Moritz Hauptmann: Ein Haupt Mann in Nineteenth Century Music Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1 Geometric Generalizations of the Tonnetz and Their Relation To
November 22, 2017 12:45 ws-rv9x6 Book Title yustTonnetzSub page 1 Chapter 1 Geometric Generalizations of the Tonnetz and their Relation to Fourier Phases Spaces Jason Yust Boston University School of Music, 855 Comm. Ave., Boston, MA, 02215 [email protected] Some recent work on generalized Tonnetze has examined the topologies resulting from Richard Cohn's common-tone based formulation, while Tymoczko has reformulated the Tonnetz as a network of voice-leading re- lationships and investigated the resulting geometries. This paper adopts the original common-tone based formulation and takes a geometrical ap- proach, showing that Tonnetze can always be realized in toroidal spaces, and that the resulting spaces always correspond to one of the possible Fourier phase spaces. We can therefore use the DFT to optimize the given Tonnetz to the space (or vice-versa). I interpret two-dimensional Tonnetze as triangulations of the 2-torus into regions associated with the representatives of a single trichord type. The natural generalization to three dimensions is therefore a triangulation of the 3-torus. This means that a three-dimensional Tonnetze is, in the general case, a network of three tetrachord-types related by shared trichordal subsets. Other Ton- netze that have been proposed with bounded or otherwise non-toroidal topologies, including Tymoczko's voice-leading Tonnetze, can be under- stood as the embedding of the toroidal Tonnetze in other spaces, or as foldings of toroidal Tonnetze with duplicated interval types. 1. Formulations of the Tonnetz The Tonnetz originated in nineteenth-century German harmonic theory as a network of pitch classes connected by consonant intervals. -
T H O M a N E R C H
Thomanerchor LeIPZIG DerThomaner chor Der Thomaner chor ts n te on C F o able T Ta b l e o f c o n T e n T s Greeting from “Thomaskantor” Biller (Cantor of the St Thomas Boys Choir) ......................... 04 The “Thomanerchor Leipzig” St Thomas Boys Choir Now Performing: The Thomanerchor Leipzig ............................................................................. 06 Musical Presence in Historical Places ........................................................................................ 07 The Thomaner: Choir and School, a Tradition of Unity for 800 Years .......................................... 08 The Alumnat – a World of Its Own .............................................................................................. 09 “Keyboard Polisher”, or Responsibility in Detail ........................................................................ 10 “Once a Thomaner, always a Thomaner” ................................................................................... 11 Soli Deo Gloria .......................................................................................................................... 12 Everyday Life in the Choir: Singing Is “Only” a Part ................................................................... 13 A Brief History of the St Thomas Boys Choir ............................................................................... 14 Leisure Time Always on the Move .................................................................................................................. 16 ... By the Way -
My Musical Lineage Since the 1600S
Paris Smaragdis My musical lineage Richard Boulanger since the 1600s Barry Vercoe Names in bold are people you should recognize from music history class if you were not asleep. Malcolm Peyton Hugo Norden Joji Yuasa Alan Black Bernard Rands Jack Jarrett Roger Reynolds Irving Fine Edward Cone Edward Steuerman Wolfgang Fortner Felix Winternitz Sebastian Matthews Howard Thatcher Hugo Kontschak Michael Czajkowski Pierre Boulez Luciano Berio Bruno Maderna Boris Blacher Erich Peter Tibor Kozma Bernhard Heiden Aaron Copland Walter Piston Ross Lee Finney Jr Leo Sowerby Bernard Wagenaar René Leibowitz Vincent Persichetti Andrée Vaurabourg Olivier Messiaen Giulio Cesare Paribeni Giorgio Federico Ghedini Luigi Dallapiccola Hermann Scherchen Alessandro Bustini Antonio Guarnieri Gian Francesco Malipiero Friedrich Ernst Koch Paul Hindemith Sergei Koussevitzky Circa 20th century Leopold Wolfsohn Rubin Goldmark Archibald Davinson Clifford Heilman Edward Ballantine George Enescu Harris Shaw Edward Burlingame Hill Roger Sessions Nadia Boulanger Johan Wagenaar Maurice Ravel Anton Webern Paul Dukas Alban Berg Fritz Reiner Darius Milhaud Olga Samaroff Marcel Dupré Ernesto Consolo Vito Frazzi Marco Enrico Bossi Antonio Smareglia Arnold Mendelssohn Bernhard Sekles Maurice Emmanuel Antonín Dvořák Arthur Nikisch Robert Fuchs Sigismond Bachrich Jules Massenet Margaret Ruthven Lang Frederick Field Bullard George Elbridge Whiting Horatio Parker Ernest Bloch Raissa Myshetskaya Paul Vidal Gabriel Fauré André Gédalge Arnold Schoenberg Théodore Dubois Béla Bartók Vincent -
Moritz Hauptmann War Als Geiger, Komponist, Musik- Theoretiker Und Musikschriftsteller Sehr Geachtet Und Ein Hoch Frequentierter Lehrer
Hauptmann, Moritz Profil Moritz Hauptmann war als Geiger, Komponist, Musik- theoretiker und Musikschriftsteller sehr geachtet und ein hoch frequentierter Lehrer. Sowohl als Privatlehrer als auch ab 1843 im Rahmen seiner Lehrtätigkeit am Leipzi- ger Konservatorium bildete er zahlreiche Musikerinnen und Musiker aus. Sein polarisiertes Geschlechterbild ist auch in dieser Hinsicht von besonderer Bedeutung. Orte und Länder Moritz Hauptmann wurde 1792 in Dresden geboren und ging nach kurzen Aufenthalten in Gotha und Wien als Hauslehrer nach Russland. 1822 wurde er Geiger in der kurfürstlichen Kapelle in Kassel. Von dort wurde er 1842 nach Leipzig berufen, wo er bis zu seinem Tod 1868 als Thomaskantor, Kompositionslehrer, Musiktheoretiker und Musikschriftsteller wirkte. Biografie Moritz Hauptmann wurde 1792 in Dresden als Sohn des Architekten und Akademieprofessors Johann Gottlieb Hauptmann geboren. Schon früh erlernte er Geige, Kla- vier, Musiktheorie und Komposition und wurde 1811 Moritz Hauptmann. Gemälde von seiner Frau Susette Schüler von Ludwig Spohr in Gotha. Es folgte die Anstel- Hauptmann. lung als Geiger in der Hofkapelle in Dresden, anschlie- ßend im Theaterorchester Wien. 1915 wurde er Hausmu- Moritz Hauptmann siklehrer des Fürsten Repnin in Petersburg, Moskau, Pol- tawa und Odessa. Von 1822 bis 1842 war er Mitglied der * 13. Oktober 1792 in Dresden, Deutschland von Spohr geleiteten kurfürstlichen Kapelle in Kassel. † 3. Januar 1868 in Leipzig, Deutschland Auf Empfehlung Felix Mendelssohn Bartholdys und Spohrs erhielt er 1842 die -
An Introduction Via Perspectives on Consonant Triads
Introduction and Basics The Consonant Triad Geometry of Triads Extension of Neo-Riemannian Theory Symmetries of Triads What is Mathematical Music Theory? An Introduction via Perspectives on Consonant Triads Thomas M. Fiore http://www-personal.umd.umich.edu/~tmfiore/ Introduction and Basics The Consonant Triad Geometry of Triads Extension of Neo-Riemannian Theory Symmetries of Triads What is Mathematical Music Theory? Mathematical music theory uses modern mathematical structures to 1 analyze works of music (describe and explain them), 2 study, characterize, and reconstruct musical objects such as the consonant triad, the diatonic scale, the Ionian mode, the consonance/dissonance dichotomy... 3 compose 4 ... Introduction and Basics The Consonant Triad Geometry of Triads Extension of Neo-Riemannian Theory Symmetries of Triads What is Mathematical Music Theory? Mathematical music theory uses modern mathematical structures to 1 analyze works of music (describe and explain them), 2 study, characterize, and reconstruct musical objects such as the consonant triad, the diatonic scale, the Ionian mode, the consonance/dissonance dichotomy... 3 compose 4 ... Introduction and Basics The Consonant Triad Geometry of Triads Extension of Neo-Riemannian Theory Symmetries of Triads Levels of Musical Reality, Hugo Riemann There is a distinction between three levels of musical reality. Physical level: a tone is a pressure wave moving through a medium, “Ton” Psychological level: a tone is our experience of sound, “Tonempfindung” Intellectual level: a tone is a position in a tonal system, described in a syntactical meta-language, “Tonvorstellung”. Mathematical music theory belongs to this realm. Introduction and Basics The Consonant Triad Geometry of Triads Extension of Neo-Riemannian Theory Symmetries of Triads Work of Mazzola and Collaborators Mazzola, Guerino. -
German Virtuosity
CONCERT PROGRAM III: German Virtuosity July 20 and 22 PROGRAM OVERVIEW Concert Program III continues the festival’s journey from the Classical period Thursday, July 20 into the nineteenth century. The program offers Beethoven’s final violin 7:30 p.m., Stent Family Hall, Menlo School sonata as its point of departure into the new era—following a nod to the French Saturday, July 22 virtuoso Pierre Rode, another of Viotti’s disciples and the sonata’s dedicatee. In 6:00 p.m., The Center for Performing Arts at Menlo-Atherton the generation following Beethoven, Louis Spohr would become a standard- bearer for the German violin tradition, introducing expressive innovations SPECIAL THANKS such as those heard in his Double String Quartet that gave Romanticism its Music@Menlo dedicates these performances to the following individuals and musical soul. The program continues with music by Ferdinand David, Spohr’s organizations with gratitude for their generous support: prize pupil and muse to the German tradition’s most brilliant medium, Felix July 20: The William and Flora Hewlett Foundation Mendelssohn, whose Opus 3 Piano Quartet closes the program. July 22: Alan and Corinne Barkin PIERRE RODE (1774–1830) FERDINAND DAVID (1810–1873) Caprice no. 3 in G Major from Vingt-quatre caprices en forme d’études for Solo Caprice in c minor from Six Caprices for Solo Violin, op. 9, no. 3 (1839) CONCERT PROGRAMS CONCERT Violin (ca. 1815) Sean Lee, violin Arnaud Sussmann, violin FELIX MENDELSSOHN (1809–1847) LUDWIG VAN BEETHOVEN (1770–1827) Piano Quartet no. 3 in b minor, op. 3 (1825) Violin Sonata no. -
From Schritte and Wechsel to Coxeter Groups 3
From Schritte and Wechsel to Coxeter Groups Markus Schmidmeier1 Abstract: The PLR-moves of neo-Riemannian theory, when considered as re- flections on the edges of an equilateral triangle, define the Coxeter group S3. The elements are in a natural one-to-one correspondence with the trianglese in the infinite Tonnetz. The left action of S3 on the Tonnetz gives rise to interest- ing chord sequences. We compare the systeme of transformations in S3 with the system of Schritte and Wechsel introduced by Hugo Riemann in 1880e . Finally, we consider the point reflection group as it captures well the transition from Riemann’s infinite Tonnetz to the finite Tonnetz of neo-Riemannian theory. Keywords: Tonnetz, neo-Riemannian theory, Coxeter groups. 1. PLR-moves revisited In neo-Riemannian theory, chord progressions are analyzed in terms of elementary moves in the Tonnetz. For example, the process of going from tonic to dominant (which differs from the tonic chord in two notes) is decomposed as a product of two elementary moves of which each changes only one note. The three elementary moves considered are the PLR-transformations; they map a major or minor triad to the minor or major triad adjacent to one of the edges of the triangle representing the chord in the Tonnetz. See [4] and [5]. C♯ G♯ .. .. .. .. ... ... ... ... ... PR ... ... PL ... A ................E ................ B′ .. .. R.. .. L .. .. ... ... ... ... ... ... ... LR ... ... ∗ ... ... RL ... ( ) ′ F′ ................C ................ G ................ D .. .. P .. .. ... ... ... ... ... LP ... ... RP ... A♭ ................E♭ ................ B♭′ arXiv:1901.05106v3 [math.CO] 4 Apr 2019 Figure 1. Triads in the vicinity of the C-E-G-chord Our paper is motivated by the observation that PLR-moves, while they provide a tool to measure distance between triads, are not continuous as operations on the Tonnetz: Let s be a sequence of PLR-moves. -
570034Bk Hasse 23/8/10 9:09 PM Page 8
572066bk Hermann EU:570034bk Hasse 23/8/10 9:09 PM Page 8 zu vielen Duowerken des 18.Jahrhunderts fungiert das Cello solistisches Passagenwerk anbelangt. Einmal mehr zeigt sich hier nicht als Begleiter, sondern als gleichberechtigter Hermanns Kompetenz als Streicher. Ein Werk fernab Partner, was thematische Verarbeitung, Stimmführung und jeglicher solistischer und begleitender „Arbeitsteilung“ ! Johann Paul Eichhorn (1787–1861) Die Musikerfamilie Eichhorn stammt aus Coburg in Brüder Eichhorn, nun 8 und 9 Jahre alt, für Louis Spohr in Oberfranken, Deutschland. Johann Paul Eichhorn wurde Kassel, der sich über ihr Können enthusiastisch äußerte. 1787 im Dorf Neuses bei Coburg als Sohn eines Leinwebers 1833 traten die Jungen vor dem Papst auf, anschließend geboren. Auch wenn die Musik im Leben der Eichhorns wurde der elfjährige Ernst zum „Herzoglichen Cammer- Friedrich seit jeher eine bedeutende Rolle spielte, erlernte Johann Paul virtuos“ in Coburg ernannt. 1836 erhielt sein Bruder die Eichhorn nach der Konfirmation den Leinweberberuf, den Auszeichnung „Hofmusicus“. Bis Januar 1837 konzertierten er bis zu seinem 20. Lebensjahr ausübte. Gleichzeitig die Wunderkinder, als Ernsts angegriffene Gesundheit der HERMANN machte er durch eine besondere musikalische Begabung auf Reisetätigkeit Einhalt gebot. Von nun an wirkten sie in sich aufmerksam. Das Violinspiel brachte er sich selbst bei Coburg bei der „Herzoglichen Hof-Capelle“, Ernst als erster um mit Dorfmusikanten Tanzmusik zu spielen. Mit 20 Geiger, der auch die Soli zu übernehmen hatte, Eduard als 3 Capriccios Jahren wurde er zum Militärdienst nach Coburg eingezogen. zweiter Geiger. Später wurden auch die Brüder Albrecht Sein Ziel war eine Anstellung bei der Militärkapelle, und Alexander Eichhorn bei der „Hof-Capelle“ angestellt, weshalb er Horn- und Posaunenunterricht nahm. -
1 Original Place of Publication: Murphy, Scott. (2014) “Scoring Loss in Some Recent Popular Film and Television.” Music Theo
Original place of publication: Murphy, Scott. (2014) “Scoring Loss in Some Recent Popular Film and Television.” Music Theory Spectrum, 36(2), 295-314. Original date of publication: 7 Oct 2014 URL: http://mts.oxfordjournals.org/content/early/2014/09/24/mts.mtu014 ABSTRACT A certain tonally- and temporally-oriented progression of two triads, dwelt upon usually through undulation, accompanies scenes depicting the contemplation of a considerable sorrowful loss in many popular films and throughout one television program produced between 1985 and 2012. In lieu of any strong stylistic precedent for this musico-dramatic association, certain structural relationships between the two triads relative to other triadic pairings may account for possible motivations of the association. Keywords: film music, television music, tonality, triadic harmony, triadic transformation, mediant triad, loss, sorrow, homology, James Horner, Cocoon The narrative of Ron Howard’s 1985 movie Cocoon brings two parties into conflict: a peaceable and immortal alien race suffering from the regrettable but necessary abandonment of twenty of their kind on Earth thousands of years ago, and a group of present-day retirement-home residents in Florida suffering from degradation of health and vitality.*To counter these adversities, both parties use a lifeforce generated in a neglected swimming pool by a team of four aliens, led by Walter (Brian Dennehy), sent back to Earth to retrieve their stranded and cocooned comrades. The pool restores the abandoned aliens to full health, a requirement for their interstellar journey home, but it also acts as a “fountain of youth” for a trio of elderly men—Art (Don Ameche), Ben (Wilford Brimley), and Joe (Hume Cronyn)—who surreptitiously swim there; for example, the alien lifeforce miraculously throws Joe’s leukemia into 1 remission. -
Tonal Functions and Active Synthesis: Hugo Riemann, German Psychology, and Kantian Epistemology Author(S): Trevor Pearce Source: Intégral, Vol
Tonal Functions and Active Synthesis: Hugo Riemann, German Psychology, and Kantian Epistemology Author(s): Trevor Pearce Source: Intégral, Vol. 22 (2008), pp. 81-116 Published by: Intégral Stable URL: http://www.jstor.org/stable/20696499 Accessed: 16-06-2016 18:53 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Intégral is collaborating with JSTOR to digitize, preserve and extend access to Intégral This content downloaded from 152.15.112.58 on Thu, 16 Jun 2016 18:53:12 UTC All use subject to http://about.jstor.org/terms !"#$%&'(#)*+"#,&$#-&.)*+/0&12#*30,+,4&5(6"&7+08$##9& :0;8$#&<,2)3"%"629&$#-&=$#*+$#&>?+,*08"%"62& & !;0/";&<0$;)0& One could in fact set the whole first part of the Transcendental Doctrine of Elements of the Critique of Pure Reason to music Carl Stumpf, Tone Psychology (13, viii) @#*;"-()*+"#& Music theorists often analyFe a piece of music without reflectinG on the philosophical basis of their theoretical approach: This lack of refleJivity creates epistemic blind spots, which can conceal important methodoloGical assumptions: The most common way to promote epistemoloGical reflection is to analyFe eJistinG -
The Death and Resurrection of Function
THE DEATH AND RESURRECTION OF FUNCTION A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By John Gabriel Miller, B.A., M.C.M., M.A. ***** The Ohio State University 2008 Doctoral Examination Committee: Approved by Dr. Gregory Proctor, Advisor Dr. Graeme Boone ________________________ Dr. Lora Gingerich Dobos Advisor Graduate Program in Music Copyright by John Gabriel Miller 2008 ABSTRACT Function is one of those words that everyone understands, yet everyone understands a little differently. Although the impact and pervasiveness of function in tonal theory today is undeniable, a single, unambiguous definition of the term has yet to be agreed upon. So many theorists—Daniel Harrison, Joel Lester, Eytan Agmon, Charles Smith, William Caplin, and Gregory Proctor, to name a few—have so many different nuanced understandings of function that it is nearly impossible for conversations on the subject to be completely understood by all parties. This is because function comprises at least four distinct aspects, which, when all called by the same name, function , create ambiguity, confusion, and contradiction. Part I of the dissertation first illuminates this ambiguity in the term function by giving a historical basis for four different aspects of function, three of which are traced to Riemann, and one of which is traced all the way back to Rameau. A solution to the problem of ambiguity is then proposed: the elimination of the term function . In place of function , four new terms—behavior , kinship , province , and quality —are invoked, each uniquely corresponding to one of the four aspects of function identified. -
BOSTON „ F'syaphony
r* BOSTON „ f'SYAPHONY PRSGRKMftE 5? Vs* i CCHarveyCp all Visit Our New Victrola and Edison Departments IT is with pride that we announce the opening of new and larger parlors in which to demonstrate our extensive assortment of Victrolas and Edisons. The C. C. Harvey Company has long served the music lovers of this vicinity. That our service is appreciated, is truly indicated by our ever increasing sales of Victrolas, Edisons and records. This makes these new and larger quarters necessary for the greater con- venience of our patrons. Our prices, personal service and co-opera- tion are responsible for this growth, and we wish to express our gratitude to the many patrons who have contributed to our success. We invite all lovers of good music to visit our new and spacious Victrola and Edison roons, where you may see these instruments and hear your favorite selections amid homelike surroundings. OOHARVEY @ " THE HOME OF HARMONY " 144 BOYLSTON STREET (opposite the Common), BOSTON SYMPHONY HALL, BOSTON HUNTINGTON AND MASSACHUSETTS AVENUES Telephones Ticket Office $ \ in backD bay 14921jloo Branch Exchange ) Administration Offices \ bstoe Sjmiphomj Orel THIRTY-FIFTH SEASON, 1915—1916 Dr. KARL MUCK, Conductor Programme ©if fth< bird WITH HISTORICAL AND DESCRIPTIVE NOTES BY PHILIP HALE FRIDAY AFTERNOON, OCTOBER 29 AT 2.30 O'CLOCK SATURDAY EVENING, OCTOBER 30 AT 8.00 O'CLOCK COPYRIGHT, 1915, BY C. A. ELLIS PUBLISHED BY C. A. ELLIS, MANAGER it Yes, It's a Steinway ISN'T there supreme satisfaction in being able to say that of the piano in your home? Would you have the same feeling about any other piano? " It's a Steinway."' Nothing more need be said.