Project Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star
1 Temperate Earth-sized planets transiting a nearby ultracool dwarf star Michaël Gillon1, Emmanuël Jehin1, Susan M. Lederer2, Laetitia Delrez1, Julien de Wit3, Artem Burdanov1, Valérie Van Grootel1, Adam J. Burgasser4, Amaury H. M. J. Triaud5, Cyrielle Opitom1, Brice-Olivier Demory6, Devendra K. Sahu7, Daniella Bardalez Gagliuffi4, Pierre Magain1 & Didier Queloz6 1Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 19C, 4000 Liège, Belgium. 2NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas, 77058, USA. 3Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. 4Center for Astrophysics and Space Science, University of California San Diego, La Jolla, California 92093, USA. 5Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK. 6Astrophysics Group, Cavendish Laboratory, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK. 7Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India. Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ‘ultracool dwarfs'1. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun2. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disk3,4, there should be a large but hitherto undetected population of terrestrial planets orbiting them5—ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report observations of three short-period Earth-sized planets transiting an 2 ultracool dwarf star only 12 parsecs away. -
Lecture 3 - Minimum Mass Model of Solar Nebula
Lecture 3 - Minimum mass model of solar nebula o Topics to be covered: o Composition and condensation o Surface density profile o Minimum mass of solar nebula PY4A01 Solar System Science Minimum Mass Solar Nebula (MMSN) o MMSN is not a nebula, but a protoplanetary disc. Protoplanetary disk Nebula o Gives minimum mass of solid material to build the 8 planets. PY4A01 Solar System Science Minimum mass of the solar nebula o Can make approximation of minimum amount of solar nebula material that must have been present to form planets. Know: 1. Current masses, composition, location and radii of the planets. 2. Cosmic elemental abundances. 3. Condensation temperatures of material. o Given % of material that condenses, can calculate minimum mass of original nebula from which the planets formed. • Figure from Page 115 of “Physics & Chemistry of the Solar System” by Lewis o Steps 1-8: metals & rock, steps 9-13: ices PY4A01 Solar System Science Nebula composition o Assume solar/cosmic abundances: Representative Main nebular Fraction of elements Low-T material nebular mass H, He Gas 98.4 % H2, He C, N, O Volatiles (ices) 1.2 % H2O, CH4, NH3 Si, Mg, Fe Refractories 0.3 % (metals, silicates) PY4A01 Solar System Science Minimum mass for terrestrial planets o Mercury:~5.43 g cm-3 => complete condensation of Fe (~0.285% Mnebula). 0.285% Mnebula = 100 % Mmercury => Mnebula = (100/ 0.285) Mmercury = 350 Mmercury o Venus: ~5.24 g cm-3 => condensation from Fe and silicates (~0.37% Mnebula). =>(100% / 0.37% ) Mvenus = 270 Mvenus o Earth/Mars: 0.43% of material condensed at cooler temperatures. -
Exoplanet Discovery Methods (1) Direct Imaging Today: Star Wobbles (2) Astrometry → Position (3) Radial Velocity → Velocity
Exoplanet Discovery Methods (1) Direct imaging Today: Star Wobbles (2) Astrometry → position (3) Radial velocity → velocity Later: (4) Transits (5) Gravitational microlensing (6) Pulsar timing Kepler Orbits Kepler 1: Planet orbit is an ellipse with star at one focus Star’s view: (Newton showed this is due to gravity’s inverse-square law). Kepler 2: Planet seeps out equal area in equal time (angular momentum conservation). Planet’s view: Planet at the focus. Star sweeps equal area in equal time Inertial Frame: Star and planet both orbit around the centre of mass. Kepler Orbits M = M" + mp = total mass a = ap + a" = semi # major axis ap mp = a" M" = a M Centre of Mass P = orbit period a b a % P ( 2 a3 = G M ' * Kepler's 3rd Law b & 2$ ) a - b e + = eccentricity 0 = circular 1 = parabolic a ! Astrometry • Look for a periodic “wobble” in the angular position of host star • Light from the star+planet is dominated by star • Measure star’s motion in the plane of the sky due to the orbiting planet • Must correct measurements for parallax and proper motion of star • Doppler (radial velocity) more sensitive to planets close to the star • Astrometry more sensitive to planets far from the star Stellar wobble: Star and planet orbit around centre of mass. Radius of star’s orbit scales with planet’s mass: a m a M * = p p = * a M* + mp a M* + mp Angular displacement for a star at distance d: a & mp ) & a) "# = $ % ( + ( + ! d ' M* * ' d* (Assumes small angles and mp << M* ) ! Scaling to Jupiter and the Sun, this gives: ,1 -1 % mp ( % M ( % a ( % d ( "# $ 0.5 ' * ' + * ' * ' * mas & mJ ) & Msun ) & 5AU) & 10pc) Note: • Units are milliarcseconds -> very small effect • Amplitude increases at large orbital separation, a ! • Amplitude decreases with distance to star d. -
KEPLER-21B: a 1.6 Rearth PLANET TRANSITING the BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B
The Astrophysical Journal, 746:123 (18pp), 2012 February 20 doi:10.1088/0004-637X/746/2/123 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ∗ KEPLER-21b: A 1.6 REarth PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B. Howell1,2,36, Jason F. Rowe2,3,36, Stephen T. Bryson2, Samuel N. Quinn4, Geoffrey W. Marcy5, Howard Isaacson5, David R. Ciardi6, William J. Chaplin7, Travis S. Metcalfe8, Mario J. P. F. G. Monteiro9, Thierry Appourchaux10, Sarbani Basu11, Orlagh L. Creevey12,13, Ronald L. Gilliland14, Pierre-Olivier Quirion15, Denis Stello16, Hans Kjeldsen17,Jorgen¨ Christensen-Dalsgaard17, Yvonne Elsworth7, Rafael A. Garc´ıa18, Gunter¨ Houdek19, Christoffer Karoff7, Joanna Molenda-Zakowicz˙ 20, Michael J. Thompson8, Graham A. Verner7,21, Guillermo Torres4, Francois Fressin4, Justin R. Crepp23, Elisabeth Adams4, Andrea Dupree4, Dimitar D. Sasselov4, Courtney D. Dressing4, William J. Borucki2, David G. Koch2, Jack J. Lissauer2, David W. Latham4, Lars A. Buchhave22,35, Thomas N. Gautier III24, Mark Everett1, Elliott Horch25, Natalie M. Batalha26, Edward W. Dunham27, Paula Szkody28,36, David R. Silva1,36, Ken Mighell1,36, Jay Holberg29,36,Jeromeˆ Ballot30, Timothy R. Bedding16, Hans Bruntt12, Tiago L. Campante9,17, Rasmus Handberg17, Saskia Hekker7, Daniel Huber16, Savita Mathur8, Benoit Mosser31, Clara Regulo´ 12,13, Timothy R. White16, Jessie L. Christiansen3, Christopher K. Middour32, Michael R. Haas2, Jennifer R. Hall32,JonM.Jenkins3, Sean McCaulif32, Michael N. Fanelli33, Craig -
Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i, -
The HARPS-N Rocky Planet Search. I. HD 219134 B: a Transiting Rocky Planet in a Multi-Planet System at 6.5 Pc from the Sun
The HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun Motalebi, F., Udry, S., Gillon, M., Lovis, C., Ségransan, D., Buchhave, L. A., Demory, B. O., Malavolta, L., Dressing, C. D., Sasselov, D., Rice, K., Charbonneau, D., Cameron, A. C., Latham, D., Molinari, E., Pepe, F., Affer, L., Bonomo, A. S., Cosentino, R., ... Watson, C. A. (2015). The HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun. Astronomy and Astrophysics, 584, [A72]. https://doi.org/10.1051/0004-6361/201526822 Published in: Astronomy and Astrophysics Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2015, ESO Reproduced with permission from Astronomy & Astrophysics General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. -
Institut Für Weltraumforschung (IWF) Österreichische Akademie Der Wissenschaften (ÖAW) Schmiedlstraße 6, 8042 Graz, Austria
WWW.OEAW.AC.AT ANNUAL REPORT 2018 IWF INSTITUT FÜR WELTRAUMFORSCHUNG WWW.IWF.OEAW.AC.AT ANNUAL REPORT 2018 COVER IMAGE Artist's impression of the BepiColombo spacecraft in cruise configuration, with Mercury in the background (© spacecraft: ESA/ATG medialab; Mercury: NASA/JPL). TABLE OF CONTENTS INTRODUCTION 5 NEAR-EARTH SPACE 7 SOLAR SYSTEM 13 SUN & SOLAR WIND 13 MERCURY 15 VENUS 16 MARS 17 JUPITER 18 COMETS & DUST 20 EXOPLANETARY SYSTEMS 21 SATELLITE LASER RANGING 27 INFRASTRUCTURE 29 OUTREACH 31 PUBLICATIONS 35 PERSONNEL 45 IMPRESSUM INTRODUCTION INTRODUCTION The Space Research Institute (Institut für Weltraum- ESA's Cluster mission, launched in 2000, still provides forschung, IWF) in Graz focuses on the physics of space unique data to better understand space plasmas. plasmas and (exo-)planets. With about 100 staff members MMS, launched in 2015, uses four identically equipped from 20 nations it is one of the largest institutes of the spacecraft to explore the acceleration processes that Austrian Academy of Sciences (Österreichische Akademie govern the dynamics of the Earth's magnetosphere. der Wissenschaften, ÖAW, Fig. 1). The China Seismo-Electromagnetic Satellite (CSES) was IWF develops and builds space-qualified instruments and launched in February to study the Earth's ionosphere. analyzes and interprets the data returned by them. Its core engineering expertise is in building magnetometers and NASA's InSight (INterior exploration using Seismic on-board computers, as well as in satellite laser ranging, Investigations, Geodesy and Heat Transport) mission was which is performed at a station operated by IWF at the launched in May to place a geophysical lander on Mars Lustbühel Observatory. -
The TOI-763 System: Sub-Neptunes Orbiting a Sun-Like Star
MNRAS 000,1–14 (2020) Preprint 31 August 2020 Compiled using MNRAS LATEX style file v3.0 The TOI-763 system: sub-Neptunes orbiting a Sun-like star M. Fridlund1;2?, J. Livingston3, D. Gandolfi4, C. M. Persson2, K. W. F. Lam5, K. G. Stassun6, C. Hellier 7, J. Korth8, A. P. Hatzes9, L. Malavolta10, R. Luque11;12, S. Redfield 13, E. W. Guenther9, S. Albrecht14, O. Barragan15, S. Benatti16, L. Bouma17, J. Cabrera18, W.D. Cochran19;20, Sz. Csizmadia18, F. Dai21;17, H. J. Deeg11;12, M. Esposito9, I. Georgieva2, S. Grziwa8, L. González Cuesta11;12, T. Hirano22, J. M. Jenkins23, P. Kabath24, E. Knudstrup14, D.W. Latham25, S. Mathur11;12, S. E. Mullally32, N. Narita26;27;28;29;11, G. Nowak11;12, A. O. H. Olofsson 2, E. Palle11;12, M. Pätzold8, E. Pompei30, H. Rauer18;5;38, G. Ricker21, F. Rodler30, S. Seager21;31;32, L. M. Serrano4, A. M. S. Smith18, L. Spina33, J. Subjak34;24, P. Tenenbaum35, E.B. Ting23, A. Vanderburg39, R. Vanderspek21, V. Van Eylen36, S. Villanueva21, J. N. Winn17 Authors’ affiliations are shown at the end of the manuscript Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We report the discovery of a planetary system orbiting TOI-763 (aka CD-39 7945), a V = 10:2, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3]. -
A Naprendszer-Hasonlósági Index
Szegedi Tudományegyetem Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék Szakdolgozat A Naprendszer-hasonlósági index Készítette: Mészáros Richárd Fizika BSc szakos hallgató Témavezető: Dr. Szatmáry Károly egyetemi tanár Szeged 2020 Tartalomjegyzék 1. Bevezetés……………………………………………………………………..2 2. Az exobolygók felfedezési módszerei………………………………………..2 2.1. Közvetlen módszerek………………………………………………..2 2.2. Közvetett módszerek………………………………………..……….3 3. Az exobolygók osztályozása………………………………………...……….6 4. A Föld-hasonlósági index…………………………………………………….7 5. A Naprendszer-hasonlósági index……………………………………………8 5.1. Első verzió……………………………………………….…………..8 5.2. Második verzió……………………………………………………..11 5.3. Eredmények……………………………………………………...…13 6. Összefoglalás………………………………………………………………..24 Köszönetnyilvánítás……………………………………………………………24 Irodalomjegyzék………………………………………………………………..25 1 1. Bevezetés A felfedezett exobolygók asztrobiológiai potenciáljának vizsgálatára 2011-ben bevezetésre került a Föld-hasonlósági index (ESI, Schulze-Makuch et al. 2011,[2]). Dolgozatom témájául a felfedezett exobolygó rendszerek hasonló módon való vizsgálatát választottam. A második és harmadik fejezetben összefoglalom az exobolygók keresési módszereit és ezen bolygók típusait. A negyedik fejezetben röviden bemutatom a Föld-hasonlósági indexet. Az ötödik fejezetben a Föld-hasonlósági index mintájára bevezetem a Naprendszer-hasonlósági index fogalmát. Ismertetem kiszámításának módját, és alkalmazom a legalább 4 bolygót tartalmazó exobolygó rendszerekre. A kapott eredményekből