The Dynamical Evolution of Close-In Binary Systems Formed by a Super-Earth and Its Host Star Case of the Kepler-21 System S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
KEPLER-21B: a 1.6 Rearth PLANET TRANSITING the BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B
The Astrophysical Journal, 746:123 (18pp), 2012 February 20 doi:10.1088/0004-637X/746/2/123 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ∗ KEPLER-21b: A 1.6 REarth PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B. Howell1,2,36, Jason F. Rowe2,3,36, Stephen T. Bryson2, Samuel N. Quinn4, Geoffrey W. Marcy5, Howard Isaacson5, David R. Ciardi6, William J. Chaplin7, Travis S. Metcalfe8, Mario J. P. F. G. Monteiro9, Thierry Appourchaux10, Sarbani Basu11, Orlagh L. Creevey12,13, Ronald L. Gilliland14, Pierre-Olivier Quirion15, Denis Stello16, Hans Kjeldsen17,Jorgen¨ Christensen-Dalsgaard17, Yvonne Elsworth7, Rafael A. Garc´ıa18, Gunter¨ Houdek19, Christoffer Karoff7, Joanna Molenda-Zakowicz˙ 20, Michael J. Thompson8, Graham A. Verner7,21, Guillermo Torres4, Francois Fressin4, Justin R. Crepp23, Elisabeth Adams4, Andrea Dupree4, Dimitar D. Sasselov4, Courtney D. Dressing4, William J. Borucki2, David G. Koch2, Jack J. Lissauer2, David W. Latham4, Lars A. Buchhave22,35, Thomas N. Gautier III24, Mark Everett1, Elliott Horch25, Natalie M. Batalha26, Edward W. Dunham27, Paula Szkody28,36, David R. Silva1,36, Ken Mighell1,36, Jay Holberg29,36,Jeromeˆ Ballot30, Timothy R. Bedding16, Hans Bruntt12, Tiago L. Campante9,17, Rasmus Handberg17, Saskia Hekker7, Daniel Huber16, Savita Mathur8, Benoit Mosser31, Clara Regulo´ 12,13, Timothy R. White16, Jessie L. Christiansen3, Christopher K. Middour32, Michael R. Haas2, Jennifer R. Hall32,JonM.Jenkins3, Sean McCaulif32, Michael N. Fanelli33, Craig -
Viscoelastic Dissipation Models and Geophysical Data
Confidential manuscript submitted to JGR-Planets 1 Tidal Response of Mars Constrained from Laboratory-based 2 Viscoelastic Dissipation Models and Geophysical Data 1 2;1 3 3 1 3 A. Bagheri , A. Khan , D. Al-Attar , O. Crawford , D. Giardini 1 4 Institute of Geophysics, ETH Zürich, Zürich, Switzerland 2 5 Institute of Theoretical Physics, University of Zürich, Zürich, Switzerland 3 6 Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, UK 7 Key Points: • 8 We present a method for determining the planetary tidal response using laboratory- 9 based viscoelastic models and apply it to Mars. • 10 Maxwellian rheology results in considerably biased (low) viscosities and should be 11 used with caution when studying tidal dissipation. • 12 Mars’ rheology and interior structure will be further constrained from InSight mea- 13 surements of tidal phase lags at distinct periods. Corresponding author: Amirhossein Bagheri, [email protected] –1– Confidential manuscript submitted to JGR-Planets 14 Abstract 15 We employ laboratory-based grain-size- and temperature-sensitive rheological models to 16 describe the viscoelastic behavior of terrestrial bodies with focus on Mars. Shear modulus 17 reduction and attenuation related to viscoelastic relaxation occur as a result of diffusion- 18 and dislocation-related creep and grain-boundary processes. We consider five rheological 19 models, including extended Burgers, Andrade, Sundberg-Cooper, a power-law approxima- 20 tion, and Maxwell, and determine Martian tidal response. However, the question of which 21 model provides the most appropriate description of dissipation in planetary bodies, re- 22 mains an open issue. To examine this, crust and mantle models (density and elasticity) are 23 computed self-consistently through phase equilibrium calculations as a function of pres- 24 sure, temperature, and bulk composition, whereas core properties are based on an Fe-FeS 25 parameterisation. -
A. C. Quillen – Research Narrative (2021)
A. C. Quillen { Research Narrative (2021) Contents 1 Celestial Mechanics { multiple exoplanet and satellite systems 1 2 Soft-astronomy: Spin dynamics using viscoelastic mass-spring model simulations 2 3 Robotic Locomotion, collective phenomena and biophysics 3 4 Laboratory investigations of low velocity impacts into granular materials 4 5 Galaxy Dynamics 5 6 Infrared extragalactic studies and warped disks 5 7 Infrared imaging and constraints on dark matter in galaxies 6 8 Observations of Active Galaxies 7 9 Light curves and the transient dimming sky 8 10 Turbulence, Winds and Feedback 8 1 Celestial Mechanics { multiple exoplanet and satellite sys- tems In 2006 I worked on general theory on orbital resonance capture [1] to cover the non-adiabatic regime, extending Peter Goldreich and Nicole Borderie's work that was restricted to adiabatic drift only. A dimensional analysis argument facilitates estimating whether pairs of drifting bodies can capture into orbital resonance. My estimate has since been applied to interpret migrating multi- ple exo-planet systems, orbital dust dynamics, satellite systems and early evolution of planetary embryos. In 2011 I developed a theory, based on a three-body resonance overlap condition for chaotic behavior, to predict numerically measured scaling relations for stability times in closely packed satellite or planetary systems [2]. This is a first attempt to theoretically explain numerically mea- sured scaling relations. I and Rob French corrected and extended the theory [3] to cover more types of three-body resonances with a study of the inner Uranian satellite system in 2014, where I have tried to better understand the chaotic evolution and stability of resonant chains or consecutive pairs of bodies in first order resonances. -
Dynamical Evidence for Phobos and Deimos As Remnants of a Disrupted Common Progenitor
LETTERS https://doi.org/10.1038/s41550-021-01306-2 Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor Amirhossein Bagheri 1 ✉ , Amir Khan 1,2, Michael Efroimsky 3, Mikhail Kruglyakov 1 and Domenico Giardini1 The origin of the Martian moons, Phobos and Deimos, remains on their dynamical figures, which enhances tidal dissipation16. elusive. While the morphology and their cratered surfaces This effect is more pronounced for Phobos than Deimos, owing to suggest an asteroidal origin1–3, capture has been questioned Phobos’s higher eccentricity and triaxiality. All properties are sum- because of potential dynamical difficulties in achieving the marized in Supplementary Table 1. current near-circular, near-equatorial orbits4,5. To circumvent For a non-librating planet hosting a satellite librating about a this, in situ formation models have been proposed as alterna- 1:1 spin–orbit resonance, the tidal rates of the semi-major axis and tives6–9. Yet, explaining the present location of the moons on eccentricity can be written in terms of the mean motion (n), satellite opposite sides of the synchronous radius, their small sizes and libration amplitude ( ), and planet and satellite quality functions 2 A apparent compositional differences with Mars has proved (K k /Q and K0 k0=I Q0), masses (M and M0), spin rates (θ_ and θ_ 0) l = l l l ¼ l l challenging. Here, we combine geophysical and tidal-evolution and radii (R andI R′): I I modelling of a Mars–satellite system to propose that Phobos and Deimos originated from disintegration of a common 5 da G M M0 M0 R progenitor that was possibly formed in situ. -
Sized Exoplanet Thomas Barclay1,2, Jason F
A sub-Mercury-sized exoplanet Thomas Barclay1,2, Jason F. Rowe1,3, Jack J. Lissauer1, Daniel Huber1,4, François Fressin5, Steve B. Howell1, Stephen T. Bryson1, William J. Chaplin6, Jean-Michel Désert5, Eric D. Lopez7, Geoffrey W. Marcy8, Fergal Mullally1,3, Darin Ragozzine5,9, Guillermo Torres5, Elisabeth R. Adams5, Eric Agol10, David Barrado11,12, Sarbani Basu13, Timothy R. Bedding14, Lars A. Buchhave15,16, David Charbonneau5, Jessie L. Christiansen1,3, Jørgen Christensen-Dalsgaard17, David Ciardi18, William D. Cochran19, Andrea K. Dupree5, Yvonne Elsworth6, Mark Everett20, Debra A. Fischer13, Eric B. Ford9, Jonathan J. Fortney7, John C. Geary5, Michael R. Haas1, Rasmus Handberg17, Saskia Hekker6,21, Christopher E. Henze1, Elliott Horch22, Andrew W. Howard23, Roger C. Hunter1, Howard Isaacson8, Jon M. Jenkins1,3, Christoffer Karoff17, Steven D. Kawaler24, Hans Kjeldsen17, Todd C. Klaus25, David W. Latham5, Jie Li1,3, Jorge Lillo-Box12, Mikkel N. Lund17, Mia Lundkvist17, Travis S. Metcalfe26, Andrea Miglio6, Robert L. Morris1,3, Elisa V. Quintana1,3, Dennis Stello14, Jeffrey C. Smith1,3, Martin Still1,2, & Susan E. Thompson1,3 1 NASA Ames Research Center, Moffett Field, CA 94035, USA 2 Bay Area Environmental Research Institute, 596 First St West, Sonoma, CA 95476, USA 3 SETI Institute, 189 Bernardo Ave, Mountain View, CA 94043, USA 4 NASA Postdoctoral Program Fellow 5 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 School of Physics and Astronomy, University of Birmingham, Edgbaston, B15 2TT, UK 7 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 8 Department of Astronomy, UC Berkeley, Berkeley, CA 94720, USA 9 Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111, USA 10 Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195, USA 11 Calar Alto Observatory, Centro Astronómico Hispano Alemán, C/ Jesús Durbán Remón, E- 04004 Almería, Spain 12 Depto. -
An Earth-Sized Planet in the Habitable Zone of a Cool Star Authors: Elisa V
Title: An Earth-sized Planet in the Habitable Zone of a Cool Star Authors: Elisa V. Quintana1,2*, Thomas Barclay2,3, Sean N. Raymond4,5, Jason F. Rowe1,2, Emeline Bolmont4,5, Douglas A. Caldwell1,2, Steve B. Howell2, Stephen R. Kane6, Daniel Huber1,2, Justin R. Crepp7, Jack J. Lissauer2, David R. Ciardi8, Jeffrey L. Coughlin1,2, Mark E. Everett9, Christopher E. Henze2, Elliott Horch10, Howard Isaacson11, Eric B. Ford12,13, Fred C. Adams14,15, Martin Still3, Roger C. Hunter2, Billy Quarles2, Franck Selsis4,5 Affiliations: 1SETI Institute, 189 Bernardo Ave, Suite 100, Mountain View, CA 94043, USA. 2NASA Ames Research Center, Moffett Field, CA 94035, USA. 3Bay Area Environmental Research Institute, 596 1st St West Sonoma, CA 95476, USA. 4Univ. Bordeaux, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France. 5CNRS, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France. 6San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA. 7University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA. 8NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue Pasadena, CA 91125, USA. 9National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 10Southern Connecticut State University, New Haven, CT 06515 11University of California, Berkeley, CA, 94720, USA. 12Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA 13Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 14Michigan Center for Theoretical Physics, Physics Department, University of Michigan, Ann Arbor, MI 48109, USA 15Astronomy Department, University of Michigan, Ann Arbor, MI 48109, USA *Correspondence to: [email protected] ! ! ! ! ! ! ! Abstract: The quest for Earth-like planets represents a major focus of current exoplanet research. -
Natural Moons Dynamics and Astrometry
OBSERVATOIRE DE PARIS MEMOIRE D’HABILITATION A DIRIGER DES RECHERCES Présenté par Valéry LAINEY Natural moons dynamics and astrometry Soutenue le 29 mai 2017 Jury: Anne LEMAITRE (Rapporteur) François MIGNARD (Rapporteur) William FOLKNER (Rapporteur) Doris BREUER (Examinatrice) Athéna COUSTENIS (Examinatrice) Carl MURRAY (Examinateur) Francis NIMMO (Examinateur) Bruno SICARDY (Président) 2 Index Curriculum Vitae 5 Dossier de synthèse 11 Note d’accompagnement 31 Coordination d’équipes et de réseaux internationaux 31 Encadrement de thèses 34 Tâches de service 36 Enseignement 38 Résumé 41 Annexe 43 Lainey et al. 2007 : First numerical ephemerides of the Martian moons Lainey et al. 2009 : Strong tidal dissipation in Io and Jupiter from astrometric observations Lainey et al. 2012 : Strong Tidal Dissipation in Saturn and Constraints on Enceladus' Thermal State from Astrometry Lainey et al. 2017 : New constraints on Saturn's interior from Cassini astrometric data Lainey 2008 : A new dynamical model for the Uranian satellites 3 4 Curriculum Vitae Name: Valéry Lainey Address: IMCCE/Observatoire de Paris, 77 Avenue Denfert-Rochereau, 75014 Paris, France Email: [email protected]; Tel.: (+33) (0)1 40 51 22 69 Birth: 19/08/1974 Qualifications: Ph.D. Observatoire de Paris, December 2002 Title of thesis: “Théorie dynamique des satellites galiléens" Master degree “Astronomie fondamentale, mécanique céleste et géodésie” Observatoire de Paris 1998. Academic Career: Sep. 2006 - Present Astronomer at the Paris Observatory Apr. 2004 - Aug. 2006 Post-doc position at the Royal Observatory of Belgium Jun. 2003 - Mar. 2004 Post-doc position at the Paris Observatory Mar. - May 2003 Invited fellow at the Indian Institute of Astrophysics Dec. 2002 - Feb. -
Pos(BASH2015)007
Precision Stellar Astrophysics in the Kepler Era PoS(BASH2015)007 Daniel Huber∗ Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia E-mail: [email protected] The study of fundamental properties (such as temperatures, radii, masses, and ages) and interior processes (such as convection and angular momentum transport) of stars has implications on var- ious topics in astrophysics, ranging from the evolution of galaxies to understanding exoplanets. In this contribution I will review the basic principles of two key observational methods for con- straining fundamental and interior properties of single field stars: the study stellar oscillations (asteroseismology) and optical long-baseline interferometry. I will highlight recent breakthrough discoveries in asteroseismology such as the measurement of core rotation rates in red giants and the characterization of exoplanet systems. I will furthermore comment on the reliability of inter- ferometry as a tool to calibrate indirect methods to estimate fundamental properties, and present a new angular diameter measurement for the exoplanet host star HD 219134 which demonstrates that diameters for stars which are relatively well resolved (& 1 mas for the K band) are consistent across different instruments. Finally I will discuss the synergy between asteroseismology and interferometry to test asteroseismic scaling relations, and give a brief outlook on the expected impact of space-based missions such as K2, TESS and Gaia. Frank N. Bash Symposium 2015 18-20 October The University of Texas at Austin, USA ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). -
Courtney D. Dressing
Curriculum Vitae Courtney D. Dressing Astronomy Department University of California at Berkeley Email: [email protected] 501 Campbell Hall #3411 Web: w.astro.berkeley.edu/∼dressing Berkeley, CA 94720-3411 Phone: (510) 642-5275 EDUCATION Ph.D. Harvard University (2015, Astronomy & Astrophysics) Advisor: David Charbonneau Thesis: \The Prevalence and Compositions of Small Planets" A.M. Harvard University (2012, Astronomy & Astrophysics) A.B. Princeton University (2010, Astrophysical Sciences summa cum laude, Phi Beta Kappa, Sigma Xi) APPOINTMENTS Assistant Professor, Department of Astronomy, University of California, Berkeley (2017{present) NASA Sagan Fellow, Division of Geological and Planetary Sciences, California Institute of Technology (2015{2017) Postdoctoral Researcher, Department of Astronomy, Harvard University (Summer 2015) Research Interests Searching for potentially habitable exoplanets orbiting nearby stars. Characterizing planetary systems and their host stars. Testing models of planet formation by exploring the compositional diversity of small planets. Constraining the frequency of planetary systems orbiting low-mass stars. Investigating the dependence of planet occurrence on stellar and planetary properties. Selected Awards, Prizes, and Honors Hellman Fellow, Hellman Family Faculty Fund (2019) Sloan Research Fellow, Alfred P. Sloan Foundation (2019) NASA Group Achievement Award to the LUVOIR Science & Technology Definition Team (2019) Scialog Fellow, Research Corporation for Science Advancement & Heising-Simons Foundation -
(153) Stellar Ages and Convective Cores in Field
LIST OF PUBLICATIONS Refereed publications (153) Stellar ages and convective cores in field main-sequence stars: first asteroseismic application to two Kepler targets Silva Aguirre, V., Basu, S., Brand˜ao, I. M., Christensen-Dalsgaard, J., Deheuvels, S., Dogan, G., Metcalfe, T. S., Serenelli, A. M., Ballot, J., Chaplin, W. J., Cunha, M. S., Weiss, A., Appourchaux, T., Casagrande, L., Cassisi, S., Creevey, O. L., Garcia, R. A., Lebreton, Y., Noels, A., Sousa, S. G., Stello, D., White, T. R., Kawaler, S. D., Kjeldsen, H., 2013, Astrophys. J., in press (152) Fundamental Properties of Kepler Planet-candidate Host Stars using Asteroseis- mology Huber, Daniel, Chaplin, William J., Christensen-Dalsgaard, Jørgen, Gilliland, Ronald L., Kjeldsen, Hans, Buchhave, Lars A., Fischer, Debra A., Lissauer, Jack J., Rowe, Jason F., Sanchis-Ojeda, Roberto, Basu, Sarbani, Handberg, Rasmus, Hekker, Saskia, Howard, Andrew W., Isaacson, Howard, Karoff, Christoffer, Latham, David W., Lund, Mikkel N., Lundkvist, Mia, Marcy, Geoffrey W., Miglio, Andrea, Silva Aguirre, Victor, Stello, Dennis, Arentoft, Tor- ben, Barclay, Thomas, Bedding, Timothy R., Burke, Christopher J., Christiansen, Jessie L., Elsworth, Yvonne P., Haas, Michael R., Kawaler, Steven D., Metcalfe, Travis S., Mullally, Fergal, Thompson, Susan E., 2013, Astrophys. J., 767, 127 (151) Variation of Stellar Envelope Convection and Overshoot with Metallicity Tanner, Joel D., Basu, Sarbani, Demarque, Pierre, 2013, Astrophys. J., 767, 78 (150) Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65 Chaplin, W. J., Sanchis-Ojeda, R., Campante, T. L., Handberg, R., Stello, D., Winn, J. N., Basu, S., Christensen-Dalsgaard, J., Davies, G. R., Metcalfe, T. S., Buchhave, L. -
Seismic Constraints on Rotation of Sun-Like Star and Mass of Exoplanet
Seismic constraints on rotation of Sun-like star and mass of exoplanet Laurent Gizona,b, Jérome Ballotc,d, Eric Michele, Thorsten Stahna,b, Gérard Vauclairc,d, Hans Bruntte, Pierre-Olivier Quirionf, Othman Benomarg,h, Sylvie Vauclairc,d, Thierry Appourchauxh, Michel Auvergnee, Annie Bagline, Caroline Barbane, Fréderic Baudinh, Michaël Bazoti, Tiago Campantei,j,k, Claude Catalae, William Chaplink, Orlagh Creeveyl,m,n, Sébastien Deheuvelsc,d, Noël Dolezc,d, Yvonne Elsworthk, Rafael Garcíao, Patrick Gaulmep, Stéphane Mathiso, Savita Mathurq, Benoît Mossere, Clara Régulol,m, Ian Roxburghr, David Salabertn, Réza Samadie, Kumiko Satoo, Graham Vernerk,r, Shravan Hanasogea,s, and Katepalli R. Sreenivasant,1 aMax-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany; bInstitut für Astrophysik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany; cInstitut de Recherche en Astrophysique et Planétologie, Centre National de la Recherche Scientifique, 31400 Toulouse, France; dUniversité de Toulouse, Université Paul Sabatier/Observatoire Midi-Pyrénées, 31400 Toulouse, France; eLaboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8109, Université Pierre et Marie Curie, Université Denis Diderot, 92195 Meudon, France; fAgence Spatiale Canadienne, Saint-Hubert, Québec, Canada J3Y 8Y9; gSydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006, Australia; hInstitut d’Astrophysique Spatiale,