Developmental Genetic Bases Behind the Independent Origin of the Tympanic Membrane in Mammals and Diapsids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JVP 26(3) September 2006—ABSTRACTS
Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra. -
Sauropareion Anoplus, with a Discussion of Possible Life History
The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O. -
Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut -
A New Permian Temnospondyl with Russian Affinities from South America, the New Family Konzhukoviidae, and the Phylogenetic Status of Archegosauroidea
Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 A new Permian temnospondyl with Russian affinities from South America, the new family Konzhukoviidae, and the phylogenetic status of Archegosauroidea Cristian Pereira Pacheco, Estevan Eltink, Rodrigo Temp Müller & Sérgio Dias- da-Silva To cite this article: Cristian Pereira Pacheco, Estevan Eltink, Rodrigo Temp Müller & Sérgio Dias-da-Silva (2016): A new Permian temnospondyl with Russian affinities from South America, the new family Konzhukoviidae, and the phylogenetic status of Archegosauroidea, Journal of Systematic Palaeontology To link to this article: http://dx.doi.org/10.1080/14772019.2016.1164763 View supplementary material Published online: 11 Apr 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Library Services City University London] Date: 11 April 2016, At: 06:28 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1164763 A new Permian temnospondyl with Russian affinities from South America, the new family Konzhukoviidae, and the phylogenetic status of Archegosauroidea Cristian Pereira Pachecoa,c*, Estevan Eltinkb, Rodrigo Temp Muller€ c and Sergio Dias-da-Silvad aPrograma de Pos-Gradua c¸ ao~ em Ciencias^ Biologicas da Universidade Federal do Pampa, Sao~ Gabriel, CEP 93.700-000, RS, Brazil; bLaboratorio de Paleontologia de Ribeirao~ Preto, FFCLRP, Universidade de Sao~ Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirao~ Preto, Sao~ Paulo, Brazil; cPrograma de Pos Graduac¸ ao~ em Biodiversidade Animal, Universidade Federal de Santa Maria, Av. -
Cisneros2008.Pdf
Journal of Systematic Palaeontology 6 (3): 345–366 Issued 22 August 2008 doi:10.1017/S1477201907002350 Printed in the United Kingdom C The Natural History Museum ! Phylogenetic relationships of procolophonid parareptiles with remarks on their geological record Juan Carlos Cisneros∗ Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, South Africa SYNOPSIS The phylogenetic intrarelationships of procolophonid parareptiles are determined via a comprehensive cladistic analysis using a data matrix of 21 taxa and 58 characters. Most taxa are in- cluded for the first time in a phylogenetic analysis and 27 characters are novel. The relationships within the group are more firmly resolved than in previous analyses. Procolophoninae and Leptopleuron- inae, two of the three traditional subdivisions of the Procolophonidae, are valid monophyletic groups, but Spondylolestinae is polyphyletic. The Chinese genera Pentaedrusaurus and Neoprocolophon are the most primitive members of the Leptopleuroninae. A new group, Theledectinae, is erected. The latter clade consists of small procolophonids with a reduced marginal dentition and wide bulbous monocuspid teeth. Eumetabolodon from China and the former genus ‘Thelegnathus’ from South Africa are shown to be polyphyletic. The successful radiation of the Procolophonidae during the Triassic is likely to be related to the development of feeding adaptations that allowed exploration of various ecological niches, particularly the exploitation of high-fibre herbivory. The scarcity of Permian records of procolophonids is examined and the genus Spondylolestes from the Upper Permian of South Africa is considered to be a valid taxon with procolophonid affinities. Finally, a review of the records from the Middle and Upper Triassic reveals a procolophonid global hiatus of more than 15 Ma in Ladinian–Lower Carnian rocks. -
Carnivorous Dinocephalian from the Middle Permian of Brazil and Tetrapod Dispersal in Pangaea
Carnivorous dinocephalian from the Middle Permian of Brazil and tetrapod dispersal in Pangaea Juan Carlos Cisnerosa,1, Fernando Abdalab, Saniye Atayman-Güvenb, Bruce S. Rubidgeb, A. M. Celâl Sxengörc,1, and Cesar L. Schultzd aCentro de Ciências da Natureza, Universidade Federal do Piauí, 64049-550 Teresina, Brazil; bBernard Price Institute for Palaeontological Research, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa; cAvrasya Yerbilimleri Estitüsü, İstanbul Teknik Üniversitesi, Ayazaga 34469, Istanbul, Turkey; and dDepartamento de Paleontologia e Estratigrafia, Universidade Federal do Rio Grande do Sul, 91540-000 Porto Alegre, Brazil Contributed by A. M. Celâlx Sengör, December 5, 2011 (sent for review September 29, 2011) The medial Permian (∼270–260 Ma: Guadalupian) was a time of fragmentary to further explore their affinities with confidence. Here important tetrapod faunal changes, in particular reflecting a turn- we present a diagnosable dinocephalian species from the Permian over from pelycosaurian- to therapsid-grade synapsids. Until now, of South America, based on a complete and well-preserved cra- most knowledge on tetrapod distribution during the medial Perm- nium. This fossil is a member of the carnivorous clade Ante- ian has come from fossils found in the South African Karoo and the osauridae, and provides evidence for Pangaea-wide distribution Russian Platform, whereas other areas of Pangaea are still poorly of carnivorous dinocephalians during the Guadalupian. known. We present evidence for the presence of a terrestrial car- nivorous vertebrate from the Middle Permian of South America Results based on a complete skull. Pampaphoneus biccai gen. et sp. nov. Systematic Paleontology. Synapsida Osborn, 1903; Therapsida was a dinocephalian “mammal-like reptile” member of the Ante- Broom, 1905; Dinocephalia Seeley, 1894; Anteosauridae Boon- osauridae, an early therapsid predator clade known only from the stra, 1954; Syodontinae Ivakhnenko, 1994; Pampaphoneus biccai Middle Permian of Russia, Kazakhstan, China, and South Africa. -
A New Reptile from the Lower Permian of Brazil (Karutia Fortunata Gen
Journal of Systematic Palaeontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 A new reptile from the lower Permian of Brazil (Karutia fortunata gen. et sp. nov.) and the interrelationships of Parareptilia Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk , Jörg Fröbisch , Claudia Marsicano , Roger M. H. Smith & Martha Richter To cite this article: Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk , Jörg Fröbisch , Claudia Marsicano , Roger M. H. Smith & Martha Richter (2021): A new reptile from the lower Permian of Brazil (Karutiafortunata gen. et sp. nov.) and the interrelationships of Parareptilia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2020.1863487 To link to this article: https://doi.org/10.1080/14772019.2020.1863487 View supplementary material Published online: 12 Jan 2021. Submit your article to this journal Article views: 107 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2021 http://dx.doi.org/10.1080/14772019.2020.1863487 A new reptile from the lower Permian of Brazil (Karutia fortunata gen. et sp. nov.) and the interrelationships of Parareptilia aà b c b,d Juan Carlos Cisneros , Christian F. Kammerer , Kenneth D. Angielczyk ,Jorg€ Frobisch€ , Claudia Marsicanoe,f , Roger M. H. Smithg,h and Martha Richteri aMuseu de Arqueologia e Paleontologia, Universidade Federal do Piauı, 64049-550 Teresina, Brazil; bPaleontology Unit, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA; cNegaunee Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA; dInstitut fur€ Biologie, Humboldt-Universitat€ zu Berlin, Invalidenstr. -
APPENDIX 3: List of Autapomorphic Characters for Taxa Involved in Phylogenetic Analysis. Millerettidae -No Known Autapomorphies
APPENDIX 3: List of autapomorphic characters for taxa involved in phylogenetic analysis. Millerettidae -no known autapomorphies Bashkyroleter bashkyricus -no known autapomorphies ‘Bashkyroleter’ mesensis -no known autapomorphies Rhipaeosaurus tricuspidens 1. Tricuspid teeth Nycteroleter ineptus -no known autapomorphies Emeroleter levis 2. Closely-spaced small round pits on otherwise smooth skull 3. Posteriorly strongly elongated supratemporals that form narrow and long horns 4. Englarged unsculptured otic notch that reaches anteriorly almost to orbit 5. Posterior end of quadratojugal curves upward forming small horn 6. Middle pterygoid denticle ridge stretches from area of basipterygoid joint to posterior edge of choana and does not adjoin vomeropalatine ridge Macroleter poezicus 7. Maxilla vomer anterior contact 8. Basicranial articulation and basipterygoid processes facing anteriorly 9. Pterygoids meeting anterior to basipterygoid articulation 10. Sculptureless indentation just anterior to fronto-parietal suture 11. Skull roof v-shaped in posterior view Bradysaurus seeleyi -no known autapomorphies Bradysaurus baini 12. Distal portion of paroccipital process greatly swollen 13. Huge, rounded lump on the maxilla immediately behid the naris Nochelesaurus alexanderi 14. Groove on internal surface of scapulocoracoid located very close to the anterior margin of the scapula blade 15. Distinct tubercle on centre of dorsal surface of entepicondyle 16. Flange on the dorsal surface of the femur that projects distally beyond the postaxial tibial facet Embrithosaurus schwarzi 17. Anterior expansion of the iliac blade is flat rather than everted 18. Two iliac blades not parallel but diverge anteriorly (making an angle of approximately 40 degrees with the sagittal plane) 19. Pelvic symphysis extremely thick, almost half as deep as long Deltavjatia rossicus 20. -
Brief Report Acta Palaeontologica Polonica 54 (1): 165–169, 2009
Brief report Acta Palaeontologica Polonica 54 (1): 165–169, 2009 Nycteroleter affinities of a Permian parareptile from the South African Karoo Basin JUAN CARLOS CISNEROS and LINDA AKIKO TSUJI TheMiddlePermianTapinocephalus Assemblage Zone in (PIN 4543/3) from the Mezen River Basin, Russia (late Kaza− South Africa has produced a rich record of tetrapods domi− nian to early Tatarian), and Rhipaeosaurus tricuspidens (PIN nated by dinocephalian therapsids and pareiasaurid para− 164/2), from near Belebey, Bashkortostan, Russia (latest Kaza− reptiles. In this study we reassess the affinities of a specimen nian) (Golubev 2005). from this horizon previously identified as a procolophonoid and provide evidence that it is instead referable to a nyctero− leter parareptile, an identification that is more compatible Comparisons and discussion with the age of this fossil. Accordingly, this specimen repre− The description of NM QR3061 provided by Gow and Rubidge sents the first record of a nycteroleter in Gondwana. (1997) is accurate and needs no additions or amendments. Our comparisons are focused on the dorsal vertebrae, which are the Introduction best preserved and most diagnostic elements of this specimen. We consider certain features of NM QR3061 to be incompatible Nycteroleters (sensu Müller and Tsuji 2007) are small−to me− with its current identification as a procolophonoid; the referral dium sized parareptiles, being notable for displaying a suite of of the specimen to Parareptilia, however, is indeed correct. The characters that combine procolophonoid and pareiasaurid fea− presacral vertebrae evince swollen neural arches, a condition tures. They are recorded primarily in the upper Kazanian and that is characteristic of most members of this group. -
The Phylogenetic Position of Nyctiphruretus Acudens, a Parareptile from the Permian of Russia
ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es/info/estratig/journal.htm Journal of Iberian Geology 36 (2) 2010: 123-143 doi:10.5209/rev_JIGE.2010.v36.n2.2 The phylogenetic position of Nyctiphruretus acudens, a parareptile from the Permian of Russia Posición filogenética deNyctiphruretus acudens, un parareptil del Pérmico de Rusia L. K. SäiIä1,2 1Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1JU, United Kingdom 2Department of Geosciences and Geography, P.O. Box 64, Gustaf Hällströmin katu 2a, 00014 University of Helsinki, Finland (current affiliation). [email protected] Received: 09/11/09 / Accepted: 30/12/10 Abstract Several specimens preserving the cranial structure of Nyctiphruretus acudens, a parareptile from the Permian Mezen River locali- ty, Russia, are described here for the first time. Previous studies have offered conflicting reconstructed images ofNyctiphruretus but no illustrations of actual specimens. The new information was incorporated into two existing analyses of parareptilian relationships. The results indicate that Nyctiphruretus is closely related to procolophonoids, pareiasaurs and other non-pareiasaurian Mezen River parareptiles but the interrelationships within this group remain unresolved. Nyctiphruretus was recovered either as the sister taxon of a clade formed of pareiasaurs and the other non-pareiasaurian Mezen River parareptiles, or as the sister taxon of procolophonoids. This is the first time theNyctiphruretus- Procolophonoidea clade received support in a phylogenetic analysis. The interrelationships between several other groups within the Parareptilia also remain unresolved, or poorly supported, highlighting the need for more detailed descriptions and analyses of this enigmatic group of extinct reptiles. -
Reptile Family Tree Peters 2021 1909 Taxa, 235 Characters
Turinia Enoplus Chondrichtyes Jagorina Gemuendina Manta Chordata Loganellia Ginglymostoma Rhincodon Branchiostoma Tristychius Pikaia Tetronarce = Torpedo Palaeospondylus Craniata Aquilolamna Tamiobatis Myxine Sphyrna Metaspriggina Squalus Arandaspis Pristis Poraspis Rhinobatos Drepanaspis Cladoselache Pteromyzon adult Promissum Chlamydoselachus Pteromyzon hatchling Aetobatus Jamoytius Squatina Birkenia Heterodontus Euphanerops Iniopteryx Drepanolepis Helodus Callorhinchus Haikouichthys Scaporhynchus Belantsea Squaloraja Hemicyclaspis Chimaera Dunyu CMNH 9280 Mitsukurina Rhinochimaera Tanyrhinichthys Isurus Debeerius Thelodus GLAHM–V8304 Polyodon hatchling Cetorhinus Acipenser Yanosteus Oxynotus Bandringa PF8442 Pseudoscaphirhynchus Isistius Polyodon adult Daliatus Bandringa PF5686 Gnathostomata Megachasma Xenacanthus Dracopristis Akmonistion Ferromirum Strongylosteus Ozarcus Falcatus Reptile Family Tree Chondrosteus Hybodus fraasi Hybodus basanus Pucapampella Osteichthyes Orodus Peters 2021 1943 taxa, 235 characters Gregorius Harpagofututor Leptolepis Edestus Prohalecites Gymnothorax funebris Doliodus Gymnothorax afer Malacosteus Eurypharynx Amblyopsis Lepidogalaxias Typhlichthys Anableps Kryptoglanis Phractolaemus Homalacanthus Acanthodes Electrophorus Cromeria Triazeugacanthus Gymnotus Gorgasia Pholidophorus Calamopleurus Chauliodus Bonnerichthys Dactylopterus Chiasmodon Osteoglossum Sauropsis Synodus Ohmdenia Amia Trachinocephalus BRSLI M1332 Watsonulus Anoplogaster Pachycormus Parasemionotus Aenigmachanna Protosphyraena Channa Aspidorhynchus -
A Reevaluation of Early Amniote Phylogeny
Zoological Journal of the Linnean Society (1995), 113: 165–223. With 9 figures A reevaluation of early amniote phylogeny MICHEL LAURIN AND ROBERT R. REISZ* Department of Zoology, Erindale Campus, University of Toronto, Mississauga, Ontario, Canada L5L 1C6 Received February 1994, accepted for publication July 1994 A new phylogenetic analysis of early amniotes based on 124 characters and 13 taxa (including three outgroups) indicates that synapsids are the sister-group of all other known amniotes. The sister-group of Synapsida is Sauropsida, including Mesosauridae and Reptilia as its two main subdivisions. Reptilia is divided into Parareptilia and Eureptilia. Parareptilia includes Testudines and its fossil relatives (Procolophonidae, Pareiasauria and Millerettidae), while Eureptilia includes Diapsida and its fossil relatives (Paleothyris and Captorhinidae). Parts of the phylogeny are robust, such as the sister-group relationship between procolophonids and testudines, and between pareiasaurs and the testudinomorphs (the clade including procolophonids and testudines). Other parts of the new tree are not so firmly established, such as the position of mesosaurs as the sister-group of reptiles. The new phylogeny indicates that three major clades of amniotes extend from the present to the Palaeozoic. These three clades are the Synapsida (including Mammalia), Parareptilia (including Testudines), and Eureptilia (including Sauria). In addition, the Procolophonidae, a group of Triassic parareptiles, are the sister-group of Testudines. ADDITIONAL KEY WORDS:—Amniota – Sauropsida – Mesosauridae – Reptilia – Parareptilia – Eureptilia – Testudines – phylogenetics – evolution – Palaeozoic. CONTENTS Introduction . 166 Methods . 169 Results . 171 Amniote taxonomy . 172 Cotylosauria Cope 1880 . 173 Diadectomorpha Watson 1917 . 173 Amniota Haeckel 1866 . 177 Synapsida Osborn 1903 . 179 Sauropsida Huxley 1864 .