Agriculture and Natural Resources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version
Designation date: 23/06/99 Ramsar Site no. 999 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. Dr. Srey Sunleang, DD MM YY Director, Department of Wetlands and Coastal Zones, Ministry of Environment, #48 Preah Sihanouk Blvd., Tonle Bassac, Designation date Site Reference Number Chamkar Morn, Phnom Penh, Cambodia Tel: (855) 77-333-456 Fax: (855)-23-721-073 E-mail: [email protected] 2. -
Freshwater Snail Diversity in Mae Lao Agricultural Basin (Chiang Rai, Thailand) with a Focus on Larval Trematode Infections
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 56, No. 3: 247-257, June 2018 ▣ ORIGINAL ARTICLE https://doi.org/10.3347/kjp.2018.56.3.247 Freshwater Snail Diversity in Mae Lao Agricultural Basin (Chiang Rai, Thailand) with a Focus on Larval Trematode Infections Kittichai Chantima*, Krittawit Suk-ueng, Mintra Kampan Energy and Environment Program, Faculty of Science and Technology, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand Abstract: The aim of this study was to conduct a freshwater snail survey in Mae Lao agricultural basin to assess the di- versity with a focus on habitat types and their larval trematode infections. Snails were collected and examined in 14 sites of Mae Lao agricultural basin from August 2016 to October 2017. A total of 1,688 snail individuals were collected and classified into 7 families, 8 genera, and 12 species. Snail diversity and habitat types were higher in rice paddies than irri- gation canals and streams. The most abundant species was Bithynia siamensis siamensis, representing 54.6% of the sample. Three species of snails act as first intermediate host were found with cercarial infections. They were Filopaludina sumatrensis polygramma, B. s. siamensis, and Melanoides tuberculata. The cercariae were categorized into 7 types; echi- nostome, monostome, gymnocephalous, virgulate, parapleurolophocercous, pleurolophocercous and megalurous cer- cariae. Parapleurolophocercous cercariae constituted the most common type of cercariae recovered, contributing 41.2% of all infections in snails. Echinostome metacercariae infections were found in 6 snail species with 7.6% prevalence. In addition, the metacercaria of avian trematode, Thapariella sp. were found in Filopaludina spp. -
Accumulation of Copper and Other Elements by the Apple Snail Pomacea Canaliculata
Accumulation of copper and other elements by the apple snail Pomacea canaliculata Silvia C. Peña Naga City Employees Housing Project, San Felipe, Naga City, Philippines. Email: [email protected], [email protected] Abstract Heavy metal pollution is now prevalent in almost all aquatic ecosystems and will eventually affect human health. There is, then, a need to monitor the presence of these heavy metals. Studies have shown that Pomacea canaliculata is a potential biomonitor of heavy metals in freshwater ecosystems because of its ability to bioaccumulate a wide array of elements and because it is a better accumulator than some of the other organisms considered. Studies of bioaccumulation by P. canaliculata are reviewed. Additional keywords: Ampullariidae, Filopaludina martensi, fresh water, heavy metals, Ipomoea aquatica, Mollusca, Potamogeton crispus, sediment Introduction The increasing accumulation of heavy metals in the environment, especially in aquatic ecosystems, needs monitoring and this calls for a monitoring tool. Several studies have been done to assess the apple snail Pomacea canaliculata as a metal biomonitor in freshwater ecosystems. Pomacea canaliculata is an agricultural pest that has continued to spread despite numerous attempts to eliminate it or prevent its spread. Since it cannot be eliminated, is found in almost any freshwater ecosystem in many countries, is big enough to provide sufficient material (soft tissue) for analyses and because it is easy to handle, easy to collect, easy to culture, long lived, numerous, sedentary and can survive for a long time without food, it has the potential to be used widely as a heavy metal biomonitor. This contribution reviews studies of Pomacea canaliculata that have been done to assess its bioaccumulation of heavy metals. -
Payment for Ecosystem Services (Pes) As Tool for Mae Lao Watershed Conservation*
PAYMENT FOR ECOSYSTEM SERVICES (PES) AS TOOL FOR MAE LAO WATERSHED CONSERVATION* Penporn Janekarnkij* ARE Working Paper No. 2557/2 (August 2014) ** Department of Agricultural and Resource Economics, Faculty of Economics, Kasetsart University. Tel: +66 2942 8649 to 51 Fax: +66 2942 8047 e-mail: [email protected] Agricultural and Resource Economics (ARE) Working Paper is a peer- review work. It is aimed at disseminating academic writing of the staff members and students of the Department Agricultural and Resource Economics in the fields of agricultural economics, agribusiness, and natural resource and environmental economics. Copyright © 2010 by the Department of Agricultural and Resource Economics, and the author(s). All rights reserved. No part of this ARE Working Paper may be used or reproduced in any manner without the written permission of the Department of Agricultural and Resource Economics, Faculty of Economics, Kasetsart University, except in the case of quotations embodied in articles and reviews. Department of Agricultural and Resource Economics Faculty of Economics, Kasetsart University Jatujak, Bangkok, 10900, Thailand Tel: +66 2942 8649 to 51 Fax: +66 2942 8047 www.agri.eco.ku.ac.th Penporn Janekarnkij. 2014. Payment for Ecosystem Services (PES) as Tool for Mae Lao Watershed Conservation. ARE Working Paper No. 2557/2 (August 2014). Department of Agricultural and Resource Economics, Faculty of Economics, Kasetsart University, Bangkok. ISSN 1905-6494 ราคา 100 บาท The responsibility for the text rests entirely with the author(s). The views expressed are those of the author(s) and not necessarily those of the Department. i ACKNOWLEDGEMENT I would like to gratefully acknowledge the John D. -
Metacercariae in Northern Thailand
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 56, No. 1: 49-52, February 2018 ▣ ORIGINAL ARTICLE https://doi.org/10.3347/kjp.2018.56.1.49 New Record of Thapariella anastomusa (Trematoda: Thapariellidae) Metacercariae in Northern Thailand 1 2, 3,4 Waraporn Phalee , Anawat Phalee *, Chalobol Wongsawad 1Biology Department, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; 2Fisheries Program, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand; 3Biology Department, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand; 4Environmental Science Research Center (ESRC), Chiang Mai University, Chiang Mai 50202, Thailand Abstract: The family Thapariellidae has been reported in only 3 countries since 1990. The objective of this study was to identify Thapariella anastomusa metacercariae in snails in Thailand based on morphological traits using a light (LM) and a scanning electron microscope (SEM). A total of 94 Filopaludina snails were collected and identified as 50 F. martensi mar- tensi and 44 F. doliaris. Metacercariae of T. anastomusa were recovered from the snails by the crushing method. The overall prevalence was 22.3% (21/94), and the mean intensity was 17.0 per snail. The prevalence in F. martensi martensi was 24.0% (12/50) and F. doliaris 20.5% (9/44) with the mean intensity of 18.8 and 14.8 per snail, respectively. SEM re- vealed traits such as a concave ventral body and well-developed oral and ventral suckers. This study represents the first report of T. anastomusa in South East Asia. While LM and SEM observations provide novel insights into T. -
Laboratory Studies on Host-Parasite Relationship of Bithynia Snails and the Liver Fluke, Opisthorchis Viverrini
LABORATORY STUDIES ON HOST-PARASITE RELATIONSHIP OF BITHYNIA SNAILS AND THE LIVER FLUKE, OPISTHORCHIS VIVERRINI Arunwadee Chanawong* and Jitra Waikagul Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand. Abstract. The infection rate of Bithynia snails to Opisihorchis viverrini eggs was studied in relation to exposure intensity, age and species of host. It was found that 50 miracidial eggs per snail yielded the highest percentage of living surviving positive snails. Bithynia funiculata and Bithynia siamensis siamensis were highly susceptible to O. viverrini, about four to seven times higher than Bithynia siamensis goniomphalos. Young snails, 1-3 months old, appeared more susceptible than old snails. INTRODUCTION MATERIALS AND METHODS Liver fluke infection caused by Opisthorchis Snails: Laboratory bred and uninfected field viverrini is endemic in the northeast of Thailand collected B. Juniculata (Bf), B. s. goniomphalos where raw fish is a favorite dish of the local people. (Bsg) and B. s. siamensis (Bss) were used in this This fluke utilizes freshwater fishes, especially study. Laboratory bred snails (immature) were 1-3 cyprinoid fish, as the second intermediate host and months old, measuring 2-4 mm long and 1.5-2.5 Bithynia snails as the first intermediate host. mm wide, while the field-collected snails (mature) Three taxa of Bithynia have been reported as the measured 6-10 mm long and 4-7 mm wide. The sources of infection in different geographical field snails were determined to be free of cercariae habitats; Bithynia Juniculata in the north, B. through weekly observation for at least three siamensis goniomphalos in the northeast and months. -
Echinostoma Revolutum and Echinostoma Macrorchis in Freshwater Snails and Experimental Hamsters in Upper Northern Thailand
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 58, No. 5: 499-511, October 2020 ▣ ORIGINAL ARTICLE https://doi.org/10.3347/kjp.2020.58.5.499 Morphology and Molecular Identification of Echinostoma revolutum and Echinostoma macrorchis in Freshwater Snails and Experimental Hamsters in Upper Northern Thailand 1,2 1,2, 1,2,3 4,5 Preeyaporn Butboonchoo , Chalobol Wongsawad *, Pheravut Wongsawad , Jong-Yil Chai 1Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; 2Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; 3Economic Plant Genome Service Centre, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; 4Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea; 5Institute of Parasitic Diseases, Korea Association of Health Promotion (KAHP), Seoul 07649, Korea Abstract: Echinostome metacercariae were investigated in freshwater snails from 26 districts in 7 provinces of upper northern Thailand. The species identification was carried out based on the morphologies of the metacercariae and adult flukes harvested from experimental hamsters, and on nucleotide sequences of internal transcribed spacer 2 (ITS2) and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) genes. Twenty-four out of 26 districts were found to be infected with echinostome metacercariae in freshwater snails with the prevalence of 40.4%. The metacercariae were found in all 6 species of snails, including Filopaludina martensi martensi (21.9%), Filopaludina doliaris (50.8%), F. suma- trensis polygramma (61.3%), Bithynia siamensis siamensis (14.5%), Bithynia pulchella (38.0%), and Anenthome helena (4.9%). -
Download (11.04MB)
Tokyo Office, Institute for Global Environmental Strategies (IGES) Shinbashi SY Bldg. 4F, 1-14-2, Nishi-shinbashi, Minato-ku, Tokyo, 105-0003, Japan TEL: +81-3-3595-1081 FAX: +81-3-3595-1084 Email: [email protected] URL: http://www.iges.or.jp IGES is an international research institute conducting practical and innovative research for realizing sustainable development in the Asia-Pacific region. Copyright © 2017 IGES. All rights reserved. Cover photo credits; Indigenous Peoples’ Foundation for Education and Environment (IPF) ---------------------------------------------------------------------------------------------------------- Editors: Wilfredo V. Alangui, Kaoru Ichikawa, Yasuo Takahashi Editorial support: Wataru Suzuki, Yoichi Sakurai, Satomi Tanaka, Tomoshi Ichikawa, Emma Fushimi ---------------------------------------------------------------------------------------------------------- Acknowledgements The IPBES-JBF Sub-regional Dialogue Workshop on Indigenous and Local Knowledge (ILK) for South-East and North-East Asia sub-region was implemented by IGES as a part of the Capacity Building Project for the implementation of IPBES Asia-Pacific Regional Assessment of the IPBES. This project is supported by the Japan Biodiversity Fund (JBF) funded by the Ministry of the Environment of Japan (MOEJ) through the Secretariat of the Convention on Biological Diversity (SCBD). IGES would like to thank Indigenous Peoples’ Foundation for Education and Environment (IPF), Thailand for their cooperation and support in conducting the workshop. Although every effort is made to ensure objectivity and balance, the contents of the report does not imply IGES endorsement or acquiescence with its conclusions or the endorsement of IGES funders. IGES maintains a position of neutrality at all times on issues concerning public policy. Hence conclusions that are reached in IGES publications should be understood to be those of the authors and not attributed to staff-members, officers, directors, trustees, funders, or to IGES itself. -
Opisthorchis Viverrini Infection in Bithynia Snail Habitat Courtney C
Nawrocki et al. Parasites & Vectors (2019) 12:66 https://doi.org/10.1186/s13071-019-3313-2 SHORTREPORT Open Access Culture of fecal indicator bacteria from snail intestinal tubes as a tool for assessing the risk of Opisthorchis viverrini infection in Bithynia snail habitat Courtney C. Nawrocki1, Nadda Kiatsopit2,3, Jutamas Namsanor2,3, Paiboon Sithithaworn2,3 and Elizabeth J. Carlton1* Abstract Background: Like many trematodes of human health significance, the carcinogenic liver fluke, Opisthorchis viverrini, is spread via fecal contamination of snail habitat. Methods for assessing snail exposure to fecal waste can improve our ability to identify snail infection hotspots and potential sources of snail infections. We evaluated the feasibility of culturing fecal indicator bacteria from Bithynia snail intestinal tubes as a method for assessing snail exposure to fecal waste. Snails and water samples were collected from a site with a historically high prevalence of O. viverrini infected snails (“hotspot” site) and a site with historically no infected snails (“non-hotspot” site) on two sampling days. Snails were tested for O. viverrini and a stratified random sample of snails from each site was selected for intestinal tube removal and culture of gut contents for the fecal indicator bacteria, Escherichia coli. Water samples were tested for E. coli and nearby households were surveyed to assess sources of fecal contamination. Results: At the hotspot site, 26 of 2833 Bithynia siamensis goniomphalos snails were infected with O. viverrini compared to 0 of 1421 snails at the non-hotspot site. A total of 186 snails were dissected and cultured. Escherichia coli were detected in the guts of 20% of uninfected snails, 4% of O. -
The Liver Flukes: Clonorchis Sinensis, Opisthorchis Spp, and Metorchis Spp
GLOBAL WATER PATHOGEN PROJECT PART THREE. SPECIFIC EXCRETED PATHOGENS: ENVIRONMENTAL AND EPIDEMIOLOGY ASPECTS THE LIVER FLUKES: CLONORCHIS SINENSIS, OPISTHORCHIS SPP, AND METORCHIS SPP. K. Darwin Murrell University of Copenhagen Copenhagen, Denmark Edoardo Pozio Istituto Superiore di Sanità Rome, Italy Copyright: This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/openaccess/terms-use-ccbysa-en). Disclaimer: The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Citation: Murell, K.D., Pozio, E. 2017. The Liver Flukes: Clonorchis sinensis, Opisthorchis spp, and Metorchis spp. In: J.B. Rose and B. Jiménez-Cisneros, (eds) Global Water Pathogens Project. http://www.waterpathogens.org (Robertson, L (eds) Part 4 Helminths) http://www.waterpathogens.org/book/liver-flukes Michigan State University, E. Lansing, MI, UNESCO. Acknowledgements: K.R.L. Young, Project Design editor; Website Design (http://www.agroknow.com) Published: January 15, 2015, 3:45 pm, Updated: July 27, 2017, 10:36 am The Liver Flukes: Clonorchis sinensis, Opisthorchis spp, and Metorchis spp. -
Seasonal Transmission of Opisthorchis Viverrini Sensu Lato and a Lecithodendriid Trematode Species in Bithynia Siamensis Goniomphalos Snails in Northeast Thailand
Am. J. Trop. Med. Hyg., 93(1), 2015, pp. 87–93 doi:10.4269/ajtmh.14-0639 Copyright © 2015 by The American Society of Tropical Medicine and Hygiene Seasonal Transmission of Opisthorchis viverrini sensu lato and a Lecithodendriid Trematode Species in Bithynia siamensis goniomphalos Snails in Northeast Thailand Jutamas Namsanor, Paiboon Sithithaworn,* Kulthida Kopolrat, Nadda Kiatsopit, Opal Pitaksakulrat, Smarn Tesana, Ross H. Andrews, and Trevor N. Petney Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Liver Fluke and Cholangiocarcinoma Research Center (LFCRC), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Institute of Zoology 1: Ecology and Parasitology, Karlsruhe Institute of Technology, Karlsruhe, Germany; Imperial College London, Faculty of Medicine, St. Mary’s Campus, London, United Kingdom Abstract. Seasonal changes play roles in the transmission success of fish-borne zoonotic trematodes (FZT). This study examined the seasonal transmission patterns of Opisthorchis viverrini sensu lato (s.l.) and a virgulate cercaria (family Lecithodendriidae) in the snail intermediate host, Bithynia siamensis goniomphalos in northeast Thailand. Snail samples were collected monthly during the rainy, cool, and hot seasons during 2012–2013 to determine the prevalence and intensity of larval trematode infections. The prevalence of O. viverrini s.l. varied significantly with season, being 0.31%, 1.05%, and 0.37% in the rainy, cool, and hot seasons, respectively (P < 0.05). Similarly, the prevalence of virgulate cercariae was 3.11%, 6.80%, and 1.64% in the rainy, cool, and hot seasons, respectively (P < 0.05). The intensity of larval trematode infections also varied between seasons and peaked in the hot season (P < 0.05) in both species. -
Opisthorchis Viverrini Infection in the Snail and Fish Intermediate Hosts In
Acta Tropica 170 (2017) 120–125 Contents lists available at ScienceDirect Acta Tropica jo urnal homepage: www.elsevier.com/locate/actatropica Opisthorchis viverrini infection in the snail and fish intermediate hosts in Central Vietnam a,b,c c d e Ha Thanh Thi Dao , Veronique Dermauw , Sarah Gabriël , Apiporn Suwannatrai , e f b,c,∗ Smarn Tesana , Giang Thanh Thi Nguyen , Pierre Dorny a National Institute of Veterinary Research, Hanoi, Viet Nam b Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium c Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium d Department of Veterinary Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium e Department of Parasitology, Khon Kaen University, Thailand f Ministry of Health, Hanoi, Viet Nam a r t a b i c l e i n f o s t r a c t Article history: Opisthorchis viverrini, a carcinogenic fish borne fluke, requires freshwater snails and fish as intermediate Received 12 January 2017 hosts. Opisthorchiasis is endemic in parts of Southeast Asia, including Central and South Vietnam. In this Received in revised form 16 February 2017 region the transmission by intermediate hosts has received little attention. Therefore, freshwater snails Available online 24 February 2017 and wild fish from Bau My Tho, an opisthorchiasis endemic area in Binh Dinh Province were collected for examination of O. viverrini cercariae and metacercariae, respectively. A total of 12,000 snails belonging Keywords: to six families, of which 1616 Bithynia snails representing Bithynia siamensis goniomphalos and Bithynia Opisthorchis viverrini funiculata; as well as 754 fish representing 12 species were examined.