste.com 2015 High performance from NEXBTL renewable diesel “Our experience has been extremely positive in our own fleet. We have experienced zero customer complaints or Premium-quality NEXBTL renewable diesel outperforms both issues.” conventional biodiesel and fossil diesel by a clear margin. Pat O’Keefe, Vice President, Golden Gate Petroleum, US Unlike conventional biodiesel, Neste’s NEXBTL NEXBTL renewable diesel is unique. Proprietary renewable diesel has no blending wall, and therefore hydrotreating technology converts vegetable oil it also offers greater possibilities for meeting biofuel and waste fats into premium-quality fuel. mandates. Therefore, NEXBTL renewable diesel is a pure hydrocarbon with significant performance and emission benefits. Benefits in brief 100% renewable and sustainable Lower operating costs Produced from waste fats, residues and vegetable oils, Other biofuels may increase the need for vehicle classified as hydrotreated vegetable oil (HVO) maintenance, for example through reduced oil change intervals, but with NEXBTL renewable diesel there is no Smaller environmental -
Renewable Methanol Trends and Developments
Renewable methanol Trends and developments IEA EGRD Eelco Dekker, Chief EU Representative, Methanol Institute Paris, October 21, 2019 WWW.METHANOL.ORG 01 Introduction WWW.METHANOL.ORG A global industry association • First formed in 1989, the Methanol Institute (MI) serves as the trade association for the global methanol industry. • MI represents the world’s leading methanol producers, distributors and technology companies from offices around the world MI provides value to its members by: • Ensuring safe handling of methanol and its derivatives • Promoting methanol growth by furthering methanol as an essential chemical commodity and an emerging source of clean and renewable energy • Influencing global regulatory and public policy initiatives that impactthe methanol industry WWW.METHANOL.ORG 2019 members Tier 1 Tier 2 Tier 3 Ecofuel Tier 4 WWW.METHANOL.ORG Methanol is simplest of alcohols • Simple molecule rich in Formula: CH3OH hydrogen, with only a single Density: 0,792 g.cm-3 carbon bond Molar mass: 32,04 g mol-1 • Clear and colorless liquid at Appearance: colourless liquid room temperature and ambient pressure • Also known as “wood alcohol,” methanol can be produced from a wide range of feedstocks WWW.METHANOL.ORG Broad feedstock range, many applications feedstock conversion derivatives products markets other 7% appliances solvents 4% chloromethanes 2% ~65% automotive natural gas MTO 18% methylamines 3% DME 8% construction biodiesel 3% gasoline blending 9% ~35% electronics MTMA 2% MTBE 8% coal fuel acetic acid 9% methanol synthesis paint -
Alcohol and Cellulosic Biofuel Fuels Credit General Instructions
Alcohol and Cellulosic Biofuel Fuels Credit OMB No. 1545-0231 Form 6478 2011 Department of the Treasury Attachment Internal Revenue Service ▶ Attach to your tax return. Sequence No. 83 Name(s) shown on return Identifying number Caution. You cannot claim any amounts on Form 6478 that you claimed (or will claim) on Form 720 (Schedule C), Form 8849, or Form 4136. (a) (b) (c) Type of Fuel Number of Gallons Rate Column (a) x Column (b) Sold or Used 1 Qualified ethanol fuel production for fuel sold or used before 2012 (see instructions for election) . 1 2 Alcohol 190 proof or greater and alcohol 190 proof or greater in fuel mixtures sold or used before 2012 . 2 3 Alcohol less than 190 proof but at least 150 proof and alcohol less than 190 proof but at least 150 proof in fuel mixtures sold or used before 2012 . 3 4 Qualified cellulosic biofuel production for fuel sold or used before 2012 that is alcohol (see instructions for election) . 4 5 Qualified cellulosic biofuel production for fuel sold or used before 2012 that is not alcohol (see instructions for election) . 5 6 Qualified cellulosic biofuel production for fuel sold or used after 2011 (see instructions for election) . 6 7 Add the amounts in column (c) on lines 1 through 6. Include this amount in your income for 2011 and, if you reported an amount on lines 4, 5, or 6 above, enter your IRS registration number (see instructions) . 7 8 Alcohol and cellulosic biofuel fuels credit from partnerships, S corporations, cooperatives, estates, and trusts (see instructions) . -
Analyze the Growth of Luxury Car Segments in Punjab
NAME: - JANESH GROVER ROLL.NO: - RT1007A09 REG.NO: - 11000795 CLASS: - B.B.A (I-sem) SUBJECT: - Micro-Economics TERM PAPER TOPIC: - ANALYZE THE GROWTH OF LUXURY CAR SEGMENTS IN PUNJAB Before we continue to the topic i would like to say thanks to Ms. Palwinder kaur Madam who gave me such an intresting topic for my research. Its my pleasure as well as golden opportunity to work on the allotted topic. At last again i would like to thanks for such a marvellous topic [Type text] Page 1 Contents Acknowledgment................................................................................................................ .................................1 Introduction........................................................................................................................ ..............................1-2 How segmentation is done?..............................................................................................................................2- 6 PUNJAB THE SUCCESSFULL PURVEYOR FOR LUXURY CARS IN INDIA...................................................................6 PUNJAB MATERIALIZE AS A NEW BAZAAR FOR CARS.......................................................................................6-8 List of luxury Cars in Punjab............................................................................................................................8- 11 Rush for Luxury cars..................................................................................................................................... .11-12 Luxury -
Methanol As Motor Fuel
IEA-AMF Annex 56 Methanol as motor fuel – CO2 emission was reduced to just 40 g/km. M85 has ideal properties for both summer and winter in Denmark. Danish Technological Institute Title: Methanol as motor fuel Prepared for: EUDP 2018-I Prepared by: Danish Technological Institute Teknologiparken Kongsvang Allé 29 8000 Aarhus C Transport og Elektriske Systemer May 8th 2019 Author: Kim Winther ISBN: J.nr. 64018-0719 2 Danish Technological Institute Table of Contents 1. Executive summary ......................................................................................... 5 2. Introduction .................................................................................................... 6 3. Vehicle experiments ......................................................................................... 7 3.1. Test setup .............................................................................................. 7 3.2. Engine control unit and fuel system ........................................................... 9 3.3. Results ..................................................................................................12 3.3.1. Engine power ...................................................................................12 3.3.2. Fuel consumption ..............................................................................14 3.3.3. Noise ...............................................................................................14 3.3.4. Emissions .........................................................................................15