Study of Future Perspectives of Micro/Nanosatellites Constellations in the Earth Observation Market

Total Page:16

File Type:pdf, Size:1020Kb

Study of Future Perspectives of Micro/Nanosatellites Constellations in the Earth Observation Market Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market Master’s thesis Master’s Degree in Aeronautical Engineering REPORT Mariona Costa Rabionet June 2019 Supervisor of the TFM: Miquel Sureda Anfres Co-Supervisior of TFM: Silvia Rodríguez Donaire Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market Intentionally left blank 2 Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market Acknowledgements I would like to thank the members of the Discoverer team to give me the opportunity to be part of their group and allow me to develop my master thesis in such an interesting topic. Especially to Miquel who help me during all the process of development of the thesis and give me such wise pieces of advice and recommendations of which I have learned a lot not only in the technical point of view but also from the personal point of view. And last but not least, I would also thank my family and friends for all the support that I have always receive from them and their patience no matter what the situation or decisions I am involved with. 3 Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market Abstract The principal aim of this thesis is to study through qualitative and quantitative analysis, the future perspectives of the Micro/Nanosatellites constellations in the Earth observation market. The objective of doing the qualitative analysis is to identify and study in detail several companies that are designing commercial Micro/Nano-satellite constellation to fulfil the needs of the Earth Observation market in order to have an overall perspective of where the sector is going. Once the qualitative analysis has been made and the main interesting parameters of micro/nanosatellite constellation are found, we will run the quantitative analysis. With the performance of this analysis, we are able to determine if the expectations of the companies of the performance of the constellations are realistic or not. To determine the feasibility of these parameters, they will be compared with the results obtained by implementing a specific case in the SaVi software. 4 Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market Resum L’objectiu principal d’aquesta tesi és estudiar a través d’anàlisi qualitativa i quantitativa les perspectives de futur de les constel·lacions micro / nano-satèl·lits en el mercat d’observació de la Terra. L’objectiu de l’anàlisi qualitativa és identificar i estudiar en detall diverses empreses que estan dissenyant una constel·lació comercial de micro / nano-satèl·lits per satisfer les necessitats del mercat de l’Observació de la Terra per tenir una perspectiva general d’on va el sector. Un cop realitzada l’anàlisi qualitativa i els principals paràmetres interessants de la constel·lació micro / nano-satèl·lit, s’explica l’anàlisi quantitativa. Amb la realització d’aquesta anàlisi, som capaços de determinar si les expectatives de les empreses sobre el rendiment de les constel·lacions són realistes o no. Per determinar la viabilitat d’aquests paràmetres, s’hi compararan amb el resultat obtingut mitjançant la implementació d’un cas específic al programari SaVi. 5 Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market Content Acknowledgements ....................................................................................................................... 3 Abstract ......................................................................................................................................... 4 Resum ............................................................................................................................................ 5 DECLARATION OF HONOUR .......................................................................................................... 6 List of figures ................................................................................................................................. 9 List of tables ................................................................................................................................ 10 1. Introduction ........................................................................................................................ 11 1.1. Aim .............................................................................................................................. 11 1.2. Scope ........................................................................................................................... 11 1.3. Requirements .............................................................................................................. 11 1.4. Justification ................................................................................................................. 12 2. State of the art .................................................................................................................... 16 2.1. New space concept ..................................................................................................... 16 2.2. Microsatellites and nanosatellites .............................................................................. 18 2.3. Remote sensing technology ........................................................................................ 20 2.4. Earth Observation business ......................................................................................... 25 2.5. Global trends in Small satellites .................................................................................. 27 2.5.1. Scenarios ............................................................................................................. 27 2.5.2. Drivers ................................................................................................................. 37 2.5.3. Overall evaluation ............................................................................................... 39 3. Qualitative analysis ............................................................................................................. 40 3.1. Introduction ................................................................................................................ 40 3.2. Commercial companies ............................................................................................... 40 1.1.1. Planet .................................................................................................................. 40 1.1.2. Astro Digital ......................................................................................................... 42 1.1.3. BlackSky ............................................................................................................... 43 1.1.4. Satellogic ............................................................................................................. 44 1.1.5. Zhuhai Orbita Control .......................................................................................... 45 1.1.6. ICEYE .................................................................................................................... 46 1.1.7. Capella Space....................................................................................................... 47 1.1.8. Earth-i .................................................................................................................. 48 1.1.9. Axelspace ............................................................................................................. 49 1.1.10. Karten Space ........................................................................................................ 50 1.1.11. Hera Systems ....................................................................................................... 50 7 Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market 1.1.12. SatRevolution ...................................................................................................... 51 1.2. Technical parameters of the constellations ................................................................ 52 1.3. Results of the analysis ................................................................................................. 57 4. Quantitative analysis ........................................................................................................... 64 4.1. Flock constellation introduction ................................................................................. 64 4.2. SAVI Simulation Results ............................................................................................... 67 4.3. Results of the analysis ................................................................................................. 82 5. Environmental, economic and safety aspects ..................................................................... 87 5.1. Environmental aspects ................................................................................................ 87 5.2. Economic aspects ........................................................................................................ 87 5.3. Safety aspects .............................................................................................................. 87 6. Conclusions ........................................................................................................................
Recommended publications
  • 2019 Nano/Microsatellite Market Forecast, 9Th Edition
    2019 NANO/MICROSATELLITE MARKET FORECAST, 9TH EDITION Copyright 2018, SpaceWorks Enterprises, Inc. (SEI) APPROVED FOR PUBLIC RELEASE. SPACEWORKS ENTERPRISES, INC., COPYRIGHT 2018. 1 Since 2008, SpaceWorks has actively monitored companies and economic activity across both the satellite and launch sectors 0 - 50 kg 50 - 250kg 250 - 1000kg 1000 - 2000kg 2000kg+ Custom market assessments are available for all mass classes NANO/MICROSATELLITE DEFINITION Picosatellite Nanosatellite Microsatellite Small/Medium Satellite (0.1 – 0.99 kg) (1 – 10 kg) (10 – 100 kg) (100 – 1000 kg) 0 kg 1 kg 10 kg 100 kg 1000 kg This report bounds the upper range of interest in microsatellites at 50 kg given the relatively large amount of satellite development activity in the 1 – 50 kg range FORECASTING METHODOLOGY SpaceWorks’ proprietary Launch Demand Database (LDDB) Downstream serves as the data source for all satellite market Demand assessments ▪ Planned The LDDB is a catalogue of over 10,000+ historical and Constellations future satellites containing both public and non-public (LDDB) satellite programs Launch Supply SpaceWorks newly updated Probabilistic Forecast Model (PFM) is used to generate future market potential SpaceWorks PFM Model ▪ The PFM considers down-stream demand, announced/planed satellite constellations, and supply-side dynamics, among other relevant factors Expert Analysis The team of expert industry analysts at SpaceWorks SpaceWorks further interprets and refines the PFM results to create Forecast accurate market forecasts Methodology at a Glance 2018 SpaceWorks forecasted 2018 nano/microsatellite launches with unprecedented accuracy – actual satellites launched amounted to just 5% below our analysts’ predictions. In line with SpaceWorks’ expectations, the industry corrected after a record launch year in 2017, sending 20% less nano/microsatellites to orbit than in 2018.
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • Study of Future Perspectives of Micro/Nanosatellites Constellations in the Earth Observation Market
    Study of future perspectives of Micro/Nano-satellites constellations in the Earth Observation market Master’s thesis Master’s Degree in Aeronautical Engineering ANNEX Mariona Costa Rabionet June 2019 Supervisor of the TFM: Miquel Sureda Anfres Co-Supervisor of TFM: Silvia Rodríguez Donaire Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market Content ANNEX 1: New Space companies .................................................................................................. 3 ANNEX 2: Flock satellites status. ................................................................................................. 11 ANNEX 3: TLE number of Flock constellation satellites .............................................................. 31 ANNEX 4: Flock satellites orbital parameters. ............................................................................ 42 ANNEX 4: SaVi configuration ....................................................................................................... 56 Bibliography ................................................................................................................................ 65 2 Study of future perspectives of micro/nanosatellites constellations in the Earth Observation market ANNEX 1: New Space companies In this annex, it can be found the list of New space companies that has been analysed to be included in the qualitative analysis (table 1). Table 1. New space companies[1] Planned Organization Launched First launch Form factor Field Technical
    [Show full text]
  • The Impact of New Trends in Satellite Launches on Orbital Debris Environment
    THE IMPACT OF NEW TRENDS IN SATELLITE LAUNCHES ON ORBITAL DEBRIS ENVIRONMENT Arif Göktuğ Karacalıoğlu STC / NASA Ames Research Center, United States, [email protected] Jan Stupl SGT / NASA Ames Research Center, United States The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated.
    [Show full text]
  • 88 Satellite Deployment and Frequency Licensing for Planet's Earth Imaging Constellation
    88 Satellite Deployment and Frequency Licensing for Planet's Earth Imaging Constellation Bryan Klofas [email protected] CubeSat Developers’ Workshop San Luis Obispo, California 27 April 2017 1 Uluru, Australia, DEC 2, 2015 Launch • Launched 88 Dove Satellites on PSLV-C37 (Cartosat-2D) • 15 Feb 2017 UTC • Total 104 satellites, 101 CubeSats, 25 QuadPacks • Everything went really smoothly • Not the first time QuadPacks were launched on PSLV • Sequencer needed to be built and tested • Extra QuadPacks supported another 20 satellites • Pathfinder: PSLV-C34 • 12 Doves deployed on 22 June 2016 • This launched proved that Planet, ISIS, and ISRO/Antrix knew how to handle large amounts of satellites Disclaimer: I am not a lawyer. I am not intending to provide legal advice or counseling, and the audience should seek their own counsel. Slide 2 Credit: Planet Slide 3 Credit: ISIS Slide 4 Valentine’s Day Launch I DOVE YOU I’M CRAZY3 U YOU SPIN MY WHEELS Credit: ISRO Slide 5 Credit: ISRO Slide 6 Credit: ISRO Slide 7 Credit: ISRO Slide 8 Commissioning Status ● All satellites contacted and health data downloaded 3 hours after launch (second pass) ● Upload 3 MBytes of software updates ● Status as of April 20th: ○ 40 fully commissioned and imaging ○ 46 undergoing commissioning ○ 2 non-responsive (expected 5%) ○ Expect commissioning complete in June 2017 ○ Non-overlapping ground tracks in June 2017 ○ Not fully phased until Oct 2017 ● Total satellite fleet (April 20th): ○ 84 imaging from all launches Slide 9 Ground Station Status • Up to 16 S/X-band dishes,
    [Show full text]
  • Redalyc.Status and Trends of Smallsats and Their Launch Vehicles
    Journal of Aerospace Technology and Management ISSN: 1984-9648 [email protected] Instituto de Aeronáutica e Espaço Brasil Wekerle, Timo; Bezerra Pessoa Filho, José; Vergueiro Loures da Costa, Luís Eduardo; Gonzaga Trabasso, Luís Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Journal of Aerospace Technology and Management, vol. 9, núm. 3, julio-septiembre, 2017, pp. 269-286 Instituto de Aeronáutica e Espaço São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=309452133001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative doi: 10.5028/jatm.v9i3.853 Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review Timo Wekerle1, José Bezerra Pessoa Filho2, Luís Eduardo Vergueiro Loures da Costa1, Luís Gonzaga Trabasso1 ABSTRACT: This paper presents an analysis of the scenario of small satellites and its correspondent launch vehicles. The INTRODUCTION miniaturization of electronics, together with reliability and performance increase as well as reduction of cost, have During the past 30 years, electronic devices have experienced allowed the use of commercials-off-the-shelf in the space industry, fostering the Smallsat use. An analysis of the enormous advancements in terms of performance, reliability and launched Smallsats during the last 20 years is accomplished lower prices. In the mid-80s, a USD 36 million supercomputer and the main factors for the Smallsat (r)evolution, outlined.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • ON FORMING the MOON in GEOCENTRIC ORBIT Herbert, F., Et Al
    ON FORMING ME MOON IN GEOCENTRIC ORBIT; DYNAMICAL EVOLUTION OF A CIRCUMTERRESTRIAL PLANETESIMAL SWARM; Floyd Herbert, University of Arizona, Tucson, and D.R. Davis and S.J. Weidenschilling, Planetary Science Institute, Tucson, AZ. The wclassicalv theories of lunar origin all have major difficulties that have prevented any of them from beinq generally accepted: the capture hypo- thesis is quite improbable, while the fission hypothesis suffers a larqe anqular momentum problem. New theories have, of course, sprouted to replace these -- tidal disruption/capture, accretion in geocentric orbit, and the qiant impact hypothesis. At a recent conference on the oriqin of the moon (October, 1984, Kona, HI), the qiant impact hypothesis, which holds that the moon formed as the result of a large (Mercury-to-Mars-sized) planetesimal impactinq the proto-Earth, emerqed as the current favored hypothesis, with co-formation in geocentric orbit a possible alternative. The latter model, which suqgests that the moon formed from planetesimals captured from helio- centric orbit and forminq a circumterrestrial disk, was criticized also as suffering an angular momentum deficit, based on our preliminary results (1). We present here additional results of studies of anqular momen-tum input to a circumterrestrial swarm by planetesimals arriving from heliocentric orbits. Such a target swarm could have formed initially by collisions among heliocentric planetesimals passing within Earth's sphere of influence. Such collisions have a siqnificant probability (tens of $1 of yieldinq capture into qeocentric orbit (2). We assume that the swarm is evolvinq due to collisions with the heliocentric planetesimal population as they pass close to the Earth.
    [Show full text]
  • Successful Demonstration for Upper Stage Controlled Re-Entry Experiment by H-IIB Launch Vehicle
    Mitsubishi Heavy Industries Technical Review Vol. 48 No. 4 (December 2011) 11 Successful Demonstration for Upper Stage Controlled Re-entry Experiment by H-IIB Launch Vehicle KAZUO TAKASE*1 MASANORI TSUBOI*2 SHIGERU MORI*3 KIYOSHI KOBAYASHI*3 The space debris created by launch vehicles after orbital injections can be hazardous. A piece of debris can collide with artificial satellites or cause a casualty when it falls back to earth, which is an ongoing problem among countries that utilize outer space. This paper reports on a Japanese controlled re-entry disposal method that brings the upper stage of a launch vehicle down in a safe ocean area after the mission has been completed. The method was successfully demonstrated on the H-IIB launch vehicle during Flight No. 2, and provides a means of reducing the amount of space debris and the risk of ground casualty. |1. Introduction The H-IIB launch vehicle was jointly developed by the Japan Aerospace Exploration Agency (JAXA) and Mitsubishi Heavy Industries, Ltd., to launch the Kounotori (‘Stork’) H-II Transfer Vehicle (HTV), which carries supply goods to the International Space Station (ISS). The H-IIB launch vehicle has the largest launch capability of the H-IIA launch vehicle family: it can inject a 16.5-ton HTV into a low earth orbit (ISS transfer orbit). Figure 1 shows an overview of the H-IIB launch vehicle. Figure 1 Overview of the H-IIB launch vehicle The changes introduced in the H-IIB launch vehicle are as follows: ・ Enhanced first stage relative to the H-IIA: tank diameter extension, cluster system for two main engines, and four solid rocket boosters (SRB-A) ・ Reinforced upper stage (second stage) relative to the H-IIA to launch the HTV ・ 5S-H fairing (newly developed to launch the HTV) H-IIB Test Flight No.
    [Show full text]
  • Orbital Aggregation & Space Infrastructure Systems (OASIS)
    Revolutionary Aerospace Systems Concepts Orbital Aggregation & Space Infrastructure Systems (OASIS) Preliminary Architecture and Operations Analysis FY2001 Final Report June 10, 2002 This page intentionally left blank. Foreword Just as the early American settlers pushed west beyond the original thirteen colonies, the world today is on the verge of expanding the realm of humanity beyond its terrestrial bounds. The next great frontier lies ahead in low-Earth orbit and beyond. Commercialization of space has recently been mostly limited to communications and remote sensing applications, but materials processing, manufacturing, tourism and servicing opportunities will undoubtedly increase during the first part of the new millennium. Discoveries hinting at the existence of water on Mars and Europa offer additional motivation for establishing a space-based infrastructure that supports extended human exploration of the solar system. If this space-based infrastructure were also utilized to stimulate and support space commercialization, permanent human occupation of low-Earth orbit and beyond could be achieved sooner and more cost effectively. The purpose of this study is to identify synergistic opportunities and concepts among human exploration initiatives and space commercialization activities while taking into account technology assumptions and mission viability in an Orbital Aggregation & Space Infrastructure Systems (OASIS) framework. OASIS is a set of concepts that provide a common infrastructure for enabling a large class of space missions. The concepts include communication, navigation and power systems, propellant modules, tank farms, habitats, and transfer systems using several propulsion technologies. OASIS features in-space aggregation of systems and resources in support of mission objectives. The concepts feature a high level of reusability and are supported by inexpensive launch of propellant and logistics payloads.
    [Show full text]
  • Deep Space Network Ission Suppo
    870-14, Rev. AF Deep Space Network ission Suppo Jet Propulsion Laboratory California institute of Technology JPL 0-0787,Rev. AF 870-14, Rev. AF October 1991 Deep Space Network ission Support Re uirements Reviewed by: L.M. McKinley TDA Mission Support Off ice Approved by: R.J. Amorose Manager, TDA Mission Support Jet Propulsion Laboratory California Institute of Technology JPL 0-0787, Rev. AF 870.14. Rev . AF CONTENTS INTRODUCTION............................................................ 1-1 A . PURPOSE AND SCOPE ................................................. 1-1 B . REVISION AND CONTROL .............................................. 1-1 C . ORGANIZATION OF DOCUMENT 870-14 ................................... 1-1 D . ABBREVIATIONS ..................................................... 1-1 ASTRO-D ................................................................. 2-1 BROADCASTING SATELLITE-3A AND -3B (BS-3A AND -3B) ....................... 3-1 CRAF/CASSINI (c/c)...................................................... 4-1 COSMIC BACKGROUND EXPLORER (COBE)....................................... 5-1 DYNAMICS EXPLORER-1 (DE-1).............................................. 6-1 EARTH RADIATION BUDGET SATELLITE (ERBS)................................. 7-1 ENGINEERING TEST SATELLITE-VI (ETS-VI).................................. 8-1 EUROPEAN TELECOMMUNICATIONS SATELLITE I1 (EUTELSAT 11) .................. 9-1 EXTREME ULTRAVIOLET EXPLORER (EWE)..................................... 10-1 FRENCH DIRECT TV BROADCAST SATELLITE (TDF-1 AND -2) ....................
    [Show full text]
  • Orbital Mechanics Joe Spier, K6WAO – AMSAT Director for Education ARRL 100Th Centennial Educational Forum 1 History
    Orbital Mechanics Joe Spier, K6WAO – AMSAT Director for Education ARRL 100th Centennial Educational Forum 1 History Astrology » Pseudoscience based on several systems of divination based on the premise that there is a relationship between astronomical phenomena and events in the human world. » Many cultures have attached importance to astronomical events, and the Indians, Chinese, and Mayans developed elaborate systems for predicting terrestrial events from celestial observations. » In the West, astrology most often consists of a system of horoscopes purporting to explain aspects of a person's personality and predict future events in their life based on the positions of the sun, moon, and other celestial objects at the time of their birth. » The majority of professional astrologers rely on such systems. 2 History Astronomy » Astronomy is a natural science which is the study of celestial objects (such as stars, galaxies, planets, moons, and nebulae), the physics, chemistry, and evolution of such objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explosions, gamma ray bursts, and cosmic microwave background radiation. » Astronomy is one of the oldest sciences. » Prehistoric cultures have left astronomical artifacts such as the Egyptian monuments and Nubian monuments, and early civilizations such as the Babylonians, Greeks, Chinese, Indians, Iranians and Maya performed methodical observations of the night sky. » The invention of the telescope was required before astronomy was able to develop into a modern science. » Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy and the making of calendars, but professional astronomy is nowadays often considered to be synonymous with astrophysics.
    [Show full text]